1
|
Liu C, Tang L, Yang W, Gu Y, Xu W, Liang Z, Jiang J. cGAS/STING pathway and gastrointestinal cancer: Mechanisms and diagnostic and therapeutic targets (Review). Oncol Rep 2025; 53:15. [PMID: 39611480 PMCID: PMC11632663 DOI: 10.3892/or.2024.8848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
The health of individuals is seriously threatened by intestinal cancer, which includes pancreatic, colorectal, esophageal, gastric and gallbladder cancer. Most gastrointestinal cancers do not have typical and specific early symptoms, and lack specific and effective diagnostic markers and treatment methods. It is critical to understand the etiology of gastrointestinal cancer and develop more efficient methods of diagnosis and treatment. The cyclic GMP‑AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway serves a crucial role in the occurrence, progression and treatment of gastrointestinal cancer. The present review focuses on the latest progress regarding the role and mechanism of the cGAS/STING pathway in gastrointestinal cancer, and discusses treatment approaches and related applications based on the cGAS/STING signaling pathway. In order to improve the knowledge of the connection between the cGAS/STING pathway and gastrointestinal cancer, aid the diagnosis and treatment of gastrointestinal cancer, and lessen the burden on patients and society, the present review also discusses future research directions and existing challenges regarding cGAS/STING in the study of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chang Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenhui Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuning Gu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
2
|
Ding L, Zhang R, Du W, Wang Q, Pei D. The role of cGAS-STING signaling pathway in ferroptosis. J Adv Res 2024:S2090-1232(24)00606-4. [PMID: 39710299 DOI: 10.1016/j.jare.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a crucial mechanism in antiviral defense and innate immunity pathway. Ferroptosis, characterized by iron dependence and lipid peroxidation, represents a specialized form of cell death. A burgeoning collection of studies has demonstrated that the cGAS-STING signaling pathway participates in the homeostatic regulation of the organism by modulating ferroptosis-associated enzyme activity or gene expression. Consequently, elucidating the specific roles of the STING signaling pathway and ferroptosis in vivo is vital for targeted disease intervention. This review systematically examines the interactions between the cGAS-STING signaling pathway and ferroptosis, highlighting their influence on disease progression in the contexts of inflammation, injury, and cancerous cell dynamics. Understanding these interactions may provide novel therapeutic strategies. The STING pathway has been implicated in the regulation of various cell death mechanisms, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Our focus primarily addresses the role and mechanism of the cGAS-STING signaling pathway and ferroptosis in diseases, limiting discussion of other cell death modalities and precluding a comprehensive overview of the pathway's additional functions.
Collapse
Affiliation(s)
- Lina Ding
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Kerschbaum-Gruber S, Kleinwächter A, Popova K, Kneringer A, Appel LM, Stasny K, Röhrer A, Dias AB, Benedum J, Walch L, Postl A, Barna S, Kratzer B, Pickl WF, Akalin A, Horvat F, Franke V, Widder J, Georg D, Slade D. Cytosolic nucleic acid sensors and interferon beta-1 activation drive radiation-induced anti-tumour immune effects in human pancreatic cancer cells. Front Immunol 2024; 15:1286942. [PMID: 39372406 PMCID: PMC11449851 DOI: 10.3389/fimmu.2024.1286942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/05/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer-related deaths worldwide with limited treatment options due to extensive radiation and chemotherapy resistance. Monotherapy with immune checkpoint blockade showed no survival benefit. A combination of immunomodulation and radiotherapy may offer new treatment strategies, as demonstrated for non-small cell lung cancer. Radiation-induced anti-tumour immunity is mediated through cytosolic nucleic acid sensing pathways that drive the expression of interferon beta-1 (IFNB1) and proinflammatory cytokines. Methods Human PDAC cell lines (PANC-1, MIA PaCa-2, BxPC-3) were treated with X-rays and protons. Immunogenic cell death was measured based on HMGB1 release. Cytosolic dsDNA and dsRNA were analysed by immunofluorescence microscopy. Cell cycle progression, MHC-I and PD-L1 expression were determined by flow cytometry. Galectin-1 and IFNB1 were measured by ELISA. The expression levels and the phosphorylation status of the cGAS/STING and RIG-I/MAVS signalling pathways were analysed by western blotting, the expression of IFNB1 and proinflammatory cytokines was determined by RT-qPCR and genome-wide by RNA-seq. CRISPR-Cas9 knock-outs and inhibitors were used to elucidate the relevance of STING, MAVS and NF-κB for radiation-induced IFNB1 activation. Results We demonstrate that a clinically relevant X-ray hypofractionation regimen (3x8 Gy) induces immunogenic cell death and activates IFNB1 and proinflammatory cytokines. Fractionated radiation induces G2/M arrest and accumulation of cytosolic DNA in PDAC cells, which partly originates from mitochondria. RNA-seq analysis shows a global upregulation of type I interferon response and NF-κB signalling in PDAC cells following 3x8 Gy. Radiation-induced immunogenic response is regulated by STING, MAVS and NF-κB. In addition to immunostimulation, radiation also induces immunosuppressive galectin-1. No significant changes in MHC-I or PD-L1 expression were observed. Moreover, PDAC cell lines show similar radiation-induced immune effects when exposed to single-dose protons or photons. Conclusion Our findings provide a rationale for combinatorial radiation-immunomodulatory treatment approaches in PDAC using conventional photon-based or proton beam radiotherapy.
