1
|
Lauwers Y, De Groof TWM, Vincke C, Van Craenenbroeck J, Jumapili NA, Barthelmess RM, Courtoy G, Waelput W, De Pauw T, Raes G, Devoogdt N, Van Ginderachter JA. Imaging of tumor-associated macrophage dynamics during immunotherapy using a CD163-specific nanobody-based immunotracer. Proc Natl Acad Sci U S A 2024; 121:e2409668121. [PMID: 39693339 DOI: 10.1073/pnas.2409668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Immunotherapies have emerged as an effective treatment option for immune-related diseases, such as cancer and inflammatory diseases. However, variations in patient responsiveness limit the broad applicability and success of these immunotherapies. Noninvasive whole-body imaging of the immune status of individual patients during immunotherapy could enable the prediction and monitoring of the patient's response, resulting in more personalized treatments. In this study, we developed a nanobody-based immunotracer targeting CD163, a receptor specifically expressed on macrophages. This anti-CD163 immunotracer bound to human and mouse CD163 with high affinity and specificity without competing for ligand binding. Furthermore, the tracer showed no unwanted immune cell activation and was nonimmunogenic. Upon radiolabeling of the anti-CD163 immunotracer, specific imaging of CD163+ macrophages using micro-single-photon emission computerized tomography/computed tomography or micro-positron emission tomography/CT was performed. The anti-CD163 immunotracer was able to stratify immunotherapy responders from nonresponders (NR) by visualizing differences in the intratumoral CD163+ TAM distribution in Lewis lung carcinoma-ovalbumin tumor-bearing mice receiving an anti-programmed cell death protein-1 (PD-1)/CSF1R combination treatment. Immunotherapy-responding mice showed a more homogeneous distribution of the PET signal in the middle of the tumor, while CD163+ TAMs were located at the tumor periphery in NR. As such, visualization of CD163+ TAM distribution in the tumor microenvironment could allow a prediction or follow-up of therapy response. Altogether, this study describes an immunotracer, specific for CD163+ macrophages, that allows same-day imaging and follow-up of these immune cells in the tumor microenvironment, providing a good basis for the prediction and follow-up of immunotherapy responses in cancer patients.
Collapse
Affiliation(s)
- Yoline Lauwers
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Timo W M De Groof
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Cécile Vincke
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jolien Van Craenenbroeck
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Neema Ahishakiye Jumapili
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Romina Mora Barthelmess
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Guillaume Courtoy
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels B-1090, Belgium
- Laboratory of Experimental Pathology, Supporting Clinical Sciences, Vrije Universiteit Brussel, Brussels B-1090, Belgium
| | - Wim Waelput
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels B-1090, Belgium
- Laboratory of Experimental Pathology, Supporting Clinical Sciences, Vrije Universiteit Brussel, Brussels B-1090, Belgium
| | - Tessa De Pauw
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
2
|
Culkins C, Adomanis R, Phan N, Robinson B, Slaton E, Lothrop E, Chen Y, Kimmel BR. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mol Pharm 2024; 21:5430-5454. [PMID: 39324552 DOI: 10.1021/acs.molpharmaceut.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective network of various cell types that acts as a filter between the blood and the brain parenchyma. Because of this, the BBB remains a major obstacle for drug delivery to the central nervous system (CNS). In recent years, there has been a focus on developing various modifiable platforms, such as monoclonal antibodies (mAbs), nanobodies (Nbs), peptides, and nanoparticles, as both therapeutic agents and carriers for targeted drug delivery to treat brain cancers and diseases. Methods for bypassing the BBB can be invasive or noninvasive. Invasive techniques, such as transient disruption of the BBB using low pulse electrical fields and intracerebroventricular infusion, lack specificity and have numerous safety concerns. In this review, we will focus on noninvasive transport mechanisms that offer high levels of biocompatibility, personalization, specificity and are regarded as generally safer than their invasive counterparts. Modifiable platforms can be designed to noninvasively traverse the BBB through one or more of the following pathways: passive diffusion through a physio-pathologically disrupted BBB, adsorptive-mediated transcytosis, receptor-mediated transcytosis, shuttle-mediated transcytosis, and somatic gene transfer. Through understanding the noninvasive pathways, new applications, including Chimeric Antigen Receptors T-cell (CAR-T) therapy, and approaches for drug delivery across the BBB are emerging.
