1
|
Driessen A, Unger S, Nguyen AP, Ries RE, Meshinchi S, Kreutmair S, Alberti C, Sumazin P, Aplenc R, Redell MS, Becher B, Rodríguez Martínez M. Identification of single-cell blasts in pediatric acute myeloid leukemia using an autoencoder. Life Sci Alliance 2024; 7:e202402674. [PMID: 39191488 PMCID: PMC11358707 DOI: 10.26508/lsa.202402674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis and high relapse rate. Current challenges in the identification of immunotherapy targets arise from patient-specific blast immunophenotypes and their change during disease progression. To overcome this, we present a new computational research tool to rapidly identify malignant cells. We generated single-cell flow cytometry profiles of 21 pediatric AML patients with matched samples at diagnosis, remission, and relapse. We coupled a classifier to an autoencoder for anomaly detection and classified malignant blasts with 90% accuracy. Moreover, our method assigns a developmental stage to blasts at the single-cell level, improving current classification approaches based on differentiation of the dominant phenotype. We observed major immunophenotype and developmental stage alterations between diagnosis and relapse. Patients with KMT2A rearrangement had more profound changes in their blast immunophenotypes at relapse compared to patients with other molecular features. Our method provides new insights into the immunophenotypic composition of AML blasts in an unbiased fashion and can help to define immunotherapy targets that might improve personalized AML treatment.
Collapse
Affiliation(s)
- Alice Driessen
- Data and AI Research, IBM Research Europe, Zürich, Switzerland
- ETH Zürich, Zürich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - An-Phi Nguyen
- Data and AI Research, IBM Research Europe, Zürich, Switzerland
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard Aplenc
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele S Redell
- Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Tao W, Sinha A, Raddassi K, Pandit A. Parameter optimization for stable clustering using FlowSOM: a case study from CyTOF. Front Immunol 2024; 15:1414400. [PMID: 39445014 PMCID: PMC11497637 DOI: 10.3389/fimmu.2024.1414400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
High-dimensional cell phenotyping is a powerful tool to study molecular and cellular changes in health and diseases. CyTOF enables high-dimensional cell phenotyping using tens of surface and intra-cellular markers. To utilize the full potential of CyTOF, we need advanced clustering and machine learning methodologies to enable automated gating of the complex data. Here we show that critical modifications to a machine learning based FlowSOM package and precise parameter optimization can enable us to reliably analyze the complex CyTOF data. We show the impact of key parameters on clustering outcomes while addressing bugs within the publicly available package. We modified the FlowSOM pipeline to fix the bugs, enable scalability to handle large datasets and perform parameter optimization. We further validated this modified pipeline on a substantial external immunological dataset demonstrating the need of data-specific tailored parameter optimization to ensure reliable definition and interrogation of immune cell populations associated with immune disorders.
Collapse
|
3
|
Hendley AM, Ashe S, Urano A, Ng M, Phu TA, Peng XL, Luan C, Finger AM, Jang GH, Kerper NR, Berrios DI, Jin D, Lee J, Riahi IR, Gbenedio OM, Chung C, Roose JP, Yeh JJ, Gallinger S, Biankin AV, O'Kane GM, Ntranos V, Chang DK, Dawson DW, Kim GE, Weaver VM, Raffai RL, Hebrok M. nSMase2-mediated exosome secretion shapes the tumor microenvironment to immunologically support pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614610. [PMID: 39399775 PMCID: PMC11468832 DOI: 10.1101/2024.09.23.614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression. Graphical abstract
Collapse
|
4
|
Sánchez-Gaona N, Gallego-Cortés A, Astorga-Gamaza A, Rallón N, Benito JM, Ruiz-Mateos E, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Genescà M, Buzon MJ. NKG2C and NKG2A coexpression defines a highly functional antiviral NK population in spontaneous HIV control. JCI Insight 2024; 9:e182660. [PMID: 39288262 PMCID: PMC11529982 DOI: 10.1172/jci.insight.182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Elite controllers (ECs), a unique group of people with HIV (PWH), exhibit remarkable control of viral replication in the absence of antiretroviral therapy. In this study, we comprehensively characterized the NK cell repertoire in ECs after long-term viral control. Phenotypic profiling of NK cells revealed profound differences compared with other PWH, but marked similarities to uninfected individuals, with a distinctive prevalence of NKG2C+CD57+ memory-like NK cells. Functional analyses indicated that ECs had limited production of functional molecules upon NK stimulation and consequently reduced natural cytotoxicity against non-HIV target cells. Importantly, ECs showed an exceptional ability to kill primary HIV-infected cells by the antibody-dependent cell cytotoxicity adaptive mechanism, which was achieved by a specific memory-like NK population expressing CD16, NKG2A, NKG2C, CD57, and CXCR3. In-depth single-cell RNA-seq unveiled a unique transcriptional signature in these NK cells linked to increased cell metabolism, migration, chemotaxis, effector functions, cytokine secretion, and antiviral response. Our findings underscore a pivotal role of NK cells in the immune control of HIV and identify specific NK cells as emerging targets for immunotherapies.
