1
|
Zelasko S, Swaney MH, Suh WS, Sandstrom S, Carlson C, Cagnazzo J, Golfinos A, Fossen J, Andes D, Kalan LR, Safdar N, Currie CR. Altered oral microbiota of drug-resistant organism carriers exhibit impaired gram-negative pathogen inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614756. [PMID: 39386697 PMCID: PMC11463450 DOI: 10.1101/2024.09.24.614756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The oral microbiome has been understudied as a reservoir for clinical pathogens, including drug-resistant strains. Understanding how alterations in microbiome functioning render this site vulnerable to colonization is essential, as multidrug-resistant organisms (MDRO) carriage is a major risk factor for developing serious infections. To advance our knowledge of oral MDRO carriage and protection against pathogen colonization conferred by native microbiota, we examined microbiomes from individuals colonized by MDROs (n=33) and non-colonized age-matched controls (n=30). Shotgun metagenomic analyses of oral swabs from study participants revealed significant differences in microbial communities with depletion of Streptococcus spp. among those colonized by multidrug-resistant gram-negative bacilli (RGNB), compared to non-carriers. We utilized metagenomic sequencing to characterize the oral resistome and find antimicrobial resistance genes are present in higher abundance among RNGB carriers versus non-carriers. High-throughput co-culture screening revealed oral bacteria isolated from MDRO non-carriers demonstrate greater inhibition of gram-negative pathogens, compared to isolates from carriers. Moreover, biosynthetic gene clusters from streptococci are found in higher abundance from non-carrier microbiomes, compared to RGNB carrier microbiomes. Bioactivity-guided fractionation of extracts from Streptococcus isolate SID2657 demonstrated evidence of strong E. coli and A. baumannii inhibition in a murine model of infection. Together, this provides evidence that oral microbiota shape this dynamic microbial community and may serve as an untapped source for much-needed antimicrobial small-molecules.
Collapse
|
2
|
Ye H, Gao X, Ma Y, He S, Zhou Z. Role of CD86 on granulocyte in mediating the effect of Genus Roseburia on periodontitis. Clin Oral Investig 2024; 28:522. [PMID: 39264455 DOI: 10.1007/s00784-024-05915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES This study aimed to explore the causal link between the gut microbiota and periodontitis, and to delineate and quantify the intermediary role of immune cells, so as to provide new insights into the pathogenesis, prevention and treatment of periodontitis. MATERIALS AND METHODS We employed a two-sample Mendelian randomization (MR) approach to analyze the genetic predictors of gut microbiota composition (covering 412 gut microbiota taxa and functions) and periodontitis (involving 4,784 cases and 272,252 controls) derived from genome-wide association study (GWAS) datasets. A subsequent two-step MR analysis was conducted to evaluate the extent to which immune cell traits (encompassing 731 immune cell characteristics) mediate the influence of gut microbiota on periodontitis risk. RESULTS Our analysis implicated nine gut microbiota taxa as causal factors in periodontitis susceptibility (p < 0.05). Notably, the Genus Roseburia was identified as exerting a protective effect against periodontitis, partially mediated through the upregulation of CD86 expression on granulocytes, with an 8.15% mediation effect observed. CONCLUSIONS Our findings establish a causal relationship between the gut microbiota and periodontitis, highlighting the protective role of Roseburia against this condition. A notable proportion of this protective effect is mediated via the upregulation of CD86 on granulocytes. CLINICAL RELEVANCE It can provide new ideas for the pathogenesis, prevention and treatment for periodontitis through exploring the causal link between the gut microbiota and periodontitis, and describing and quantifying the intermediary role of immune cells.
Collapse
Affiliation(s)
- Huihuang Ye
- The Second Affiliated Hostipal of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xue Gao
- The Second Affiliated Hostipal of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yike Ma
- The Second Affiliated Hostipal of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shuai He
- The Second Affiliated Hostipal of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhihui Zhou
- The Second Affiliated Hostipal of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
4
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2024. [PMID: 39044454 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anne George
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Conte R, Valentino A, Romano S, Margarucci S, Petillo O, Calarco A. Stimuli-Responsive Nanocomposite Hydrogels for Oral Diseases. Gels 2024; 10:478. [PMID: 39057501 PMCID: PMC11275451 DOI: 10.3390/gels10070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Oral diseases encompassing conditions such as oral cancer, periodontitis, and endodontic infections pose significant challenges due to the oral cavity's susceptibility to pathogenic bacteria and infectious agents. Saliva, a key component of the oral environment, can compromise drug efficacy during oral disease treatment by diluting drug formulations and reducing drug-site interactions. Thus, it is imperative to develop effective drug delivery methods. Stimuli-responsive nanocomposite hydrogels offer a promising solution by adapting to changes in environmental conditions during disease states, thereby enabling targeted drug delivery. These smart drug delivery systems have the potential to enhance drug efficacy, minimize adverse reactions, reduce administration frequency, and improve patient compliance, thus facilitating a faster recovery. This review explores various types of stimuli-responsive nanocomposite hydrogels tailored for smart drug delivery, with a specific focus on their applications in managing oral diseases.