Collapse
Affiliation(s)
- Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Roman Adomanis
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Slaton
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Zeven K, Lauwers Y, De Mey L, Debacker JM, De Pauw T, De Groof TWM, Devoogdt N. Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2024; 4:ltae006. [PMID: 39281708 PMCID: PMC11402390 DOI: 10.1093/immadv/ltae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
The evolving landscape of cancer immunotherapy has revolutionized cancer treatment. However, the dynamic tumor microenvironment has led to variable clinical outcomes, indicating a need for predictive biomarkers. Noninvasive nuclear imaging, using radiolabeled modalities, has aided in patient selection and monitoring of their treatment response. This approach holds promise for improving diagnostic accuracy, providing a more personalized treatment regimen, and enhancing the clinical response. Nanobodies or single-domain antibodies, derived from camelid heavy-chain antibodies, allow early timepoint detection of targets with high target-to-background ratios. To date, a plethora of nanobodies have been developed for nuclear imaging of tumor-specific antigens, immune checkpoints, and immune cells, both at a preclinical and clinical level. This review comprehensively outlines the recent advancements in nanobody-based nuclear imaging, both on preclinical and clinical levels. Additionally, the impact and expected future advancements on the use of nanobody-based radiopharmaceuticals in supporting cancer diagnosis and treatment follow-up are discussed.
Collapse
Affiliation(s)
- Katty Zeven
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yoline Lauwers
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lynn De Mey
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Jens M Debacker
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Tessa De Pauw
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Timo W M De Groof
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Liu YT, Mao ZW, Ding Y, Wang WL. Macrophages as Targets in Hepatocellular Carcinoma Therapy. Mol Cancer Ther 2024; 23:780-790. [PMID: 38310642 DOI: 10.1158/1535-7163.mct-23-0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a complex and diverse immunosuppressive microenvironment. Tumor-associated macrophages (TAM) are an essential component of the tumor immune microenvironment. TAMs typically exist in two primary states: anti-tumor M1 macrophages and protumor M2 macrophages. Remarkably, TAMs possess high plasticity, enabling them to switch between different subtypes or alter their biological functions in response to the tumor microenvironment. Based on research into the biological role of TAMs in the occurrence and development of malignant tumors, including HCC, TAMs are emerging as promising targets for novel tumor treatment strategies. In this review, we provide a detailed introduction to the origin and subtypes of TAMs, elucidate their interactions with other cells in the complex tumor microenvironment of HCC, and describe the biological roles, characteristics, and mechanisms of TAMs in the progression of HCC. Furthermore, we furnish an overview of the latest therapeutic strategies targeting TAMs.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Zheng-Wei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Liu C, Li Y, He Q, Fu J, Wei Q, Lin H, Luo Y, Tu Z. Sequence-based design and construction of synthetic nanobody library. Biotechnol Bioeng 2024; 121:1973-1985. [PMID: 38548653 DOI: 10.1002/bit.28707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/16/2024] [Indexed: 05/29/2024]
Abstract
Nanobody (Nb), the smallest antibody fragments known to bind antigens, is now widely applied to various studies, including protein structure analysis, bioassay, diagnosis, and biomedicine. The traditional approach to generating specific nanobodies involves animal immunization which is time-consuming and expensive. As the understanding of the antibody repertoire accumulation, the synthetic library, which is devoid of animals, has attracted attention widely in recent years. Here, we describe a synthetic phage display library (S-Library), designed based on the systematic analysis of the next-generation sequencing (NGS) of nanobody repertoire. The library consists of a single highly conserved scaffold (IGHV3S65*01-IGHJ4*01) and complementary determining regions of constrained diversity. The S-Library containing 2.19 × 108 independent clones was constructed by the one-step assembly and rapid electro-transformation. The S-Library was screened against various targets (Nb G8, fusion protein of Nb G8 and green fluorescent protein, bovine serum albumin, ovalbumin, and acetylcholinesterase). In comparison, a naïve library (N-Library) from the source of 13 healthy animals was constructed and screened against the same targets as the S-Library. Binders were isolated from both S-Library and N-Library. The dynamic affinity was evaluated by the biolayer interferometry. The data confirms that the feature of the Nb repertoire is conducive to reducing the complexity of library design, thus allowing the S-Library to be built on conventional reagents and primers.
