1
|
Sezen S, Karadayi M, Yesilyurt F, Burul F, Gulsahin Y, Ozkaraca M, Okkay U, Gulluce M. Acyclovir provides protection against 6-OHDA-induced neurotoxicity in SH-SY5Y cells through the kynurenine pathway. Neurotoxicology 2025; 106:1-9. [PMID: 39617346 DOI: 10.1016/j.neuro.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Parkinson's disease is one of the most prevalent neurodegenerative disorders worldwide. The kynurenine pathway associated with oxidative stress and neuroinflammation is recognized to contribute to its pathophysiology, although the exact mechanism is not fully elucidated. In neuroinflammation, IDO-1 catalyzes the conversion of tryptophan to neurotoxic QUIN through the kynurenine pathway. Consequently, QUIN increases oxidative stress via nNOS and NMDA, which causes neurodegeneration. Few studies have reported on the effect of different antiviral drugs in Parkinson's disease; the exact mechanism is still unknown. The antiviral acyclovir has been shown to have neuroprotective properties and can cross the blood-brain barrier. We examined acyclovir's effects and potential mechanisms in the 6-OHDA-induced in vitro model of Parkinson's disease in SH-SY5Y cells using biochemical, immunocytochemical, and in silico methods. MTT assay demonstrated that acyclovir significantly decreased cell mortality induced by the neurotoxic 6-OHDA at dosages of 3.2 µM, 6.4 µM, 12.8 µM, 25.6 µM, and 51.2 µM. In immunocytochemical analysis, acyclovir treatment decreased α-synuclein and TNF-α expressions in cells. In biochemical analyses, while IL-17A and TOS levels decreased depending on varying doses (1.6 µM, 3.2 µM, 6.4 µM, 12.8 µM), TAC levels increased. Using in silico analyses to investigate the mechanism showed that acyclovir docked with TNF-α, IL-17A, IDO-1, nNOS, α-synuclein, and NMDA. The findings demonstrated that acyclovir had neuroprotective effects by modulating the kynurenine pathway and decreasing neurodegeneration via QUIN inhibition in an in vitro Parkinson's disease model. Although the mechanisms of acyclovir's effects in Parkinson's disease are unclear, the results obtained from the experiments are encouraging.
Collapse
Affiliation(s)
- Selma Sezen
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Mehmet Karadayi
- Department of Biology, Ataturk University, Faculty of Science, Erzurum, Turkey.
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Feyza Burul
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Yusuf Gulsahin
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey.
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Medine Gulluce
- Department of Biology, Ataturk University, Faculty of Science, Erzurum, Turkey.
| |
Collapse
|
2
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Ji D, Jin C, Tao M, Sun Y, Chen H, Li H, Qu X, Ye H, Zhang L, Huang Z, Zhang Y, Kong T, Wu J. Design, synthesis, and biological evaluation of novel iNOS inhibitors as potent neuroprotective agents for ischemic stroke. Eur J Med Chem 2024; 280:116907. [PMID: 39368264 DOI: 10.1016/j.ejmech.2024.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Ischemic stroke (IS) is characterized by intricate pathophysiological mechanisms, where single-target treatments have often proven insufficient. Thus, multi-target therapeutic approaches are essential for effective IS management. In this study, we employed a molecular hybridization strategy, merging the structures of the iNOS inhibitor 1400W and the multi-target neuroprotective agent NBP, to develop a series of novel iNOS inhibitors BN-1 ∼ BN-4 with neuroprotective properties. Among these, BN-4 exhibited the most potent cell protective activity in OGD/R-induced SH-SY5Y and BV-2 cells. BN-4 not only reduced ROS levels induced by OGD/R in SH-SY5Y cells but also mitigated necrosis and apoptosis. By binding to iNOS in a manner similar to 1400W, BN-4 significantly inhibited iNOS activity. Furthermore, BN-4 demonstrated high stability, excellent blood-brain barrier permeability, and more than 100-fold increase in aqueous solubility compared to NBP. Additionally, BN-4 notably decreased infarct size and showed neuroprotective effects in tMCAO rats. These findings indicate that BN-4 holds promise as a novel candidate for treatment IS, offering enhanced therapeutic efficacy due to its superior pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Duorui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengbin Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Mingshu Tao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuze Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Huiqin Chen
- School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi, 830054, PR China
| | - Hongyu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaohan Qu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hui Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi, 830054, PR China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Tiantian Kong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830028, PR China.