Collapse
Affiliation(s)
- Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Silvia Romano
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
6
|
Shen D, Tuerhong K, Huang Q, Liu K, Li Y, Yang S. Computational analysis of curcumin-mediated alleviation of inflammation in periodontitis patients with experimental validation in mice. J Clin Periodontol 2024; 51:787-799. [PMID: 38348739 DOI: 10.1111/jcpe.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 05/16/2024]
Abstract
AIM Using network pharmacology and experimental validation to explore the therapeutic efficacy and mechanism of curcumin (Cur) in periodontitis treatment. MATERIALS AND METHODS Network pharmacology was utilized to predict target gene interactions of Cur-Periodontitis. Molecular docking was used to investigate the binding affinity of Cur for the predicted targets. A mouse model with ligature-induced periodontitis (LIP) was used to verify the therapeutic effect of Cur. Microcomputed tomography (micro-CT) was used to evaluate alveolar bone resorption, while western blotting, haematoxylin-eosin staining and immunohistochemistry were used to analyse the change in immunopathology. SYTOX Green staining was used to assess the in vitro effect of Cur in a mouse bone marrow-isolated neutrophil model exposed to lipopolysaccharide. RESULTS Network pharmacology identified 114 potential target genes. Enrichment analysis showed that Cur can modulate the production of neutrophil extracellular traps (NETs). Molecular docking experiments suggested that Cur effectively binds to neutrophil elastase (ELANE), peptidylarginine deiminase 4 (PAD4) and cathepsin G, three enzymes involved in NETs. In LIP mice, Cur alleviated alveolar bone resorption and reduced the expression of ELANE and PAD4 in a time-dependent but dose-independent manner. Cur can directly inhibit NET formation in the cell model. CONCLUSIONS Our research suggested that Cur may alleviate experimental periodontitis by inhibiting NET formation.
Collapse
Affiliation(s)
- Danfeng Shen
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Kamoran Tuerhong
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kehao Liu
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yuzhou Li
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Sheng Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| |
Collapse
|
7
|
Slobodianyk-Kolomoiets M, Khlebas S, Mazur I, Rudnieva K, Potochilova V, Iungin O, Kamyshnyi O, Kamyshna I, Potters G, Spiers AJ, Moshynets O. Extracellular host DNA contributes to pathogenic biofilm formation during periodontitis. Front Cell Infect Microbiol 2024; 14:1374817. [PMID: 38779563 PMCID: PMC11109387 DOI: 10.3389/fcimb.2024.1374817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.