Collapse
Affiliation(s)
- Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ava Kleinwächter
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Katerina Popova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Alexandra Kneringer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | | - Anna Röhrer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Beatriz Dias
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Lena Walch
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Postl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Altuna Akalin
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Filip Horvat
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Vedran Franke
- Max Delbrück Center, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Zhu Q, Yuan C, Wang D, Tu B, Chen W, Dong X, Wu K, Tao L, Ding Y, Xiao W, Hu L, Gong W, Li Z, Lu G. The TRIM28/miR133a/CD47 axis acts as a potential therapeutic target in pancreatic necrosis by impairing efferocytosis. Mol Ther 2024; 32:3025-3041. [PMID: 38872307 PMCID: PMC11403229 DOI: 10.1016/j.ymthe.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.
Collapse
Affiliation(s)
- Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Dan Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Keyan Wu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Lide Tao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
7
|
Liu B, Lu K, Yuan L, Li X, Lan L, Han S. Hsa-miR-181a-2-3p inhibits the oncogenicity of colon cancer by directly targeting STING. Aging (Albany NY) 2024; 16:11729-11743. [PMID: 39133165 PMCID: PMC11346793 DOI: 10.18632/aging.206059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Colon cancer is a common malignant tumor of the gastrointestinal system, which is characterized by high morbidity and mortality. The purpose of this study was to analyze the expression and biological role of miR-181a-2-3p in colon cancer and to investigate the molecular mechanism of its regulatory effect on colon cancer through stimulator of interferon genes (STING). METHODS Real-time reverse transcription polymerase chain reaction (qRT-PCR) assay was used to detect the expression of miR-181a-2-3p in colon cancer cell lines and normal intestinal epithelial cells. After overexpression of miR-181a-2-3p in colon cancer cell lines SW480 and HT29, cells were examined by CCK8, Transwell, and flow cytometry assays for alterations in proliferation, migration, apoptosis, and cell cycle. Target genes of miR-181a-2-3p were predicted by bioinformatics and validated by dual luciferase assays. Rescue experiments were performed to explore the role of STING in the effect of miR-181a-2-3p. The effect of miR-181a-2-3p on colon cancer proliferation in vivo was validated by nude mouse tumorigenicity assay. RESULTS miR-181a-2-3p was lowly expressed in both colon cancer tissues and cell lines. Overexpression of miR-181a-2-3p led to reduced proliferation and migration, increased apoptosis, and altered cell cycle in colon cancer cell lines SW480 and HT29. STING was a target gene of miR-181a-2-3p. Increased STING expression partially counteracted the effect of overexpression of miR-181a-2-3p on colon cancer cell lines. miR-181a-2-3p also suppressed colon cancer proliferation in vivo. CONCLUSION miR-181a-2-3p inhibits the proliferation and oncogenicity of colon cancer, and its molecular mechanism could be inhibited by STING.