Collapse
Affiliation(s)
- Nerea Sánchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Gallego-Cortés
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Esih H, Mezgec K, Billmeier M, Malenšek Š, Benčina M, Grilc B, Vidmar S, Gašperlin M, Bele M, Zidarn M, Zupanc TL, Morgan T, Jordan I, Sandig V, Schrödel S, Thirion C, Protzer U, Wagner R, Lainšček D, Jerala R. Mucoadhesive film for oral delivery of vaccines for protection of the respiratory tract. J Control Release 2024; 371:179-192. [PMID: 38795814 DOI: 10.1016/j.jconrel.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.
Collapse
Affiliation(s)
- Hana Esih
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Klemen Mezgec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Billmeier
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia
| | - Blaž Grilc
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ljubljana 1000, Slovenia
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ljubljana 1000, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | | | - Tina Morgan
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia
| | - Ingo Jordan
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Volker Sandig
- Applied Science & Technologies, ProBioGen AG, Berlin, Germany
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | | | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology & Hygiene, University Hospital, Regensburg, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia.
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Fischer F, Pierzchalski A, Riesbeck S, Aldehoff AS, Castaneda-Monsalve VA, Haange SB, von Bergen M, Rolle-Kampczyk UE, Jehmlich N, Zenclussen AC, Herberth G. An in vitro model system for testing chemical effects on microbiome-immune interactions - examples with BPX and PFAS mixtures. Front Immunol 2024; 15:1298971. [PMID: 38953021 PMCID: PMC11215145 DOI: 10.3389/fimmu.2024.1298971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sarah Riesbeck
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
7
|
Szebeni GJ, Balog A. Closing Editorial: Immunophenotyping in Autoimmune Diseases and Cancer 3.0. Int J Mol Sci 2024; 25:6311. [PMID: 38928019 PMCID: PMC11203429 DOI: 10.3390/ijms25126311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The mammalian immune system is a Janus-faced network of well-coordinated highly specialized cells and biomolecules [...].
Collapse
Grants
- GINOP-2.3.2-15-2016-00030 National Research, Development, and Innovation Office (NKFI), Hungary
- 2020-1.1.6-JÖVŐ-2021-00003 National Research, Development, and Innovation Office (NKFI), Hungary
- 2022-1.2.6-TÉT-IPARI-TR-2022-00023 National Research, Development, and Innovation Office (NKFI), Hungary
- 142877 FK22 National Research, Development, and Innovation Office (NKFI), Hungary
- BO/00582/22/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences
- ÚNKP-23-5-SZTE-694 New National Excellence Program of the Ministry for Innovation and Technology
Collapse
Affiliation(s)
- Gábor J. Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, H6725 Szeged, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Kálvária sgt. 57, H6725 Szeged, Hungary
| |
Collapse
|
8
|
Niewold P. High-dimensional flow cytometry data: goldmine or fool's gold? Cytometry A 2024; 105:425-427. [PMID: 38716886 DOI: 10.1002/cyto.a.24849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Paula Niewold
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
9
|
Longhini ALF, Fernández-Maestre I, Kennedy MC, Wereski MG, Mowla S, Xiao W, Lowe SW, Levine RL, Gardner R. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues. Front Immunol 2024; 15:1374943. [PMID: 38605953 PMCID: PMC11008467 DOI: 10.3389/fimmu.2024.1374943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.