Collapse
Affiliation(s)
| | - Svitlana Khlebas
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Iryna Mazur
- Department of Dentistry, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Kateryna Rudnieva
- Central Clinical Diagnostic Laboratory, Kyiv Regional Clinical Hospital, Kyiv, Ukraine
- Department of Microbiology, Virology and Immunology, Bogomolets National Medical Academy, Kyiv, Ukraine
| | | | - Olga Iungin
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| | - Olexandr Kamyshnyi
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Microbiology, Virology and Immunology Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Fine N, Barbour A, Kaura K, Kerns KA, Chen D, Trivedi HM, Gomez J, Sabharwal A, McLean JS, Darveau RP, Glogauer M. Effects of a stabilized stannous fluoride dentifrice on clinical, immunomodulatory, and microbial outcomes in a human experimental gingivitis model. J Periodontol 2024; 95:421-431. [PMID: 37885337 DOI: 10.1002/jper.22-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Stannous fluoride dentifrice is well established for its beneficial clinical effects. In this study, we evaluated the effects of stannous fluoride on inflammation and oral microbiome. METHODS In this randomized, parallel-arm, double-blind, controlled clinical trial, we compared clinical resolution of experimental gingivitis by evaluating bleeding on probing, gingival index, and plaque index between stannous fluoride stabilized with zinc phosphate (test) and sodium fluoride (control) dentifrices. Further, these groups were compared for oral neutrophil counts, systemic priming of neutrophils, gingival crevicular fluid (GCF) expression of inflammatory markers, and the oral microbiome. RESULTS We found significant reduction in bleeding on probing in the test group compared to the control group in experimental gingivitis when participants used the test dentifrice prior to induction of experimental gingivitis. The test group also showed significant reductions in GCF levels of inflammatory markers (matrix metalloproteinase 8 [MMP8], receptor activator of nuclear factor kappa-Β ligand [RANKL]), oral polymorphonuclear neutrophil (PMN) counts, and systemic neutrophil priming (CD11b expression) during experimental gingivitis. Further, significant reductions in the gram-negative genera Porphyromonas, Tannerella, and Treponema were noted in the test group. CONCLUSION The stannous fluoride stabilized with zinc phosphate dentifrice formulation demonstrated clinical reduction in gingival inflammation and a beneficial effect on microbiome and immune markers. This intervention should be explored as a preventive aid in the progression of plaque-induced gingivitis to periodontitis.
Collapse
Affiliation(s)
- Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Kamini Kaura
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Kristopher A Kerns
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Dandan Chen
- Department of Oral Health Research, Colgate Palmolive Company, Piscataway, New Jersey, USA
| | - Harsh M Trivedi
- Department of Oral Health Research, Colgate Palmolive Company, Piscataway, New Jersey, USA
| | - Juliana Gomez
- Department of Oral Health Research, Colgate Palmolive Company, Piscataway, New Jersey, USA
| | - Amarpreet Sabharwal
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jeffrey S McLean
- Department of Periodontics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Richard P Darveau
- Department of Periodontics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
11
|
Peled Y, Stewart CA, Glogauer M, Finer Y. The Role of Bacterial, Dentinal, Salivary, and Neutrophil Degradative Activity in Caries Pathogenesis. Dent J (Basel) 2023; 11:217. [PMID: 37754337 PMCID: PMC10528424 DOI: 10.3390/dj11090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Until recently, it was widely accepted that bacteria participate in caries pathogenesis mainly through carbohydrate fermentation and acid production, which promote the dissolution of tooth components. Neutrophils, on the other hand, were considered white blood cells with no role in caries pathogenesis. Nevertheless, current literature suggests that both bacteria and neutrophils, among other factors, possess direct degradative activity towards both dentinal collagen type-1 and/or methacrylate resin-based restoratives and adhesives, the most common dental restoratives. Neutrophils are abundant leukocytes in the gingival sulcus, where they can readily reach adjacent tooth roots or gingival and cervical restorations and execute their degradative activity. In this review, we present the latest literature evidence for bacterial, dentinal, salivary, and neutrophil degradative action that may induce primary caries, secondary caries, and restoration failure.
Collapse
Affiliation(s)
- Yuval Peled
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
- Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (Y.P.); (C.A.S.); (M.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
12
|
Lietzan AD, Simpson JB, Walton WG, Jariwala PB, Xu Y, Boynton MH, Liu J, Redinbo MR. Microbial β-glucuronidases drive human periodontal disease etiology. SCIENCE ADVANCES 2023; 9:eadg3390. [PMID: 37146137 PMCID: PMC10162664 DOI: 10.1126/sciadv.adg3390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human β-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.