Collapse
Affiliation(s)
- Bowei Liu
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Kai Lu
- Clinical Medicine College, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Lijie Yuan
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Xiaofang Li
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Ling Lan
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
8
|
Li K, Wang J, Zhang R, Zhou J, Espinoza B, Niu N, Wang J, Jurcak N, Rozich N, Osipov A, Henderson M, Funes V, Lyman M, Blair AB, Herbst B, He M, Yuan J, Trafton D, Yuan C, Wichroski M, Liu X, Fu J, Zheng L. Overcome the challenge for intratumoral injection of STING agonist for pancreatic cancer by systemic administration. J Hematol Oncol 2024; 17:62. [PMID: 39113096 PMCID: PMC11305077 DOI: 10.1186/s13045-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/11/2024] Open
Abstract
Due to the challenge for intratumoral administration, innate agonists have not made it beyond preclinical studies for efficacy testing in most tumor types. Pancreatic ductal adenocarcinoma (PDAC) has a hostile tumor microenvironment that renders T cells dysfunctional. Innate agonist treatments may serve as a T cell priming mechanism to sensitize PDACs to anti-PD-1 antibody (a-PD-1) treatment. Using a transplant mouse model with spontaneously formed liver metastasis, a genetically engineered KPC mouse model that spontaneously develops PDAC, and a human patient-derived xenograft model, we compared the antitumor efficacy between intrahepatic/intratumoral and intramuscular systemic administration of BMS-986301, a next-generation STING agonist. Flow cytometry, Nanostring, and cytokine assays were used to evaluate local and systemic immune responses. This study demonstrated that administration of STING agonist systemically via intramuscular injection is equivalent to its intratumoral injection in inducing both effector T cell response and antitumor efficacy. Compared to intratumoral administration, T cell exhaustion and immunosuppressive signals induced by systemic administration were attenuated. Nonetheless, either intratumoral or systemic treatment of STING agonist was associated with increased expression of CTLA-4 on tumor-infiltrating T cells. However, the combination of a-PD-1 and anti-CTLA-4 antibody with systemic STING agonist demonstrated the antitumor efficacy in the KPC mouse spontaneous PDAC model. The mouse pancreatic and liver orthotopic model of human patient-derived xenograft reconstituted with PBMC also showed that antitumor and abscopal effects of both intratumoral and intramuscular STING agonist are equivalent. Taken together, this study supports the clinical development of innate agonists via systemic administration for treating PDAC.
Collapse
Affiliation(s)
- Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rui Zhang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jiawei Zhou
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Birginia Espinoza
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nan Niu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Zhejiang Provisional People's Hospital, Hangzhou, Zhejiang, China
| | - Jianxin Wang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The First-Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Noelle Jurcak
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Noah Rozich
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Arsen Osipov
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - MacKenzie Henderson
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Vanessa Funes
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Melissa Lyman
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alex B Blair
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian Herbst
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mengni He
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jialong Yuan
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Diego Trafton
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chunhui Yuan
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | | | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Fu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lei Zheng
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA.
| |
Collapse
|
9
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Tabar MMM, Fathi M, Kazemi F, Bazregari G, Ghasemian A. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity. Mol Biol Rep 2024; 51:487. [PMID: 38578532 DOI: 10.1007/s11033-024-09418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.
Collapse
Affiliation(s)
| | - Mahnaz Fathi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Kazemi
- Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ghazal Bazregari
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
11
|
Ma J, Xin Y, Wang Q, Ding L. Roles of cGAS-STING Pathway in Radiotherapy Combined with Immunotherapy for Hepatocellular Carcinoma. Mol Cancer Ther 2024; 23:447-453. [PMID: 38049087 DOI: 10.1158/1535-7163.mct-23-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/14/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Although great strides have been made in the management and treatment of hepatocellular carcinoma (HCC), its prognosis is still poor yielding a high mortality. Immunotherapy is recommended for treating advanced HCC, but its efficiency is hampered because of hepatic immunosuppression. Stimulator of interferon genes (STING) pathway, serving as a critical cytoplasmic DNA-sensing process, is reported to initiate the antitumor immune response, and link the innate immunity to the adaptive immune system. Radiotherapy has been well acknowledged to induce destruction and release of tumor-derived DNA into the cytoplasm, which then activates the cGAS-STING pathway. On this basis, radiotherapy can be used as a sensitizer for immunotherapy, and its combination with immunotherapy may bring in changes to the suboptimal efficacy of immune checkpoint inhibitor monotherapy. In this review, we summarized the roles of cGAS-STING pathway in regulation of radiotherapy combined with immunotherapy for treating HCC.