Collapse
Affiliation(s)
- Chuanyong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yanping Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Qinghua He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Jinheng Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Qingting Wei
- School of Software, Nanchang University, Nanchang, China
| | - Hao Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhui Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Zhao S, Li Y, Xu J, Shen L. APOBEC3C is a novel target for the immune treatment of lower-grade gliomas. Neurol Res 2024; 46:227-242. [PMID: 38007705 DOI: 10.1080/01616412.2023.2287340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C (A3C) has been identified as a cancer molecular biomarker in the past decade. However, the practical role of A3C in lower-grade gliomas (LGGs) in improving the clinical outcome remains unclear. This study aims to discuss the function of A3C in immunotherapy in LGGs. METHODS The RNA-Sequencing (RNA-seq) and corresponding clinical data were extracted from UCSC Xena and the results were verified in the Chinese Glioma Genome Atlas (CGGA). Weighted gene co-expression network analysis (WGCNA) was used for screening A3C-related genes. Comprehensive bioinformation analyses were performed and multiple levels of expression, survival rate, and biological functions were assessed to explore the functions of A3C. RESULTS A3C expression was significantly higher in LGGs than in normal tissues but lower than in glioblastoma (GBM), indicating its role as an independent prognosis predictor for LGGs. Twenty-eight A3C-related genes were found with WGCNA for unsupervised clustering analysis and three modification patterns with different outcomes and immune cell infiltration were identified. A3C and the A3C score were also correlated with immune cell infiltration and the expression of immune checkpoints. In addition, the A3C score was correlated with increased sensitivity to chemotherapy. Single-cell RNA (scRNA) analysis indicated that A3C most probably expresses on immune cells, such as T cells, B cells and macrophage. CONCLUSIONS A3C is an immune-related prognostic biomarker in LGGs. Developing drugs to block A3C could enhance the efficiency of immunotherapy and improve disease survival.Abbreviation: A3C: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C; LGGs: lower-grade gliomas; CGGA: Chinese Glioma Genome Atlas; WGCNA: Weighted gene co-expression network analysis; scRNA: Single-cell RNA; HGG: higher-grade glioma; OS: overall survival; TME: tumor microenvironment; KM: Kaplan-Meier; PFI: progression-free interval; IDH: isocitrate dehydrogenase; ROC: receiver operating characteristic; GS: gene significance; MM: module membership; TIMER: Tumor IMmune Estimation Resource; GSVA: gene set variation analysis; ssGSEA: single-sample gene-set enrichment analysis; PCA: principal component analysis; AUC: area under ROC curve; HAVCR2: hepatitis A virus cellular receptor 2; PDCD1: programmed cell death 1; PDCD1LG2: PDCD1 ligand 2; PTPRC: protein tyrosine phosphatase receptor type C; ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma;BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOLCholangiocarcinoma; COADColon adenocarcinoma; DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and Neck squamous cell carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma.