Collapse
Affiliation(s)
- Adam D. Lietzan
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G. Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Parth B. Jariwala
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcella H. Boynton
- Division of General Medicine and Clinical Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Xu Z, Tan R, Li X, Pan L, Ji P, Tang H. Development of a classification model and an immune-related network based on ferroptosis in periodontitis. J Periodontal Res 2023; 58:403-413. [PMID: 36653725 DOI: 10.1111/jre.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is an immunoinflammatory disease characterized by irreversible periodontal attachment loss and bone destruction. Ferroptosis is a kind of immunogenic cell death that depends on the participation of iron ions and is involved in various inflammatory and immune processes. However, information regarding the relationship between ferroptosis and immunomodulation processes in periodontitis is extremely limited. The purpose of this study was to investigate the correlation between ferroptosis and immune responses in periodontitis. METHODS Gene expression profiles of gingivae were collected from the Gene Expression Omnibus data portal. After detecting differentially expressed ferroptosis-related genes (FRGs), we used univariate logistic regression analysis followed by logistic least absolute shrinkage and selection operator (LASSO) regression to establish a ferroptosis-related classification model in an attempt to accurately distinguish periodontitis gingival tissues from healthy samples. The infiltration level of immunocytes in periodontitis was then assessed through single-sample gene-set enrichment analysis. Subsequently, we screened out immune-related genes by weighted correlation network analysis and protein-protein interaction (PPI) analysis and constructed an immune-related network based on FRGs and immune-related genes. RESULTS A total of 24 differentially expressed FRGs were detected, and an 8-FRG combined signature constituted the classification model. The established model showed outstanding discriminating ability according to the results of receiver operating characteristic (ROC) curve analysis. In addition, the periodontitis samples had a higher degree of immunocyte infiltration. Activated B cells had the strongest positive correlation while macrophages had a strong negative correlation with certain FRGs, and we found that XBP1, ALOX5 and their interacting genes might be crucial genes in the immune-related network. CONCLUSIONS The FRG-based classification model had a satisfactory determination ability, which could bring new insights into the pathogenesis of periodontitis. Those genes in the immune-related network, especially hub genes along with XBP1 and ALOX5, would have the potential to serve as promising targets of immunomodulatory treatments for periodontitis.
Collapse
Affiliation(s)
- Zhihong Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,The People's Hospital of Dadukou District, Chongqing, China
| | - Ruolan Tan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Lanlan Pan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Liu K, Yang L, Wang X, Huang Q, Tuerhong K, Yang M, Zhang R, Li Y, Yang S. Electroacupuncture regulates macrophage, neutrophil, and oral microbiota to alleviate alveolar bone loss and inflammation in experimental ligature-induced periodontitis. J Clin Periodontol 2023; 50:368-379. [PMID: 36356944 DOI: 10.1111/jcpe.13748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
AIM Electroacupuncture (EA) regulates distant body physiology through somatic sensory autonomic reflexes, balances the microbiome, and can promote the release of immune cells into bloodstream, thereby inhibiting severe systemic inflammation. This makes it possible to use EA as an integrated treatment for periodontitis. MATERIALS AND METHODS In this study, EA was applied to the ST36 acupoints in a ligature-induced periodontitis (LIP) mouse model. Then the effects of EA on periodontal myeloid cells, cytokines, and the microbiome were comprehensively analysed using flow cytometry, quantitative Polymerase Chain Reaction (PCR), and 16 S sequencing. RESULTS Results demonstrated that EA could significantly relieve periodontal bone resorption. EA also suppressed the infiltration of macrophages and neutrophils, reduced gene expression of the pro-inflammatory cytokines IL-1β, IL-6, IL-17 and TNF-α, and increased expression of the anti-inflammatory factors IL-4 and IL-10 in periodontal tissues. Moreover, composition of the periodontal microbiome was regulated by EA, finding that complex of microbiota, including supragingival Veillonella, subgingival Streptococcus, and subgingival Erysipelatoclostridium, were significantly reduced. Meanwhile, nitrate and nitrate-related activities of subgingival microbiota were reversed. Network analysis revealed close relationships among Veillonella, Streptococcus, and Bacteroides. CONCLUSIONS Our study indicates that EA can effectively alleviate inflammation and bone resorption in LIP mice, potentially via the regulation of myeloid cells, cytokines, and periodontal microbiome.