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
5
|
Liang Y, Feng L, Zheng Y, Gao Y, Shi R, Zhang Z, Ying X, Zeng Y. Targeted Liposomal Co-Delivery Dopamine with 3-n-Butylphthalide for Effective Against Parkinson's Disease in Mice Model. Int J Nanomedicine 2024; 19:12851-12870. [PMID: 39640048 PMCID: PMC11618862 DOI: 10.2147/ijn.s483595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a multifactor-induced neurodegenerative disease with high incidence in the elderly population. We found for the first time that the combination of dopamine (DA) and 3-n-butylphthalide (NBP) has great potential for the synergistic treatment of PD. To further improve the therapeutic performance of the drugs, a brain-targeting liposomal co-delivery system encapsulating NBP and DA ((NBP+DA)-Lips-RVG29) was designed using a rabies virus polypeptide with 29 amino acids (RVG29) as the targeting ligand. Methods The synergistic neuroprotective effects of NBP and DA were assessed in 6-OHDA-induced PC12 cells. Then, (NBP+DA)-Lips-RVG29 loading with NBP and DA at an optimal ratio was prepared using the thin-film hydration and sonication method. The physicochemical and biological characterization of (NBP+DA)-Lips-RVG29 were systemically investigated, and the therapeutic efficiency and underlying mechanisms of (NBP+DA)-Lips-RVG29 were also explored in vitro and in vivo. Finally, the safety of (NBP+DA)-Lips-RVG29 was evaluated. Results The synergistic effects of NBP and DA peaked at 1:1 (NBP/DA, mol/mol). The functionalized liposomes showed significantly higher uptake efficiency and blood-brain barrier (BBB) penetration efficiency in vitro. After systemic administration, (NBP+DA)-Lips-RVG29 prolonged the blood circulation of drugs, enhanced BBB penetration and increased drug accumulation in the striatum, substantia nigra and hippocampus. Moreover, (NBP+DA)-Lips-RVG29 showed excellent neuroprotective effects in a cellular PD model of PC12 cells and improved therapeutic efficacy in a PD mouse model. Furthermore, the safety evaluation of (NBP+DA)-Lips-RVG29 revealed no systemic toxicity. Conclusion NBP and DA exhibited the synergistic anti-PD effects. The RVG29-modified liposomes encapsulating NBP and DA contributed to the accumulation of drugs in the brain lesions area of PD and further improved treatment efficacy. Therefore, (NBP+DA)-Lips-RVG29 represents a promising strategy for the treatment of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Liping Feng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yue Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yunzhen Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xue Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yingchun Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
6
|
Tao L, Yao C, Wang S, Ye Y, Tu Z, Jiang X, Xu L, Shan L, Liu Z, Yu P. Synthesis and biological evaluation of novel isobenzofuran-1(3H)-one derivatives as antidepressant agents. Bioorg Med Chem 2024; 114:117941. [PMID: 39432939 DOI: 10.1016/j.bmc.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024]
Abstract
A series of novel isobenzofuran-1(3H)-one derivatives were designed and synthesized as antidepressants. Firstly, the serotonin reuptake inhibition of these compounds was tested in vitro, and most of them exhibited activity. Particularly, compounds 9d, 10a, and 10c demonstrated superior inhibitory effects and possibly avoided addiction via the μ-opioid receptor and CCK-B receptor. Secondly, the antidepressant effect of compound 10a was evaluated using chronic restraint stress (CRS)-induced mice. The results showed that compound 10a significantly improved CRS-induced depression-like behavior by increasing the neurotransmitters 5-HT in the cortex and THP2 expression in the hippocampus. Thirdly, compound 10a was further investigated and found to enhance CRS-induced hippocampal neuron damage recovery and elevate the expression of synaptic-associated proteins such as BDNF, TrkB, PSD95, and Spinophilin in CRS-induced mice. These findings suggested that novel isobenzofuran-1(3H)-one derivative showed efficacy in treating depression, with compound 10a emerging as a potential lead compound warranting further investigation.