Collapse
Affiliation(s)
- Shufa Zhao
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Yuntao Li
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Liang Shen
- Department of Neurosurgery, The affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Wang X, Ma Z, Gao L, Yuan L, Ye Z, Cui F, Guo X, Liu W, Yan X. Genome-wide survey reveals the genetic background of Xinjiang Brown cattle in China. Front Genet 2024; 14:1348329. [PMID: 38283146 PMCID: PMC10811208 DOI: 10.3389/fgene.2023.1348329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Xinjiang Brown cattle are a famous dual-purpose (dairy-beef) cultivated breed in China that occupy a pivotal position within the cattle breeding industry in Xinjiang, China. However, little information is available on the genetic background of this breed. To fill this research gap, we conducted a whole-genome screen using specific-locus amplified fragment sequencing to examine the genetic structure and diversity of 130 Xinjiang Brown cattle-grazing type (XBG, traditional type) cattle. Methods: A subsequent joint analysis incorporating two ancestral breeds, specifically 19 Brown Swiss (BS) foreign and nine Kazakh (KZ) Chinese cattle, as well as 20 Xinjiang Brown cattle-housing type (XBH) cattle, was used to explore the genetic background of the Xinjiang Brown cattle. Results: The results showed that, after nearly a century of crossbreeding, XBG cattle formed a single population with a stable genetic performance. The genetic structure, genetic diversity, and selection signature analysis of the two ancestral types showed highly different results compared to that of XBH cattle. Local ancestry inference showed that the average proportions of XGB cattle within the BS and KZ cattle lineages were 37.22% and 62.78%, respectively, whereas the average proportions of XBH cattle within the BS and KZ cattle lineages were 95.14% and 4.86%, respectively. Thus, XGB cattle are more representative of all Xinjiang Brown cattle, in line with their breeding history, which involves crossbreeding. Two complementary approaches, fixation index and mean nucleotide diversity, were used to detect selection signals in the four aforementioned cattle breeds. Finally, the analysis of 26 candidate genes in Xinjiang Brown cattle revealed significant enrichment in 19 Gene Ontology terms, and seven candidate genes were enriched in three pathways related to disease resistance (CDH4, SIRPB1, and SIRPα) and the endocrine system (ADCY5, ABCC8, KCNJ11, and KCNMA1). Finally, development of the core SNPs in XBG cattle yielded 8,379 loci. Conclusion: The results of this study detail the evolutionary process of crossbreeding in Xinjiang Brown cattle and provide guidance for selecting and breeding new strains of this species.
Collapse
Affiliation(s)
- Xiao Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Yili Vocational and Technical College, Yili, China
| | - Zhen Ma
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Lixin Yuan
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Zhibing Ye
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Fanrong Cui
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xiaoping Guo
- Yili Kazakh Autonomous Prefecture General Animal Husbandry Station, Yili, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiangmin Yan
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| |
Collapse
|
8
|
Wagner TR, Blaess S, Leske IB, Frecot DI, Gramlich M, Traenkle B, Kaiser PD, Seyfried D, Maier S, Rezza A, Sônego F, Thiam K, Pezzana S, Zeck A, Gouttefangeas C, Scholz AM, Nueske S, Maurer A, Kneilling M, Pichler BJ, Sonanini D, Rothbauer U. Two birds with one stone: human SIRPα nanobodies for functional modulation and in vivo imaging of myeloid cells. Front Immunol 2023; 14:1264179. [PMID: 38164132 PMCID: PMC10757926 DOI: 10.3389/fimmu.2023.1264179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Signal-regulatory protein α (SIRPα) expressed by myeloid cells is of particular interest for therapeutic strategies targeting the interaction between SIRPα and the "don't eat me" ligand CD47 and as a marker to monitor macrophage infiltration into tumor lesions. To address both approaches, we developed a set of novel human SIRPα (hSIRPα)-specific nanobodies (Nbs). We identified high-affinity Nbs targeting the hSIRPα/hCD47 interface, thereby enhancing antibody-dependent cellular phagocytosis. For non-invasive in vivo imaging, we chose S36 Nb as a non-modulating binder. By quantitative positron emission tomography in novel hSIRPα/hCD47 knock-in mice, we demonstrated the applicability of 64Cu-hSIRPα-S36 Nb to visualize tumor infiltration of myeloid cells. We envision that the hSIRPα-Nbs presented in this study have potential as versatile theranostic probes, including novel myeloid-specific checkpoint inhibitors for combinatorial treatment approaches and for in vivo stratification and monitoring of individual responses during cancer immunotherapies.
