1
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
2
|
McCord K, Wang C, Anhalt M, Poon WW, Gavin AL, Wu P, Macauley MS. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. ACS CENTRAL SCIENCE 2024; 10:315-330. [PMID: 38435516 PMCID: PMC10906256 DOI: 10.1021/acscentsci.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
Fcγ receptors (FcγRs) play key roles in the effector function of IgG, but their inappropriate activation plays a role in several disease etiologies. Therefore, it is critical to better understand how FcγRs are regulated. Numerous studies suggest that sialic acid-binding immunoglobulin-type lectins (Siglecs), a family of immunomodulatory receptors, modulate FcγR activity; however, it is unclear of the circumstances in which Siglecs can antagonize FcγRs and which Siglecs have this ability. Using liposomes displaying selective ligands to coengage FcγRs with a specific Siglec, we explore the ability of Siglec-3, Siglec-5, Siglec-7, and Siglec-9 to antagonize signaling downstream of FcγRs. We demonstrate that Siglec-3 and Siglec-9 can fully inhibit FcγR activation in U937 cells when coengaged with FcγRs. Cells expressing Siglec mutants reveal differential roles for the immunomodulatory tyrosine-based inhibitory motif (ITIM) and immunomodulatory tyrosine-based switch motif (ITSM) in this inhibition. Imaging flow cytometry enabled visualization of SHP-1 recruitment to Siglec-3 in an ITIM-dependent manner, while SHP-2 recruitment is more ITSM-dependent. Conversely, both cytosolic motifs of Siglec-9 contribute to SHP-1/2 recruitment. Siglec-7 poorly antagonizes FcγR activation for two reasons: masking by cis ligands and differences in its ITIM and ITSM. A chimera of the Siglec-3 extracellular domains and Siglec-5 cytosolic tail strongly inhibits FcγR when coengaged, providing evidence that Siglec-5 is more like Siglec-3 and Siglec-9 in its ability to antagonize FcγRs. Additionally, Siglec-3 and Siglec-9 inhibited FcγRs when coengaged by cells displaying ligands for both the Siglec and FcγRs. These results suggest a role for Siglecs in mediating FcγR inhibition in the context of an immunological synapse, which has important relevance to the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Kelli
A. McCord
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Chao Wang
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mirjam Anhalt
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne W. Poon
- Institute
for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92617, United States
| | - Amanda L. Gavin
- Department
of Immunology and Microbiology, Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
3
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Cao Y, Rische CH, Bochner BS, O’Sullivan JA. Interactions between Siglec-8 and endogenous sialylated cis ligands restrain cell death induction in human eosinophils and mast cells. Front Immunol 2023; 14:1283370. [PMID: 37928558 PMCID: PMC10623328 DOI: 10.3389/fimmu.2023.1283370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a sialoside-binding receptor expressed by eosinophils and mast cells that exhibits priming status- and cell type-dependent inhibitory activity. On eosinophils that have been primed with IL-5, GM-CSF, or IL-33, antibody ligation of Siglec-8 induces cell death through a pathway involving the β2 integrin-dependent generation of reactive oxygen species (ROS) via NADPH oxidase. In contrast, Siglec-8 engagement on mast cells inhibits cellular activation and mediator release but reportedly does not impact cell viability. The differences in responses between cytokine-primed and unprimed eosinophils, and between eosinophils and mast cells, to Siglec-8 ligation are not understood. We previously found that Siglec-8 binds to sialylated ligands present on the surface of the same cell (so-called cis ligands), preventing Siglec-8 ligand binding in trans. However, the functional relevance of these cis ligands has not been elucidated. We therefore explored the potential influence of cis ligands of Siglec-8 on both eosinophils and mast cells. De-sialylation using exogenous sialidase profoundly altered the consequences of Siglec-8 antibody engagement on both cell types, eliminating the need for cytokine priming of eosinophils to facilitate cell death and enabling Siglec-8-dependent mast cell death without impacting anti-Siglec-8 antibody binding. The cell death process licensed by de-sialylation resembled that characterized in IL-5-primed eosinophils, including CD11b upregulation, ROS production, and the activities of Syk, PI3K, and PLC. These results implicate cis ligands in restraining Siglec-8 function on eosinophils and mast cells and reveal a promising approach to the selective depletion of mast cells in patients with mast cell-mediated diseases.