Collapse
Affiliation(s)
- Liu Tao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanjie Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Sijie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuying Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojian Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Lipeng Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Luchen Shan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, China.
| | - Pei Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Pal C. Targeting mitochondria with small molecules: A promising strategy for combating Parkinson's disease. Mitochondrion 2024; 79:101971. [PMID: 39357561 DOI: 10.1016/j.mito.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
8
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
10
|
Yang X, Zheng R, Zhang H, Ou Z, Wan S, Lin D, Yan J, Jin M, Tan J. Optineurin regulates motor and learning behaviors by affecting dopaminergic neuron survival in mice. Exp Neurol 2024; 383:115007. [PMID: 39428042 DOI: 10.1016/j.expneurol.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Optineurin (OPTN) is an autophagy receptor that participates in the degradation of damaged mitochondria, protein aggregates, and invading pathogens. OPTN is closely related to various types of neurodegenerative diseases. However, the role of OPTN in the central nervous system is unclear. Here, we found that OPTN dysregulation in the compact part of substantia nigra (SNc) led to motor and learning deficits in animal models. Knockdown of OPTN increased total and phosphorylated α-synuclein levels which induced microglial activation and dopaminergic neuronal loss in the SNc. Overexpression of OPTN can't reverse the motor and learning phenotypes. Mechanistic analysis revealed that upregulation of OPTN increased α-synuclein phosphorylation independent of its autophagy receptor activity, which further resulted in microglial activation and dopaminergic neuronal loss similar to OPTN downregulation. Our study uncovers the crucial role of OPTN in maintaining dopaminergic neuron survival and motor and learning functions which are disrupted in PD patients.
Collapse
Affiliation(s)
- Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Ruoling Zheng
- Shantou Longhu People's Hospital, Shantou 515041, China
| | - Hongyao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Zixian Ou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Dongfeng Lin
- Shantou University Mental Health Center, Shantou University, Shantou 515063, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
11
|
Gao F, Zeng S, Chao D, Wu L. Dl-3-n-Butylphthalide attenuates early brain injury and delayed neurological dysfunction by regulating NLRP3 inflammasome after subarachnoid hemorrhage. Brain Res Bull 2024; 217:111084. [PMID: 39304001 DOI: 10.1016/j.brainresbull.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a severe neurological event lacking of effective therapy. Early brain injury (EBI) and delayed neurological dysfunction are important cause in the poor prognosis of patients with SAH. Nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation has been implicated in many inflammatory lesion pathogeneses including SAH. Dl-3-n-butylphthalide (NBP) has been reported to possess substantial anti-inflammatory properties, which is beneficial for various neurodegenerative diseases. However, the effect and molecular mechanisms of NBP on SAH have not been clearly identified. We designed this study to investigate the effect of NBP against EBI and delayed neurological dysfunction after SAH and to reveal the possible underlying mechanism. The adult mice were subjected to endovascular perforation SAH model or sham operation. Mice were randomized to sham group, SAH group, or SAH+NBP group. The EBI (short-term study) was studied at 48 h post-SAH and delayed neurological dysfunction (long-term study) at 21 days post-SAH. The results suggested that NBP evidently alleviated the EBI in mice at 48 h post-SAH, as shown by elevating neurological score, reducing brain edema, blood-brain barrier disruption, neuronal loss, and astrocyte aggregation, as well as ameliorating cerebral vasospasm. Moreover, NBP was able to improve long-term neurobehavioral functions and decrease neuronal apoptosis at 21 days after SAH. Significantly, NBP treatment also inhibited the expressions of NLRP3, ASC, caspase-1, cleaved-caspase-1, IL-1β, IL-18, GSDMD and GSDMD-N in both EBI and delayed neurological dysfunction induced by SAH. Our findings suggested that NBP treatment exerts a profound neuroprotective effect against early brain injury and delayed neurological dysfunction induced by SAH, at least partially through regulating NLRP3 inflammasome signaling pathway and its related inflammation and pyroptosis.