Collapse
Affiliation(s)
- Ana Leda F. Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| | - Inés Fernández-Maestre
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Margaret C. Kennedy
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Shoron Mowla
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wenbin Xiao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| |
Collapse
|
10
|
Ferrer-Font L, Burn OK, Mayer JU, Price KM. Immunophenotyping challenging tissue types using high-dimensional full spectrum flow cytometry. Methods Cell Biol 2024; 186:51-90. [PMID: 38705606 DOI: 10.1016/bs.mcb.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system, have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, that measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With the capacity to use larger and more complex staining panels, optimized protocols are required for the best panel design, panel validation and high-dimensional data analysis outcomes. In addition, for ex vivo experiments, tissue preparation methods for single-cell analysis should also be optimized to ensure that samples are of the highest quality and are truly representative of tissues in situ. Here we provide optimized step-by-step protocols for full spectrum flow cytometry panel design, tissue digestion and panel optimization to facilitate the analysis of challenging tissue types.
Collapse
Affiliation(s)
- Laura Ferrer-Font
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Johannes U Mayer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kylie M Price
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
11
|
Koenig MR, Vazquez J, Leyva Jaimes FB, Mitzey AM, Stanic AK, Golos TG. Decidual leukocytes respond to African lineage Zika virus infection with mild anti-inflammatory changes during acute infection in rhesus macaques. Front Immunol 2024; 15:1363169. [PMID: 38515747 PMCID: PMC10954895 DOI: 10.3389/fimmu.2024.1363169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) can be vertically transmitted during pregnancy resulting in a range of adverse pregnancy outcomes. The decidua is commonly found to be infected by ZIKV, yet the acute immune response to infection remains understudied in vivo. We hypothesized that in vivo African-lineage ZIKV infection induces a pro-inflammatory response in the decidua. To test this hypothesis, we evaluated the decidua in pregnant rhesus macaques within the first two weeks following infection with an African-lineage ZIKV and compared our findings to gestationally aged-matched controls. Decidual leukocytes were phenotypically evaluated using spectral flow cytometry, and cytokines and chemokines were measured in tissue homogenates from the decidua, placenta, and fetal membranes. The results of this study did not support our hypothesis. Although ZIKV RNA was detected in the decidual tissue samples from all ZIKV infected dams, phenotypic changes in decidual leukocytes and differences in cytokine profiles suggest that the decidua undergoes mild anti-inflammatory changes in response to that infection. Our findings emphasize the immunological state of the gravid uterus as a relatively immune privileged site that prioritizes tolerance of the fetus over mounting a pro-inflammatory response to clear infection.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Jessica Vazquez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Fernanda B. Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Aleksandar K. Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Hauchamps P, Bayat B, Delandre S, Hamrouni M, Toussaint M, Temmerman S, Lin D, Gatto L. CytoPipeline and CytoPipelineGUI: a Bioconductor R package suite for building and visualizing automated pre-processing pipelines for flow cytometry data. BMC Bioinformatics 2024; 25:80. [PMID: 38378440 PMCID: PMC10877884 DOI: 10.1186/s12859-024-05691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND With the increase of the dimensionality in flow cytometry data over the past years, there is a growing need to replace or complement traditional manual analysis (i.e. iterative 2D gating) with automated data analysis pipelines. A crucial part of these pipelines consists of pre-processing and applying quality control filtering to the raw data, in order to use high quality events in the downstream analyses. This part can in turn be split into a number of elementary steps: signal compensation or unmixing, scale transformation, debris, doublets and dead cells removal, batch effect correction, etc. However, assembling and assessing the pre-processing part can be challenging for a number of reasons. First, each of the involved elementary steps can be implemented using various methods and R packages. Second, the order of the steps can have an impact on the downstream analysis results. Finally, each method typically comes with its specific, non standardized diagnostic and visualizations, making objective comparison difficult for the end user. RESULTS Here, we present CytoPipeline and CytoPipelineGUI, two R packages to build, compare and assess pre-processing pipelines for flow cytometry data. To exemplify these new tools, we present the steps involved in designing a pre-processing pipeline on a real life dataset and demonstrate different visual assessment use cases. We also set up a benchmarking comparing two pre-processing pipelines differing by their quality control methods, and show how the package visualization utilities can provide crucial user insight into the obtained benchmark metrics. CONCLUSION CytoPipeline and CytoPipelineGUI are two Bioconductor R packages that help building, visualizing and assessing pre-processing pipelines for flow cytometry data. They increase productivity during pipeline development and testing, and complement benchmarking tools, by providing user intuitive insight into benchmarking results.