Collapse
Affiliation(s)
- Teresa R. Wagner
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Simone Blaess
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Inga B. Leske
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Desiree I. Frecot
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marius Gramlich
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Philipp D. Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Sandra Maier
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Amélie Rezza
- Preclinical Models & Services, genOway, Lyon, France
| | | | - Kader Thiam
- Preclinical Models & Services, genOway, Lyon, France
| | - Stefania Pezzana
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Anne Zeck
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Cécile Gouttefangeas
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Oberschleissheim, Germany
| | - Stefan Nueske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Oberschleissheim, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Bernd J. Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University of Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Li S, Hoefnagel SJM, Krishnadath KK. Single domain Camelid antibody fragments for molecular imaging and therapy of cancer. Front Oncol 2023; 13:1257175. [PMID: 37746282 PMCID: PMC10514897 DOI: 10.3389/fonc.2023.1257175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Despite innovations in cancer therapeutics, cancer remains associated with high mortality and is one of biggest health challenges worldwide. Therefore, developing precise cancer imaging and effective treatments is an unmet clinical need. A relatively novel type of therapeutics are heavy chain variable domain antibody fragments (VHHs) derived from llamas. Here, we explored the suitability of VHHs for cancer imaging and therapy through reviewing the existing literature. We searched the MEDLINE, EMBASE and Cochrane databases and identified 32 papers on molecular imaging and 41 papers on therapy that were suitable for comprehensive reviewing. We found that VHHs harbor a higher specificity and affinity compared to mAbs, which contributes to high-quality imaging and less side-effects on healthy cells. The employment of VHHs in cancer imaging showed remarkably shorter times between administration and imaging. Studies showed that 18F and 99mTc are two optimal radionuclides for imaging with VHHs and that site-specific labelling is the optimal conjugation modality for VHHs with radionuclide or fluorescent molecules. We found different solutions for reducing kidney retention and immunogenicity of VHHs. VHHs as anticancer therapeutics have been tested in photodynamic therapy, targeted radionuclide therapy, immunotherapy and molecular targeted therapy. These studies showed that VHHs target unique antigen epitopes, which are distinct from the ones recognized by mAbs. This advantage means that VHHs may be more effective for targeted anticancer therapy and can be combined with mAbs. We found that high cellular internalization and specificity of VHHs contributes to the effectiveness and safety of VHHs as anticancer therapeutics. Two clinical trials have confirmed that VHHs are effective and safe for cancer imaging and therapy. Together, VHHs seem to harbor several advantages compared to mAbs and show potential for application in personalized treatment for cancer patients. VHH-based imaging and therapy are promising options for improving outcomes of cancer patients.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Kausilia Krishnawatie Krishnadath
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Jumapili NA, Zivalj M, Barthelmess RM, Raes G, De Groof TWM, Devoogdt N, Stijlemans B, Vincke C, Van Ginderachter JA. A few good reasons to use nanobodies for cancer treatment. Eur J Immunol 2023; 53:e2250024. [PMID: 37366246 DOI: 10.1002/eji.202250024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/29/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
mAbs have been instrumental for targeted cancer therapies. However, their relatively large size and physicochemical properties result in a heterogenous distribution in the tumor microenvironment, usually restricted to the first cell layers surrounding blood vessels, and a limited ability to penetrate the brain. Nanobodies are tenfold smaller, resulting in a deeper tumor penetration and the ability to reach cells in poorly perfused tumor areas. Nanobodies are rapidly cleared from the circulation, which generates a fast target-to-background contrast that is ideally suited for molecular imaging purposes but may be less optimal for therapy. To circumvent this problem, nanobodies have been formatted to noncovalently bind albumin, increasing their serum half-life without majorly increasing their size. Finally, nanobodies have shown superior qualities to infiltrate brain tumors as compared to mAbs. In this review, we discuss why these features make nanobodies prime candidates for targeted therapy of cancer.