Collapse
Affiliation(s)
- Fangfang Gao
- Nanshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine (Shenzhen Nanshan Hospital of Chinese Medicine), Shenzhen 518052, China
| | - Shujin Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dachong Chao
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510006, China
| | - Liangmiao Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Lin TH, Chiu YJ, Lin CH, Chen YR, Lin W, Wu YR, Chang KH, Chen CM, Lee-Chen GJ. Coumarin-chalcone derivatives as dual NLRP1 and NLRP3 inflammasome inhibitors targeting oxidative stress and inflammation in neurotoxin-induced HMC3 and BE(2)-M17 cell models of Parkinson's disease. Front Aging Neurosci 2024; 16:1437138. [PMID: 39411284 PMCID: PMC11473416 DOI: 10.3389/fnagi.2024.1437138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD. Methods In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP+)-induced neuroinflammation and associated neuronal damage. Results Treatment with MPP+ decreased cell viability as well as increased the release of inflammatory mediators including cytokines and nitric oxide in culture medium, and enhanced expression of microglial activation markers CD68 and MHCII in HMC3 cells. The protein levels of NLRP3, CASP1, iNOS, IL-1β, IL-6, and TNF-α were also increased in MPP+-stimulated HMC3 cells. Among the four tested compounds, LM-016, LM-021, and LM-036 at 10 μM counteracted the inflammatory action of MPP+ in HMC3 cells. In addition, LM-021 and LM-036 increased cell viability, reduced lactate dehydrogenase release, ameliorated cellular ROS production, decreased caspase-1, caspase-3 and caspase-6 activities, and promoted neurite outgrowth in MPP+-treated BE(2)-M17 cells. These protective effects were mediated by down-regulating inflammatory NLRP1, IL-1β, IL-6, and TNF-α, as well as up-regulating antioxidative NRF2, NQO1, GCLC, and PGC-1α, and neuroprotective CREB, BDNF, and BCL2. Conclusion The study results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanisms, and indicate the potential use of LM-021 and LM-036 as dual inflammasome inhibitors in treating both NLRP1- and NLRP3-associated PD.
Collapse
Affiliation(s)
- Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
13
|
Xi X, Zhang R, Chi Y, Zhu Z, Sun R, Gong W. TXNIP Regulates NLRP3 Inflammasome-Induced Pyroptosis Related to Aging via cAMP/PKA and PI3K/Akt Signaling Pathways. Mol Neurobiol 2024; 61:8051-8068. [PMID: 38460079 DOI: 10.1007/s12035-024-04089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Aging is an inevitable natural process with time-dependent dysfunction and the occurrence of various diseases, which impose heavy burdens on individuals, families, and society. It has been reported that NLRP3 inflammasome-induced pyroptosis contributes significantly to age-related diseases and aging, while TXNIP is suggested to be involved in regulating pyroptosis mediated by NLRP3. However, the mechanism between TXNIP and NLRP3 inflammasome is still unclear. In this study, we used HT-22 cells to explore the effect of TXNIP on pyroptosis and its potential association with the aging. Also, we delved into the underlying mechanisms. Our findings revealed that TXNIP significantly augmented pyroptosis in HT-22 cells, primarily by enhancing the activation of the NLRP3 inflammasome and promoting the release of proinflammatory cytokines. Remarkably, as TXNIP levels increased, we observed a corresponding rise in the number of p16-positive cells, which is indicative of aging. Furthermore, we conducted experiments to modulate the improvement of TXNIP on NLRP3 inflammasome-induced pyroptosis, that is, the PI3K activator 740 Y-P and the PKA activator DC2797 inhibited the effect, while the PI3K inhibitor LY294002 and the PKA inhibitor H89 enhanced the effect. In conclusion, our study demonstrated that TXNIP regulates NLRP3 inflammasome-induced pyroptosis in HT-22 cells related to aging via the PI3K/Akt and cAMP/PKA pathways.
Collapse
Affiliation(s)
- Xiaoshuang Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Rong Zhang
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yijia Chi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ziman Zhu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Zhao J, Wang J, Zhao K, Yang S, Dong J, Zhang Y, Wu S, Xiang L, Hu W. Palmatine Ameliorates Motor Deficits and Dopaminergic Neuron Loss by Regulating NLRP3 Inflammasome through Mitophagy in Parkinson's Disease Model Mice. Mol Neurobiol 2024:10.1007/s12035-024-04367-2. [PMID: 39096445 DOI: 10.1007/s12035-024-04367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
NLRP3 inflammasomes-mediated proinflammatory response and mitochondrial dysfunction play a critical role in the etiology and pathogenesis of Parkinson's disease. Negative regulation of NLRP3 inflammasome activation through mitophagy may be an important strategy to control NLRP3 inflammasome-mediated proinflammatory responses. Palmatine (PAL), an isoquinoline alkaloid found in various of plants, has potent pharmacological effects such as anti-inflammatory and anti-oxidation. However, the specific role of PAL in the pathology of Parkinson's disease remains unclear. In this study, we found that treatment with PAL improved motor deficits and reduced the loss of dopaminergic neurons in MPTP mice. Further results showed that PAL promoted mitophagy and inhibited the proinflammatory response mediated by NLRP3 inflammasomes. In addition, chloroquine (CQ, mitophagy inhibitor) attenuated the ameliorative effects of PAL on the motor deficits and dopaminergic neuron damage, as well as the inhibitory effect of PAL on NLRP3 inflammasome. Collectively, these results provide strong evidence that PAL ameliorates motor deficits and dopaminergic neuron death in Parkinson's disease, and the mechanism may be related to its inhibition of NLRP3 inflammasome activation via promoting mitophagy.