Collapse
Affiliation(s)
- Yun Cao
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Clayton H. Rische
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
O'Sullivan JA, Youngblood BA, Schleimer RP, Bochner BS. Siglecs as potential targets of therapy in human mast cell- and/or eosinophil-associated diseases. Semin Immunol 2023; 69:101799. [PMID: 37413923 PMCID: PMC10528103 DOI: 10.1016/j.smim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of vertebrate glycan-binding cell-surface proteins. The majority mediate cellular inhibitory activity once engaged by specific ligands or ligand-mimicking molecules. As a result, Siglec engagement is now of interest as a strategy to therapeutically dampen unwanted cellular responses. When considering allergic inflammation, human eosinophils and mast cells express overlapping but distinct patterns of Siglecs. For example, Siglec-6 is selectively and prominently expressed on mast cells while Siglec-8 is highly specific for both eosinophils and mast cells. This review will focus on a subset of Siglecs and their various endogenous or synthetic sialoside ligands that regulate eosinophil and mast cell function and survival. It will also summarize how certain Siglecs have become the focus of novel therapies for allergic and other eosinophil- and mast cell-related diseases.
Collapse
Affiliation(s)
- Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Bochner BS, O'Sullivan JA, Chang AT, Youngblood BA. Siglecs in allergy and asthma. Mol Aspects Med 2023; 90:101104. [PMID: 35835621 PMCID: PMC10757266 DOI: 10.1016/j.mam.2022.101104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 01/21/2023]
Abstract
The term "allergic diseases" encompasses several common, IgE-mediated conditions that range from being annoying to those that are life-threatening. Available treatments include active avoidance of the instigating allergen and the use of a variety of oral, inhaled, intranasal, intraocular and injected agents. While most individuals with allergies do well with existing therapies, there are still unmet therapeutic needs. Siglecs (sialic acid-binding, immunoglobulin-like lectins) are a family of single-pass transmembrane I-type lectins found on various subsets of cells, especially those of the immune system. All Siglecs have extracellular domains recognizing sialoside ligands, and most contain cytoplasmic domains with inhibitory signaling activity. This review focuses on Siglecs that likely play a role in regulating allergic and asthmatic responses, and how specific Siglecs, expressed on cells such as eosinophils and mast cells, are being targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jeremy A O'Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
7
|
Gonzalez-Gil A, Li TA, Kim J, Schnaar RL. Human sialoglycan ligands for immune inhibitory Siglecs. Mol Aspects Med 2023; 90:101110. [PMID: 35965135 DOI: 10.1016/j.mam.2022.101110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Most human Siglecs (sialic acid binding immunoglobulin-like lectins) are expressed on the surfaces of overlapping subsets of immune cells, and most carry immunoreceptor tyrosine-based inhibitory domains on their intracellular motifs. When immune inhibitory Siglecs bind to complementary sialoglycans in their local milieu, engagement results in down-regulation of the immune response. Siglecs have come under scrutiny as potential targets of drugs to modify the course of inflammation (and other immune system responses) and as immune checkpoints in cancer. Human Siglecs bind to endogenous human sialoglycans. The identities of these endogenous human sialoglycan immune regulators are beginning to emerge, along with some general principles that may inform future investigations in this area. Among these principles is the finding that a cell type or tissue may express a ligand for a particular Siglec on a single or a very few of its sialoglycoproteins. The selected protein carrier for a particular Siglec may be unique in a certain tissue, but vary tissue-to-tissue. The binding affinity of endogenous Siglec ligands may surpass that of its binding to synthetic sialoglycan determinants by several orders of magnitude. Since most human Siglecs have evolved rapidly and are distinct from those in most other mammals, this review describes endogenous human Siglec ligands for several human immune inhibitory Siglecs. As the identities of these immune regulatory sialoglycan ligands are defined, additional opportunities to target Siglecs therapeutically may emerge.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Jean Kim
- Department Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
9
|
Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Med 2023; 90:101117. [PMID: 35989204 PMCID: PMC9905256 DOI: 10.1016/j.mam.2022.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host-microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences-beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Lenza M, Atxabal U, Nycholat C, Oyenarte I, Franconetti A, Quintana JI, Delgado S, Núñez-Franco R, Garnica Marroquín CT, Coelho H, Unione L, Jiménez-Oses G, Marcelo F, Schubert M, Paulson JC, Jiménez-Barbero J, Ereño-Orbea J. Structures of the Inhibitory Receptor Siglec-8 in Complex with a High-Affinity Sialoside Analogue and a Therapeutic Antibody. JACS AU 2023; 3:204-215. [PMID: 36711084 PMCID: PMC9875244 DOI: 10.1021/jacsau.2c00592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G-G' loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcεRIα have also been explored by NMR.