Collapse
Affiliation(s)
- Kehao Liu
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Liangjie Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xu Wang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kamoran Tuerhong
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mingcong Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,Autism Research Center of Peking University Health Science Center, Beijing, China
| | - Yuzhou Li
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Sheng Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| |
Collapse
|
16
|
Vitkov L, Singh J, Schauer C, Minnich B, Krunić J, Oberthaler H, Gamsjaeger S, Herrmann M, Knopf J, Hannig M. Breaking the Gingival Barrier in Periodontitis. Int J Mol Sci 2023; 24:4544. [PMID: 36901974 PMCID: PMC10003416 DOI: 10.3390/ijms24054544] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g., via mastication and teeth brushing) has been disregarded despite the accumulated knowledge of mechanical force effects on tight junctions (TJs) and subsequent pathology in other epithelial tissues. Transitory bacteraemia is observed as a rule in gingival inflammation, but is rarely observed in clinically healthy gingiva. This implies that TJs of inflamed gingiva deteriorate, e.g., via a surplus of lipopolysaccharide (LPS), bacterial proteases, toxins, Oncostatin M (OSM), and neutrophil proteases. The inflammation-deteriorated gingival TJs rupture when exposed to physiological mechanical forces. This rupture is characterised by bacteraemia during and briefly after mastication and teeth brushing, i.e., it appears to be a dynamic process of short duration, endowed with quick repair mechanisms. In this review, we consider the bacterial, immune, and mechanical factors responsible for the increased permeability and break of the epithelial barrier of inflamed gingiva and the subsequent translocation of both viable bacteria and bacterial LPS during physiological mechanical forces, such as mastication and teeth brushing.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
- Department of Dental Pathology, University of East Sarajevo, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Jeeshan Singh
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Hannah Oberthaler
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med Department Hanusch Hospital, 1140 Vienna, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
17
|
Regulation of the Host Immune Microenvironment in Periodontitis and Periodontal Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043158. [PMID: 36834569 PMCID: PMC9967675 DOI: 10.3390/ijms24043158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The periodontal immune microenvironment is a delicate regulatory system that involves a variety of host immune cells including neutrophils, macrophages, T cells, dendritic cells and mesenchymal stem cells. The dysfunction or overactivation of any kind of local cells, and eventually the imbalance of the entire molecular regulatory network, leads to periodontal inflammation and tissue destruction. In this review, the basic characteristics of various host cells in the periodontal immune microenvironment and the regulatory network mechanism of host cells involved in the pathogenesis of periodontitis and periodontal bone remodeling are summarized, with emphasis on the immune regulatory network that regulates the periodontal microenvironment and maintains a dynamic balance. Future strategies for the clinical treatment of periodontitis and periodontal tissue regeneration need to develop new targeted synergistic drugs and/or novel technologies to clarify the regulatory mechanism of the local microenvironment. This review aims to provide clues and a theoretical basis for future research in this field.
Collapse
|
18
|
Zhou T, Xu W, Wang Q, Jiang C, Li H, Chao Y, Sun Y, A L. The effect of the "Oral-Gut" axis on periodontitis in inflammatory bowel disease: A review of microbe and immune mechanism associations. Front Cell Infect Microbiol 2023; 13:1132420. [PMID: 36923589 PMCID: PMC10008960 DOI: 10.3389/fcimb.2023.1132420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis and inflammatory bowel diseases (IBD) are inflammatory diseases of the gastrointestinal tract that share common features of microbial-induced ecological dysregulation and host immune inflammatory response. The close relationship between periodontitis and IBD is characterized by a higher prevalence of IBD in patients with periodontitis and a higher prevalence and severity of periodontitis in patients with IBD, indicating that periodontitis and IBD are different from the traditional independent diseases and form an "Oral-Gut" axis between the two, which affect each other and thus form a vicious circle. However, the specific mechanisms leading to the association between the two are not fully understood. In this article, we describe the interconnection between periodontitis and IBD in terms of microbial pathogenesis and immune dysregulation, including the ectopic colonization of the gut by pathogenic bacteria associated with periodontitis that promotes inflammation in the gut by activating the host immune response, and the alteration of the oral microbiota due to IBD that affects the periodontal inflammatory response. Among the microbial factors, pathogenic bacteria such as Klebsiella, Porphyromonas gingivalis and Fusobacterium nucleatum may act as the microbial bridge between periodontitis and IBD, while among the immune mechanisms, Th17 cell responses and the secreted pro-inflammatory factors IL-1β, IL-6 and TNF-α play a key role in the development of both diseases. This suggests that in future studies, we can look for targets in the "Oral-Gut" axis to control and intervene in periodontal inflammation by regulating periodontal or intestinal flora through immunological methods.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| |
Collapse
|
19
|
Morikawa S, Miyashita Y, Nasu M, Shibazaki S, Usuda S, Tsunoda K, Nakagawa T. Severe alveolar bone resorption in Felty syndrome: a case report. J Med Case Rep 2022; 16:463. [PMID: 36522676 PMCID: PMC9756689 DOI: 10.1186/s13256-022-03703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Felty syndrome is defined by three conditions: neutropenia, rheumatoid arthritis, and splenomegaly. Neutropenia associated with pancytopenia may further affect the dental condition of a patient. Periodontal treatment and surgery in patients with Felty syndrome necessitates cooperation with a hematologist. Here we present a case of a patient with Felty syndrome who was initially referred to the oral surgery hospital attached to the School of Dentistry for extensive periodontitis. She was effectively treated in collaboration with the hematology department. CASE PRESENTATION A 55-year-old Asian woman visited our department with concerns of worsening tooth mobility, discomfort, and spontaneous gingival bleeding. Initial periodontal examination revealed generalized severe periodontitis (Stage IV Grade C) resulting from leukopenia/neutropenia and poor oral hygiene. A thorough treatment strategy involving comprehensive dental procedures, such as multiple extractions and extensive prosthetic treatment, was implemented. Following the diagnosis of Felty syndrome, the patient was started on treatment with oral prednisolone 40 mg/day, which effectively controlled the disease. Furthermore, there was no recurrence of severe periodontitis after the periodontal treatment. CONCLUSIONS Dentists and physicians should be aware that immunocompromised individuals with pancytopenia and poor oral hygiene are at risk of developing extensive periodontitis. If their susceptibility to infection and pancytopenia-related bleeding can be managed, such patients can still receive comprehensive dental treatment, including teeth extractions and periodontal therapy. Cooperation among the dentist, hematologist, and patient is necessary to improve treatment outcomes and the patient's quality of life.