Collapse
Affiliation(s)
- Neema Ahishakiye Jumapili
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Maida Zivalj
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Romina Mora Barthelmess
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
11
|
Targeting tumor-associated macrophages in hepatocellular carcinoma: biology, strategy, and immunotherapy. Cell Death Discov 2023; 9:65. [PMID: 36792608 PMCID: PMC9931715 DOI: 10.1038/s41420-023-01356-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most malignant tumors, is characterized by its stubborn immunosuppressive microenvironment. As one of the main members of the tumor microenvironment (TME) of HCC, tumor-associated macrophages (TAMs) play a critical role in its occurrence and development, including stimulating angiogenesis, enhancing immunosuppression, and promoting the drug resistance and cancer metastasis. This review describes the origin as well as phenotypic heterogeneity of TAMs and their potential effects on the occurrence and development of HCC and also discusses about various adjuvant therapy based strategies that can be used for targeting TAMs. In addition, we have highlighted different treatment modalities for TAMs based on immunotherapy, including small molecular inhibitors, immune checkpoint inhibitors, antibodies, tumor vaccines, adoptive cellular immunotherapy, and nanocarriers for drug delivery, to explore novel combination therapies and provide feasible therapeutic options for clinically improving the prognosis and quality of life of HCC patients.
Collapse
|
12
|
Wu S, Li X, Hong F, Chen Q, Yu Y, Guo S, Xie Y, Xiao N, Kong X, Mo W, Wang Z, Chen S, Zeng F. Integrative analysis of single-cell transcriptomics reveals age-associated immune landscape of glioblastoma. Front Immunol 2023; 14:1028775. [PMID: 36761752 PMCID: PMC9903136 DOI: 10.3389/fimmu.2023.1028775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor in center nervous system. Clinical statistics revealed that senior GBM patients had a worse overall survival (OS) comparing with that of patients in other ages, which is mainly related with tumor microenvironment including tumor-associated immune cells in particular. However, the immune heterogeneity and age-related prognosis in GBM are under studied. Here we developed a machine learning-based method to integrate public large-scale single-cell RNA sequencing (scRNA-seq) datasets to establish a comprehensive atlas of immune cells infiltrating in cross-age GBM. We found that the compositions of the immune cells are remarkably different across ages. Brain-resident microglia constitute the majority of glioblastoma-associated macrophages (GAMs) in patients, whereas dramatic elevation of extracranial monocyte-derived macrophages (MDMs) is observed in GAMs of senior patients, which contributes to the worse prognosis of aged patients. Further analysis suggests that the increased MDMs arisen from excessive recruitment and proliferation of peripheral monocytes not only lead to the T cell function inhibition in GBM, but also stimulate tumor cells proliferation via VEGFA secretion. In summary, our work provides new cues for the correlational relationship between the immune microenvironment of GBM and aging, which might be insightful for precise and effective therapeutic interventions for senior GBM patients.