Collapse
Affiliation(s)
- Jianing Ma
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuning Xin
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Qiang Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lijuan Ding
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
12
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Lin S. DTX3L mediated ubiquitination of cGAS suppresses antitumor immunity in pancreatic cancer. Biochem Biophys Res Commun 2023; 681:106-110. [PMID: 37774567 DOI: 10.1016/j.bbrc.2023.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The global incidence of pancreatic cancer is associated with a high mortality rate and one of the lowest survival rates among all types of cancer. The clinical management modalities for pancreatic cancer encompass surgical intervention, chemotherapy, radiation therapy, targeted therapy, immunotherapy, or a combination thereof. Nevertheless, the diagnosis of pancreatic cancer often occurs at an advanced stage, thereby restricting treatment options and diminishing the prospects of achieving a cure. The cGAS-STING pathway has emerged as a potential target for antitumor therapy due to its role in promoting immune responses against cancer cells. Activation of the cGAS-STING pathway in tumor cells can lead to the production of pro-inflammatory cytokines and type I interferons, which can enhance the recruitment and activation of immune cells to the tumor microenvironment. The cGAS protein was detected in only a half of tumor tissues in pancreatic cancer patients and the underlying mechanism is still elusive. In this study, we have identified the E3 ligase DTX3L as a key regulator of cGAS-STING signaling in pancreatic cancer cells by mediating the ubiquitination and degradation of cGAS. The expression levels of DTX3L were found to be upregulated in pancreatic tumor tissues and correlated with a poor prognosis for patients with pancreatic cancer. Silencing of DTX3L resulted in enhanced activation of the cGAS-STING signaling pathway and improved antitumor immunity for pancreatic cancer, suggesting that targeting the DTX3L-cGAS axis could hold promise for the treatment of this disease.
Collapse
Affiliation(s)
- Shan Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| |
Collapse
|
14
|
Kikuyama F, Suzuki S, Jibiki A, Yokoyama Y, Kawazoe H, Kitanaka S, Nakamura T. Ingenol mebutate inhibits the growth of pancreatic cancer cells in vitro via STING with an efficacy comparable to that of clinically used anticancer agents. J Nat Med 2023; 77:343-351. [PMID: 36694038 DOI: 10.1007/s11418-023-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Pancreatic cancer is associated with a poor prognosis; thus, there is an urgent need to develop new and effective treatments. Ingenol mebutate (IM), which is isolated from the latex of Euphorbia peplus, was recently shown to be effective against pancreatic cancer cell lines; however, its mechanism of action has not been fully elucidated. In this study, we focused on the less drug-sensitive pancreatic cancer cell line Panc-1 and compared IM to commercially available anticancer drugs using cell survival assays. In addition, we aimed to identify novel biomolecules that may be involved in the mechanism of action of IM using RNA sequencing, western blotting, and inhibition assays. The IC50 values after 72 h of exposure to IM and SN-38, drugs to which the Panc-1 cells are most sensitive among the tested anticancer agents, were 43.1 ± 16.8 nM and 165 ± 37 nM, respectively. IM showed a cytostatic effect equal to or greater than that of the clinically used pancreatic cancer therapeutic drugs. RNA sequencing and protein expression analysis revealed that expression of stimulator of interferon genes (STING) increased at low IM concentration, whereas cell viability decreased. Co-exposure of IM and STING inhibitor, H-151, to Panc-1 or MIA PaCa-2 cell lines canceled the growth-inhibitory effects of IM alone. In conclusion, IM may have an efficacy comparable to that of existing pancreatic cancer therapeutic agents on the less drug-sensitive Panc-1 cell line and the immune-related molecule STING plays a role in the mechanism of action of IM.