Collapse
Affiliation(s)
- Satoru Morikawa
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Yoko Miyashita
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Mana Nasu
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Shunichi Shibazaki
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Satoshi Usuda
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Kazuyuki Tsunoda
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Taneaki Nakagawa
- grid.26091.3c0000 0004 1936 9959Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| |
Collapse
|
20
|
Platelet factor 4 (CXCL4/PF4) upregulates matrix metalloproteinase-2 (MMP-2) in gingival fibroblasts. Sci Rep 2022; 12:18636. [PMID: 36329090 PMCID: PMC9633774 DOI: 10.1038/s41598-022-19850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by the release of matrix metalloproteinases (MMPs) from resident connective tissue cells in tooth-supporting tissues (periodontium). Platelet activation, and the attendant release of pro-inflammatory chemokines such as platelet factor 4 (CXCL4/PF4), are associated with periodontitis although the associated biochemical pathways remain undefined. Here we report that recombinant PF4 is internalized by cultured human gingival fibroblasts (hGFs), resulting in significant (p < 0.05) upregulation in both the production and release of MMP-2 (gelatinase A). This finding was corroborated by elevated circulating levels of MMP-2 (p < 0.05) in PF4-overexpressing transgenic mice, relative to controls. We also determined that PF4 induces the phosphorylation of NF-κB; notably, the suppression of NF-κB signaling by the inhibitor BAY 11-7082 abrogated PF4-induced MMP-2 upregulation. Moreover, the inhibition of surface glycosaminoglycans (GAGs) blocked both PF4 binding and NF-κB phosphorylation. Partial blockade of PF4 binding to the cells was achieved by treatment with either chondroitinase ABC or heparinase III, suggesting that both chondroitin sulfate and heparan sulfate mediate PF4 signaling. These results identify a novel pathway in which PF4 upregulates MMP-2 release from fibroblasts in an NF-κB- and GAG-dependent manner, and further our comprehension of the role of platelet signaling in periodontal tissue homeostasis.