Collapse
Affiliation(s)
- Songang Wu
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
| | - Xuewen Li
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Fan Hong
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Qiang Chen
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Yingying Yu
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Shuanghui Guo
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Yuanyuan Xie
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China
| | - Naian Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China
| | - Xuwen Kong
- Department of Automation, School of Aerospace Engineering, Xiamen University, Fujian, China
| | - Wei Mo
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| | - Shaoxuan Chen
- Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| | - Feng Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China,Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian, China,Department of Automation, School of Aerospace Engineering, Xiamen University, Fujian, China,*Correspondence: Feng Zeng, ; Shaoxuan Chen, ; Zhanxiang Wang,
| |
Collapse
|
13
|
Pro- vs. Anti-Inflammatory Features of Monocyte Subsets in Glioma Patients. Int J Mol Sci 2023; 24:ijms24031879. [PMID: 36768201 PMCID: PMC9915868 DOI: 10.3390/ijms24031879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Monocytes constitute a heterogenous group of antigen-presenting cells that can be subdivided based on CD14, CD16 and SLAN expression. This division reflects the functional diversity of cells that may play different roles in a variety of pathologies including gliomas. In the current study, the three monocyte subpopulations: classical (CD14+ CD16+ SLAN-), intermediate (CD14dim CD16+ SLAN-) and non-classical (CD14low/- CD16+ SLAN+) in glioma patients' peripheral blood were analysed with flow cytometry. The immune checkpoint molecule (PD-1, PD-L1, SIRPalpha, TIM-3) expression along with pro- and anti-inflammatory cytokines (TNF, IL-12, TGF-beta, IL-10) were assessed. The significant overproduction of anti-inflammatory cytokines by intermediate monocytes was observed. Additionally, SLAN-positive cells overexpressed IL-12 and TNF when compared to the other two groups of monocytes. In conclusion, these results show the presence of different profiles of glioma patient monocytes depending on CD14, CD16 and SLAN expression. The bifold function of monocyte subpopulations might be an additional obstacle to the effectiveness of possible immunotherapies.
Collapse
|
14
|
Ni L, Sun P, Zhang S, Qian B, Chen X, Xiong M, Li B. Transcriptome and single-cell analysis reveal the contribution of immunosuppressive microenvironment for promoting glioblastoma progression. Front Immunol 2023; 13:1051701. [PMID: 36685556 PMCID: PMC9851159 DOI: 10.3389/fimmu.2022.1051701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Background and objectives GBM patients frequently exhibit severe local and systemic immunosuppression, limiting the possible efficacy of immunotherapy strategies. The mechanism through which immunosuppression is established in GBM tumors is the key to successful personalized immunotherapies. Methods We divided GBM patients into subtypes according to the expression characteristics of the TME typing-related signature matrix. WGCNA analysis was used to get co-expressed gene modules. The expression activity of hub genes retrieved from co-expressed modules was validated in two single-cell datasets. Then, cell-cell interaction was calculated. Results Four subtypes were identified in the TCGA and CGGA RNA-seq datasets simultaneously, one of which was an immunosuppressive subtype rich in immunosuppressive factors with low lymphocyte infiltration and an IDH1 mutation. Three co-expressed gene modules related to the immunosuppressive subtype were identified. These three modules are associated with the inflammatory response, angiogenesis, hypoxia, and carbon metabolism, respectively. The genes of the inflammatory response were mainly related to myeloid cells, especially TAM, angiogenesis was related to blood vessels; hypoxia and glucose metabolism were related to tumors, TAM, and blood vessels. Moreover, there was enhanced interaction between tumor cells and TAM. Discussion This research successfully found the immunosuppressive subtype and the major cell types, signal pathways, and molecules involved in the formation of the immunosuppressive subtype and will provide new clues for the improvement of GBM personalized immunotherapy in the future.