Collapse
Affiliation(s)
- Philippe Hauchamps
- Computational Biology and Bioinformatics, de duve Institute, UCLouvain, Brussels, Belgium
| | | | | | | | | | | | | | - Laurent Gatto
- Computational Biology and Bioinformatics, de duve Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|
13
|
Lazarski CA, Hanley PJ. Review of flow cytometry as a tool for cell and gene therapy. Cytotherapy 2024; 26:103-112. [PMID: 37943204 PMCID: PMC10872958 DOI: 10.1016/j.jcyt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Quality control testing and analytics are critical for the development and manufacture of cell and gene therapies, and flow cytometry is a key quality control and analytical assay that is used extensively. However, the technical scope of characterization assays and safety assays must keep apace as the breadth of cell therapy products continues to expand beyond hematopoietic stem cell products into producing novel adoptive immune therapies and gene therapy products. Flow cytometry services are uniquely positioned to support the evolving needs of cell therapy facilities, as access to flow cytometers, new antibody clones and improved fluorochrome reagents becomes more egalitarian. This report will outline the features, logistics, limitations and the current state of flow cytometry within the context of cellular therapy.
Collapse
Affiliation(s)
- Christopher A Lazarski
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| | - Patrick J Hanley
- Program for Cell Enhancement and Technology for Immunotherapy, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; The George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Ferrer-Font L, Small SJ, Hyde E, Pilkington KR, Price KM. Panel Design and Optimization for Full Spectrum Flow Cytometry. Methods Mol Biol 2024; 2779:99-124. [PMID: 38526784 DOI: 10.1007/978-1-0716-3738-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, which measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks, is now routinely used in laboratories around the world, and the demand for this technology is rapidly increasing. With the ability to use larger and more complex staining panels, optimized protocols are vital for achieving the best panel design, panel optimization, and high-dimensional data analysis outcomes. In addition, a better understanding of how to fully characterize the autofluorescence of the sample, coupled with an intelligent panel design approach, allows improved marker resolution on highly autofluorescent tissues or cells. Here, we provide optimized step-by-step protocols for full spectrum flow cytometry, covering panel design and optimization, autofluorescence evaluation and strategy selection, and methods for performing longitudinal studies.
Collapse
Affiliation(s)
- Laura Ferrer-Font
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - Sam J Small
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Evelyn Hyde
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Kylie M Price
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
15
|
Simpson A, Jones SA, Fairfax KA. Intracellular Flow Cytometry ("Phosphoflow") to Assess Signal Transduction in Rare Populations Such As Memory B Cell Subsets and Plasma Cells. Methods Mol Biol 2024; 2826:151-163. [PMID: 39017892 DOI: 10.1007/978-1-0716-3950-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Intracellular flow cytometry is a powerful technique that can be used to interrogate signalling in rare cellular populations. The strengths of the technique are that massively parallel readouts can be gained from thousands of single cells simultaneously, and the assay is fast and relatively straightforward. This plate-based protocol enables different doses and different timepoints of stimulation to be assessed and has been optimized for rare B cell populations. Combining this technique with high-dimensional flow cytometry enables multiple signalling proteins to be measured with high confidence.
Collapse
|
16
|
Karra L, Finger AM, Shechtman L, Krush M, Huang RMY, Prinz M, Tennvooren I, Bahl K, Hysienaj L, Gonzalez PG, Combes AJ, Gonzalez H, Argüello RJ, Spitzer MH, Roose JP. Single cell proteomics characterization of bone marrow hematopoiesis with distinct Ras pathway lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572584. [PMID: 38187679 PMCID: PMC10769276 DOI: 10.1101/2023.12.20.572584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Normal hematopoiesis requires constant prolific production of different blood cell lineages by multipotent hematopoietic stem cells (HSC). Stem- and progenitor- cells need to balance dormancy with proliferation. How genetic alterations impact frequency, lineage potential, and metabolism of HSC is largely unknown. Here, we compared induced expression of KRAS G12D or RasGRP1 to normal hematopoiesis. At low-resolution, both Ras pathway lesions result in skewing towards myeloid lineages. Single-cell resolution CyTOF proteomics unmasked an expansion of HSC- and progenitor- compartments for RasGRP1, contrasted by a depletion for KRAS G12D . SCENITH™ quantitates protein synthesis with single-cell precision and corroborated that immature cells display low metabolic SCENITH™ rates. Both RasGRP1 and KRAS G12D elevated mean SCENITH™ signals in immature cells. However, RasGRP1-overexpressing stem cells retain a metabolically quiescent cell-fraction, whereas this fraction diminishes for KRAS G12D . Our temporal single cell proteomics and metabolomics datasets provide a resource of mechanistic insights into altered hematopoiesis at single cell resolution.