Collapse
|
21
|
Li Y, Xie L, Song W, Huang M, Cheng Y, Chen S, Gao Y, Yan X. The Role of Neutrophil Extracellular Traps in the Ocular System. Curr Eye Res 2022; 47:1227-1238. [PMID: 35634655 DOI: 10.1080/02713683.2022.2079141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: Neutrophils remain at the top of congenital and adaptive immune systems. The past 20 years witnessed a steep rise in the interest in neutrophil extracellular traps (NETs), which are a novel type of anti-pathogen mechanism coordinated with neutrophils. However, accumulating data revealed that excessive NETs in the host were associated with exacerbated inflammation, thrombosis, and autoimmunity. Increasing evidence found the participation of NETs in the pathophysiological process of many infectious and sterile diseases in the ocular system. Therefore, we discussed the role of neutrophil extracellular traps in the ocular system in this review.Methods: Articles were searched on PubMed, Embase and Web of science up to December 2021.Results: In this review, we exhibited the protective role of neutrophils patrolling the ocular surface from invading pathogens and their contribution to exacerbated inflammation and thrombogenesis in some ocular diseases. We also discussed the physiological and pathological processes of NET generation to identify novel biomarkers and therapeutic targets to interrupt immoderate NET formation and alleviate NET-induced harmful effects.Conclusions: Neutrophils and NETs are quite important for immune responses in the ocular system, while their negative effects on ocular tissue should also be emphasized, which could serve as novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Vitkov L, Knopf J, Krunić J, Schauer C, Schoen J, Minnich B, Hannig M, Herrmann M. Periodontitis-Derived Dark-NETs in Severe Covid-19. Front Immunol 2022; 13:872695. [PMID: 35493525 PMCID: PMC9039207 DOI: 10.3389/fimmu.2022.872695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE). The latter has an enormous impact on innate immunity and susceptibility to infection with SARS-CoV-2. LPS binds the SARS-CoV-2 spike protein and this complex, which is more active than unbound LPS, precipitates massive NET formation. Thus, circulating NET formation is the common denominator in both COVID-19 and periodontitis and other diseases with low-grade endotoxemia like diabetes, obesity and cardiovascular diseases (CVD) also increase the risk to develop severe COVID-19. Here we discuss the role of propensity for increased NET formation, DNase I deficiency and low-grade endotoxaemia in periodontitis as aggravating factors for the severe course of COVID-19 and possible strategies for the diminution of increased levels of circulating periodontitis-derived NETs in COVID-19 with periodontitis comorbidity.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.,Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria.,Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Bosnia and Herzegovina
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Bergmeier LA, Dutzan N, Smith PC, Kraan H. Editorial: Immunology of the Oral Mucosa. Front Immunol 2022; 13:877209. [PMID: 35401502 PMCID: PMC8992007 DOI: 10.3389/fimmu.2022.877209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Lesley Ann Bergmeier
- Centre for Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Patricio C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Heleen Kraan
- Institute for Translational Vaccinology, Intravacc, Bilthoven, Netherlands
| |
Collapse
|
24
|
Chen J, Yang Y, Liu B, Xie X, Li W. Hermansky-Pudlak syndrome type 2: A rare cause of severe periodontitis in adolescents-A case study. Front Pediatr 2022; 10:914243. [PMID: 35928686 PMCID: PMC9343695 DOI: 10.3389/fped.2022.914243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism (OCA) and platelet storage pool deficiency. The HPS-2 subtype is distinguished by neutropenia, and little is known about its periodontal phenotype in adolescents. AP3B1 is the causative gene for HPS-2. A 13-year-old Chinese girl presented to our department suffering from gingival bleeding and tooth mobility. Her dental history was otherwise unremarkable. Suspecting some systemic diseases as the underlying cause, the patient was referred for medical consultation, a series of blood tests, and genetic tests. In this case study, periodontal status and mutation screening of one HPS-2 case are presented. METHODS Blood analysis including a complete blood count (CBC) and glycated hemoglobin levels were measured. Platelet transmission electron microscopy (PTEM) was performed to observe the dense granules in platelets. Whole-exome sequencing (WES) and Sanger sequencing were performed to confirm the pathogenic variants. RESULTS A medical diagnosis of HPS-2 was assigned to the patient. Following the medical diagnosis, a periodontal diagnosis of "periodontitis as a manifestation of systemic disease" was assigned to the patient. We identified novel compound heterozygous variants in AP3B1 (NM_003664.4: exon7: c.763C>T: p.Q255*) and (NM_003664.4: exon1: c.53_56dup: p.E19Dfs*21) in this Chinese pedigree with HPS-2. CONCLUSION This case study indicates the importance of periodontitis as a possible indicator of underlying systemic disease. Systemic disease screening is needed when a young patient presents with unusual, severe periodontitis, as the oral condition may be the first of a systemic abnormality. Our work also expands the spectrum of AP3B1 mutations and further provides additional genetic testing information for other HPS-2 patients.
Collapse
Affiliation(s)
- Jun Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Yifan Yang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Binjie Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Xiaoli Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wenjie Li
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Deparment of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China.,Department of Oral Health Science, School of Dentistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Kakade P, Zope SA, Suragimath G, Varma S, Kale A, Mashalkar V. Effect of Non-Surgical Periodontal Therapy (NSPT) on Salivary Glutathione Reductase (GR) in Smokers And Periodontitis Subjects. ANNALS OF DENTAL SPECIALTY 2022. [DOI: 10.51847/wzghl73bwk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|