Collapse
Affiliation(s)
- Maria
Pia Lenza
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Unai Atxabal
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Corwin Nycholat
- Department
of Molecular Medicine and Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California92037, United States
| | - Iker Oyenarte
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Antonio Franconetti
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Jon Imanol Quintana
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Sandra Delgado
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Reyes Núñez-Franco
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | | | - Helena Coelho
- UCIBIO,
REQUIMTE, Departamento de Química, Faculdade de Ciências
e Tecnologia, Universidade de Nova de Lisboa, Caparica2829-516, Portugal
| | - Luca Unione
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
| | - Gonzalo Jiménez-Oses
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
- IKERBASQUE, Basque
Foundation for Science and Technology, Euskadi Plaza 5, Bilbao48009, Spain
| | - Filipa Marcelo
- UCIBIO,
REQUIMTE, Departamento de Química, Faculdade de Ciências
e Tecnologia, Universidade de Nova de Lisboa, Caparica2829-516, Portugal
| | - Mario Schubert
- Department
of Biosciences, University of Salzburg, Hellbrunnel Str. 34, Salzburg5020, Austria
| | - James C. Paulson
- Department
of Molecular Medicine and Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California92037, United States
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
- Department
of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa48940, Spain
- IKERBASQUE, Basque
Foundation for Science and Technology, Euskadi Plaza 5, Bilbao48009, Spain
- Centro
de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid28029, Spain
| | - June Ereño-Orbea
- CIC
bioGUNE, Bizkaia Technology Park, Building 800, Derio-Bizkaia48160, Spain
- IKERBASQUE, Basque
Foundation for Science and Technology, Euskadi Plaza 5, Bilbao48009, Spain
| |
Collapse
|
11
|
Borgström EW, Edvinsson M, Pérez LP, Norlin AC, Enoksson SL, Hansen S, Fasth A, Friman V, Kämpe O, Månsson R, Estupiñán HY, Wang Q, Ziyang T, Lakshmikanth T, Smith CIE, Brodin P, Bergman P. Three Adult Cases of STAT1 Gain-of-Function with Chronic Mucocutaneous Candidiasis Treated with JAK Inhibitors. J Clin Immunol 2023; 43:136-150. [PMID: 36050429 PMCID: PMC9840596 DOI: 10.1007/s10875-022-01351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE The aim of this study was to characterize clinical effects and biomarkers in three patients with chronic mucocutaneous candidiasis (CMC) caused by gain-of-function (GOF) mutations in the STAT1 gene during treatment with Janus kinase (JAK) inhibitors. METHODS Mass cytometry (CyTOF) was used to characterize mononuclear leukocyte populations and Olink assay to quantify 265 plasma proteins. Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA) was used to quantify the reactivity against Candida albicans. RESULTS Overall, JAK inhibitors improved clinical symptoms of CMC, but caused side effects in two patients. Absolute numbers of neutrophils, T cells, B cells, and NK cells were sustained during baricitinib treatment. Detailed analysis of cellular subsets, using CyTOF, revealed increased expression of CD45, CD52, and CD99 in NK cells, reflecting a more functional phenotype. Conversely, monocytes and eosinophils downregulated CD16, consistent with reduced inflammation. Moreover, T and B cells showed increased expression of activation markers during treatment. In one patient with a remarkable clinical effect of baricitinib treatment, the immune response to C. albicans increased after 7 weeks of treatment. Alterations in plasma biomarkers involved downregulation of cellular markers CXCL10, annexin A1, granzyme B, granzyme H, and oncostatin M, whereas FGF21 was the only upregulated marker after 7 weeks. After 3 months, IFN-ɣ and CXCL10 were downregulated. CONCLUSIONS The clinical effect of JAK inhibitor treatment of CMC is promising. Several biological variables were altered during baricitinib treatment demonstrating that lymphocytes, NK cells, monocytes, and eosinophils were affected. In parallel, cellular reactivity against C. albicans was enhanced.