Collapse
|
17
|
Edwards JM, Andrews MC, Burridge H, Smith R, Owens C, Edinger M, Pilkington K, Desfrancois J, Shackleton M, Senthi S, van Zelm MC. Design, optimisation and standardisation of a high-dimensional spectral flow cytometry workflow assessing T-cell immunophenotype in patients with melanoma. Clin Transl Immunology 2023; 12:e1466. [PMID: 37692904 PMCID: PMC10484688 DOI: 10.1002/cti2.1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Despite the success of immune checkpoint blockade, most metastatic melanoma patients fail to respond to therapy or experience severe toxicity. Assessment of biomarkers and immunophenotypes before or early into treatment will help to understand favourable responses and improve therapeutic outcomes. Methods We present a high-dimensional approach for blood T-cell profiling using three multi-parameter cytometry panels: (1) a TruCount panel for absolute cell counts, (2) a 27-colour spectral panel assessing T-cell markers and (3) a 20-colour spectral panel evaluating intracellular cytokine expression. Pre-treatment blood mononuclear cells from patients and healthy controls were cryopreserved before staining across 11 batches. Batch effects were tracked using a single-donor control and the suitability of normalisation was assessed. The data were analysed using manual gating and high-dimensional strategies. Results Batch-to-batch variation was minimal, as demonstrated by the dimensionality reduction of batch-control samples, and normalisation did not improve manual or high-dimensional analysis. Application of the workflow demonstrated the capacity of the panels and showed that patients had fewer lymphocytes than controls (P = 0.0027), due to lower naive CD4+ (P = 0.015) and CD8+ (P = 0.011) T cells and follicular helper T cells (P = 0.00076). Patients showed trends for higher proportions of Ki67 and IL-2-expressing cells within CD4+ and CD8+ memory subsets, and increased CD57 and EOMES expression within TCRγδ+ T cells. Conclusion Our optimised high-parameter spectral cytometry approach provided in-depth profiling of blood T cells and found differences in patient immunophenotype at baseline. The robustness of our workflow, as demonstrated by minimal batch effects, makes this approach highly suitable for the longitudinal evaluation of immunotherapy effects.
Collapse
Affiliation(s)
- Jack M Edwards
- Alfred Health Radiation OncologyThe Alfred HospitalMelbourneVICAustralia
- Department of Immunology, Central Clinical SchoolMonash University and Alfred HospitalMelbourneVICAustralia
| | - Miles C Andrews
- Department of Medicine, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
- Department of Medical OncologyThe Alfred HospitalMelbourneVICAustralia
| | - Hayley Burridge
- Department of Medical OncologyThe Alfred HospitalMelbourneVICAustralia
| | - Robin Smith
- Alfred Health Radiation OncologyThe Alfred HospitalMelbourneVICAustralia
| | - Carole Owens
- Alfred Health Radiation OncologyThe Alfred HospitalMelbourneVICAustralia
| | | | | | | | - Mark Shackleton
- Department of Medicine, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
- Department of Medical OncologyThe Alfred HospitalMelbourneVICAustralia
| | - Sashendra Senthi
- Alfred Health Radiation OncologyThe Alfred HospitalMelbourneVICAustralia
| | - Menno C van Zelm
- Department of Immunology, Central Clinical SchoolMonash University and Alfred HospitalMelbourneVICAustralia
| |
Collapse
|
18
|
Abstract
Advances in single-cell proteomics technologies have resulted in high-dimensional datasets comprising millions of cells that are capable of answering key questions about biology and disease. The advent of these technologies has prompted the development of computational tools to process and visualize the complex data. In this review, we outline the steps of single-cell and spatial proteomics analysis pipelines. In addition to describing available methods, we highlight benchmarking studies that have identified advantages and pitfalls of the currently available computational toolkits. As these technologies continue to advance, robust analysis tools should be developed in tandem to take full advantage of the potential biological insights provided by these data.