Collapse
Affiliation(s)
- Fumihiro Kikuyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Sayo Suzuki
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan.
| | - Aya Jibiki
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Yuta Yokoyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Hitoshi Kawazoe
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| | - Susumu Kitanaka
- Dios Medical Science Institute, 4-3-21 Mimomi, Narashino, Chiba, 275-0002, Japan
| | - Tomonori Nakamura
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
- Center for Social Pharmacy and Pharmaceutical Care Sciences Division of Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-Ku, Tokyo, 105-8512, Japan
| |
Collapse
|
15
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
16
|
Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther 2022; 7:196. [PMID: 35725836 PMCID: PMC9208265 DOI: 10.1038/s41392-022-01046-3] [Citation(s) in RCA: 387] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, immunotherapy represented by immune checkpoint inhibitors (ICIs) has led to unprecedented breakthroughs in cancer treatment. However, the fact that many tumors respond poorly or even not to ICIs, partly caused by the absence of tumor-infiltrating lymphocytes (TILs), significantly limits the application of ICIs. Converting these immune “cold” tumors into “hot” tumors that may respond to ICIs is an unsolved question in cancer immunotherapy. Since it is a general characteristic of cancers to resist apoptosis, induction of non-apoptotic regulated cell death (RCD) is emerging as a new cancer treatment strategy. Recently, several studies have revealed the interaction between non-apoptotic RCD and antitumor immunity. Specifically, autophagy, ferroptosis, pyroptosis, and necroptosis exhibit synergistic antitumor immune responses while possibly exerting inhibitory effects on antitumor immune responses. Thus, targeted therapies (inducers or inhibitors) against autophagy, ferroptosis, pyroptosis, and necroptosis in combination with immunotherapy may exert potent antitumor activity, even in tumors resistant to ICIs. This review summarizes the multilevel relationship between antitumor immunity and non-apoptotic RCD, including autophagy, ferroptosis, pyroptosis, and necroptosis, and the potential targeting application of non-apoptotic RCD to improve the efficacy of immunotherapy in malignancy.
Collapse
Affiliation(s)
- Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, changsha, 410008, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xueqian Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
17
|
Tan P, Li M, Liu Z, Li T, Zhao L, Fu W. Glycolysis-Related LINC02432/Hsa-miR-98–5p/HK2 Axis Inhibits Ferroptosis and Predicts Immune Infiltration, Tumor Mutation Burden, and Drug Sensitivity in Pancreatic Adenocarcinoma. Front Pharmacol 2022; 13:937413. [PMID: 35795552 PMCID: PMC9251347 DOI: 10.3389/fphar.2022.937413] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant cancer with high incidence and mortality. Glycometabolic rearrangements (aerobic glycolysis) is a hallmark of PAAD and contributes to tumorigenesis and progression through numerous mechanisms. This study aimed to identify a novel glycolysis-related lncRNA-miRNA-mRNA ceRNA signature in PAAD and explore its potential molecular function. We first calculated the glycolysis score for each PAAD patient by the ssGSEA algorithm and found that patients with higher hallmark glycolysis scores had poorer prognosis. Subsequently, we obtained a novel glycolysis-related LINC02432/hsa-miR-98–5p/HK2 axis from the TCGA and GEO databases using comprehensive bioinformatics analysis and developed a nomogram to predict overall survival. Furthermore, functional characterization analysis revealed that LINC02432/hsa-miR-98–5p/HK2 axis risk score was negatively correlated with ferroptosis. The tumor immune infiltration analysis suggested positive correlations between ceRNA risk score and infiltrated M0 macrophage levels in PAAD. Correlation analysis found that ceRNA risk scores were positively correlated with four chemokines (CXCL3, CXCL5, CXCL8 and CCL20) and one immune checkpoint gene (SIGLEC15). Meanwhile, tumor mutation burden (TMB), an indicator for predicting response to immunotherapy, was positively correlated with ceRNA risk score. Finally, the drug sensitivity analysis showed that the high-risk score patients might be more sensitive to EGFR, MEK and ERK inhibitors than low-risk score patients. In conclusion, our study suggested that LINC02432/hsa-miR-98–5p/HK2 axis may serve as a novel diagnostic, prognostic, and therapeutic target in PAAD treatment.
Collapse
Affiliation(s)
- Peng Tan
- Department of Cell Biology and Genetics / Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuoran Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics / Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lingyu Zhao, ; Wenguang Fu,
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Lingyu Zhao, ; Wenguang Fu,
| |
Collapse
|