Collapse
Affiliation(s)
- Emilie W. Borgström
- Department of Laboratory Medicine, Clinical Microbiology, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Edvinsson
- grid.412354.50000 0001 2351 3333Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, Uppsala, Sweden
| | - Lucía P. Pérez
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna C. Norlin
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara L. Enoksson
- grid.24381.3c0000 0000 9241 5705Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Hansen
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Fasth
- grid.8761.80000 0000 9919 9582Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vanda Friman
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Kämpe
- grid.4714.60000 0004 1937 0626Experimental Endocrinology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Robert Månsson
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hernando Y. Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tan Ziyang
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Carl Inge E. Smith
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Stockholm, Sweden
| | - Petter Brodin
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden ,grid.7445.20000 0001 2113 8111Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Wang H, Guo H, Yang J, Liu Y, Liu X, Zhang Q, Zhou K. Bruton tyrosine kinase inhibitors in B-cell lymphoma: beyond the antitumour effect. Exp Hematol Oncol 2022; 11:60. [PMID: 36138486 PMCID: PMC9493169 DOI: 10.1186/s40164-022-00315-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/11/2022] [Indexed: 01/08/2023] Open
Abstract
Targeting B-cell receptor signalling using Bruton tyrosine kinase (BTK) inhibitors (BTKis) has become a highly successful treatment modality for B-cell malignancies, especially for chronic lymphocytic leukaemia. However, long-term administration of BTKis can be complicated by adverse on- and/or off-target effects in particular cell types. BTK is widely expressed in cells of haematopoietic origin, which are pivotal components of the tumour microenvironment. BTKis, thus, show broad immunomodulatory effects on various non-B immune cell subsets by inhibiting specific immune receptors, including T-cell receptor and Toll-like receptors. Furthermore, due to the off-target inhibition of other kinases, such as IL-2-inducible T-cell kinase, epidermal growth factor receptor, and the TEC and SRC family kinases, BTKis have additional distinct effects on T cells, natural killer cells, platelets, cardiomyocytes, and other cell types. Such mechanisms of action might contribute to the exceptionally high clinical efficacy as well as the unique profiles of adverse effects, including infections, bleeding, and atrial fibrillation, observed during BTKi administration. However, the immune defects and related infections caused by BTKis have not received sufficient attention in clinical studies till date. The broad involvement of BTK in immunological pathways provides a rationale to combine BTKis with specific immunotherapies, such as immune checkpoint inhibitor or chimeric antigen receptor-T-cell therapy, for the treatment of relapsed or refractory diseases. This review discusses and summarises the above-mentioned issues as a reference for clinicians and researchers.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Hao Guo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Jingyi Yang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Yanyan Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Xingchen Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China.
| |
Collapse
|
13
|
Korver W, Wong A, Gebremeskel S, Negri GL, Schanin J, Chang K, Leung J, Benet Z, Luu T, Brock EC, Luehrsen K, Xu A, Youngblood BA. The Inhibitory Receptor Siglec-8 Interacts With FcεRI and Globally Inhibits Intracellular Signaling in Primary Mast Cells Upon Activation. Front Immunol 2022; 13:833728. [PMID: 35154156 PMCID: PMC8837033 DOI: 10.3389/fimmu.2022.833728] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Immunomodulation of mast cell (MC) activity is warranted in allergic and inflammatory diseases where MCs have a central role in pathogenesis. Targeting Siglec-8, an inhibitory receptor on MCs and eosinophils, has shown promising activity in preclinical and clinical studies. While the intracellular pathways that regulate Siglec-8 activity in eosinophils have been well studied, the signaling mechanisms that lead to MC inhibition have not been fully elucidated. Here, we evaluate the intracellular signaling pathways of Siglec-8-mediated inhibition in primary MCs using an anti-Siglec-8 monoclonal antibody (mAb). Phospho-proteomic profiling of FcεRI-activated MCs revealed Siglec-8 mAb-treatment globally inhibited proximal and downstream kinases, leading to attenuated MC activation and degranulation. In fact, Siglec-8 was found to directly interact with FcεRI signaling molecules. Siglec-8 inhibition was dependent on both cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that interact with the SH2 containing protein phosphatase Shp-2 upon Siglec-8 phosphorylation. Taken together, these data support a model in which Siglec-8 regulates proximal FcεRI-induced phosphorylation events through phosphatase recruitment and interaction with FcεRIγ, resulting in global inhibition of MCs upon Siglec-8 mAb engagement.
Collapse
Affiliation(s)
| | - Alan Wong
- Allakos Inc., Redwood City, CA, United States
| | | | | | | | | | - John Leung
- Allakos Inc., Redwood City, CA, United States
| | | | - Thuy Luu
- Allakos Inc., Redwood City, CA, United States
| | | | | | - Alan Xu
- Allakos Inc., Redwood City, CA, United States
| | | |
Collapse
|