Collapse
Affiliation(s)
- Sophia M Guldberg
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
| | - Trine Line Hauge Okholm
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Elizabeth E McCarthy
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
- Institute for Human Genetics; Division of Rheumatology, Department of Medicine; Medical Scientist Training Program; and Biological and Medical Informatics Graduate Program, University of California, San Francisco, California, USA
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery and Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
19
|
van der Pan K, Khatri I, de Jager AL, Louis A, Kassem S, Naber BA, de Laat IF, Hameetman M, Comans SE, Orfao A, van Dongen JJ, Díez P, Teodosio C. Performance of spectral flow cytometry and mass cytometry for the study of innate myeloid cell populations. Front Immunol 2023; 14:1191992. [PMID: 37275858 PMCID: PMC10235610 DOI: 10.3389/fimmu.2023.1191992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Monitoring of innate myeloid cells (IMC) is broadly applied in basic and translational research, as well as in diagnostic patient care. Due to their immunophenotypic heterogeneity and biological plasticity, analysis of IMC populations typically requires large panels of markers. Currently, two cytometry-based techniques allow for the simultaneous detection of ≥40 markers: spectral flow cytometry (SFC) and mass cytometry (MC). However, little is known about the comparability of SFC and MC in studying IMC populations. Methods We evaluated the performance of two SFC and MC panels, which contained 21 common markers, for the identification and subsetting of blood IMC populations. Based on unsupervised clustering analysis, we systematically identified 24 leukocyte populations, including 21 IMC subsets, regardless of the cytometry technique. Results Overall, comparable results were observed between the two technologies regarding the relative distribution of these cell populations and the staining resolution of individual markers (Pearson's ρ=0.99 and 0.55, respectively). However, minor differences were observed between the two techniques regarding intra-measurement variability (median coefficient of variation of 42.5% vs. 68.0% in SFC and MC, respectively; p<0.0001) and reproducibility, which were most likely due to the significantly longer acquisition times (median 16 min vs. 159 min) and lower recovery rates (median 53.1% vs. 26.8%) associated with SFC vs. MC. Discussion Altogether, our results show a good correlation between SFC and MC for the identification, enumeration and characterization of IMC in blood, based on large panels (>20) of antibody reagents.
Collapse
Affiliation(s)
- Kyra van der Pan
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Anniek L. de Jager
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alesha Louis
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sara Kassem
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Brigitta A.E. Naber
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Inge F. de Laat
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolijn Hameetman
- Flow Cytometry Core Facility, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Suzanne E.T. Comans
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jacques J.M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paula Díez
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Sarcomas and Experimental Therapeutics Laboratory, Health Research Institute of Asturias (ISPA) and Asturias Central University Hospital (HUCA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Asturias, Spain
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
20
|
Ferrer-Font L, Kraker G, Hally KE, Price KM. Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional Data Analysis. Curr Protoc 2023; 3:e657. [PMID: 36744957 DOI: 10.1002/cpz1.657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Full spectrum flow cytometry (FSFC) allows for the analysis of more than 40 parameters at the single-cell level. Compared to the practice of manual gating, high-dimensional data analysis can be used to fully explore single-cell datasets and reduce analysis time. As panel size and complexity increases so too does the detail and time required to prepare and validate the quality of the resulting data for use in downstream high-dimensional data analyses. To ensure data analysis algorithms can be used efficiently and to avoid artifacts, some important steps should be considered. These include data cleaning (such as eliminating variable signal change over time, removing cell doublets, and antibody aggregates), proper unmixing of full spectrum data, ensuring correct scale transformation, and correcting for batch effects. We have developed a methodical step-by-step protocol to prepare full spectrum high-dimensional data for use with high-dimensional data analyses, with a focus on visualizing the impact of each step of data preparation using dimensionality reduction algorithms. Application of our workflow will aid FSFC users in their efforts to apply quality control methods to their datasets for use in high-dimensional analysis, and help them to obtain valid and reproducible results. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Data cleaning Basic Protocol 2: Validating the quality of unmixing Basic Protocol 3: Data scaling Basic Protocol 4: Batch-to-batch normalization.
Collapse
Affiliation(s)
- Laura Ferrer-Font
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Kathryn E Hally
- Department of Surgery and Anaesthesia, The University of Otago, Wellington, New Zealand
| | - Kylie M Price
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
21
|
A roadmap for translational cancer glycoimmunology at single cell resolution. J Exp Clin Cancer Res 2022; 41:143. [PMID: 35428302 PMCID: PMC9013178 DOI: 10.1186/s13046-022-02335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.
Collapse
|
22
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|