Collapse
Affiliation(s)
- Lulu Ni
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Ping Sun
- Department of Pathology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Sujuan Zhang
- Institute of Science and Technology Information, Beijing Academy of Science and Technology, Beijing, China
| | - Bin Qian
- Department of Traditional Chinese Medicine, General Hospital of the Third Division of Xinjiang Production and Construction Corps, Tumushuke, China
| | - Xu Chen
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Mengrui Xiong
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Bing Li
- Department of Neurosurgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China,*Correspondence: Bing Li,
| |
Collapse
|
15
|
Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest 2023; 133:163446. [PMID: 36594466 PMCID: PMC9797335 DOI: 10.1172/jci163446] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor in the central nervous system and contains a highly immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages and microglia (TAMs) are a dominant population of immune cells in the GBM TME that contribute to most GBM hallmarks, including immunosuppression. The understanding of TAMs in GBM has been limited by the lack of powerful tools to characterize them. However, recent progress on single-cell technologies offers an opportunity to precisely characterize TAMs at the single-cell level and identify new TAM subpopulations with specific tumor-modulatory functions in GBM. In this Review, we discuss TAM heterogeneity and plasticity in the TME and summarize current TAM-targeted therapeutic potential in GBM. We anticipate that the use of single-cell technologies followed by functional studies will accelerate the development of novel and effective TAM-targeted therapeutics for GBM patients.
Collapse
|
16
|
Zheng F, Pang Y, Li L, Pang Y, Zhang J, Wang X, Raes G. Applications of nanobodies in brain diseases. Front Immunol 2022; 13:978513. [PMID: 36426363 PMCID: PMC9679430 DOI: 10.3389/fimmu.2022.978513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/30/2022] [Indexed: 03/31/2024] Open
Abstract
Nanobodies are antibody fragments derived from camelids, naturally endowed with properties like low molecular weight, high affinity and low immunogenicity, which contribute to their effective use as research tools, but also as diagnostic and therapeutic agents in a wide range of diseases, including brain diseases. Also, with the success of Caplacizumab, the first approved nanobody drug which was established as a first-in-class medication to treat acquired thrombotic thrombocytopenic purpura, nanobody-based therapy has received increasing attention. In the current review, we first briefly introduce the characterization and manufacturing of nanobodies. Then, we discuss the issue of crossing of the brain-blood-barrier (BBB) by nanobodies, making use of natural methods of BBB penetration, including passive diffusion, active efflux carriers (ATP-binding cassette transporters), carrier-mediated influx via solute carriers and transcytosis (including receptor-mediated transport, and adsorptive mediated transport) as well as various physical and chemical methods or even more complicated methods such as genetic methods via viral vectors to deliver nanobodies to the brain. Next, we give an extensive overview of research, diagnostic and therapeutic applications of nanobodies in brain-related diseases, with emphasis on Alzheimer's disease, Parkinson's disease, and brain tumors. Thanks to the advance of nanobody engineering and modification technologies, nanobodies can be linked to toxins or conjugated with radionuclides, photosensitizers and nanoparticles, according to different requirements. Finally, we provide several perspectives that may facilitate future studies and whereby the versatile nanobodies offer promising perspectives for advancing our knowledge about brain disorders, as well as hopefully yielding diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yucheng Pang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Luyao Li
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yuxing Pang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyi Wang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Geert Raes
- Research Group of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
17
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
18
|
Arnouk S, De Groof TW, Van Ginderachter JA. Imaging and therapeutic targeting of the tumor immune microenvironment with biologics. Adv Drug Deliv Rev 2022; 184:114239. [PMID: 35351469 DOI: 10.1016/j.addr.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
The important role of tumor microenvironmental elements in determining tumor progression and metastasis has been firmly established. In particular, the presence and activity profile of tumor-infiltrating immune cells may be associated with the outcome of the disease and may predict responsiveness to (immuno)therapy. Indeed, while some immune cell types, such as macrophages, support cancer cell outgrowth and mediate therapy resistance, the presence of activated CD8+ T cells is usually indicative of a better prognosis. It is therefore of the utmost interest to obtain a full picture of the immune infiltrate in tumors, either as a prognostic test, as a way to stratify patients to maximize therapeutic success, or as therapy follow-up. Hence, the non-invasive imaging of these cells is highly warranted, with biologics being prime candidates to achieve this goal.
Collapse
|