Collapse
Grants
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 81960666, W. Y. H. the Fund of the National Natural Science Program of China
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202101AY070001-009, W. Y. H. the Joint Program of Yunnan Province and Kunming Medical University
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
- 202105AC160078, W. Y. H. Yunnan Province Young Academic and Technical Leaders Project
Collapse
Affiliation(s)
- Jindong Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Ji Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Kunying Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Shuda Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Junfang Dong
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Yuxiao Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Lirong Xiang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, PR China.
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, PR China.
| |
Collapse
|
15
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
16
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04359-2. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
17
|
Ge M, Jin L, Cui C, Han Y, Li H, Gao X, Li G, Yu H, Zhang B. Dl-3-n-butylphthalide improves stroke outcomes after focal ischemic stroke in mouse model by inhibiting the pyroptosis-regulated cell death and ameliorating neuroinflammation. Eur J Pharmacol 2024; 974:176593. [PMID: 38636800 DOI: 10.1016/j.ejphar.2024.176593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Recent studies have highlighted the involvement of pyroptosis-mediated cell death and neuroinflammation in ischemic stroke (IS) pathogenesis. DL-3-n-butylphthalide (NBP), a synthesized compound based on an extract from seeds of Apium graveolens, possesses a broad range of biological effects. However, the efficacy and the underlying mechanisms of NBP in IS remain contentious. Herein, we investigated the therapeutic effects of NBP and elucidated its potential mechanisms in neuronal cell pyroptosis and microglia inflammatory responses. Adult male mice underwent permanent distal middle cerebral artery occlusion (dMCAO), followed by daily oral gavage of NBP (80 mg/kg) for 1, 7, or 21 consecutive days. Gene Expression Omnibus (GEO) dataset of IS patients peripheral blood RNA sequencing was analyzed to identify differentially expressed pyroptosis-related genes (PRGs) during the ischemic process. Our results suggested that NBP treatment effectively alleviated brain ischemic damage, resulting in decreased neurological deficit scores, reduced infarct volume, and improved neurological and behavioral functions. RNA sequence data from human unveiled upregulated PRGs in IS. Subsequently, we observed that NBP downregulated pyroptosis-associated markers at days 7 and 21 post-modeling, at both the protein and mRNA levels. Additionally, NBP suppressed the co-localization of pyroptosis markers with neuronal cells to variable degrees and simultaneously mitigated the accumulation of activated microglia. Overall, our data provide novel evidence that NBP treatment significantly attenuates ischemic brain damage and promotes recovery of neurological function in the early and recovery phases after IS, probably by negatively regulating the pyroptosis cell death of neuronal cells and inhibiting toxic neuroinflammation in the central nervous system.
Collapse
Affiliation(s)
- Mengru Ge
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lingting Jin
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xue Gao
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
18
|
Sciarretta F, Zaccaria F, Ninni A, Ceci V, Turchi R, Apolloni S, Milani M, Della Valle I, Tiberi M, Chiurchiù V, D'Ambrosi N, Pedretti S, Mitro N, Volontè C, Amadio S, Aquilano K, Lettieri-Barbato D. Frataxin deficiency shifts metabolism to promote reactive microglia via glucose catabolism. Life Sci Alliance 2024; 7:e202402609. [PMID: 38631900 PMCID: PMC11024345 DOI: 10.26508/lsa.202402609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.
Collapse
Affiliation(s)
- Francesca Sciarretta
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Bietti, Rome, Italy
| | - Fabio Zaccaria
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Bietti, Rome, Italy
| | - Andrea Ninni
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Bietti, Rome, Italy
| | - Veronica Ceci
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Turchi
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| | - Savina Apolloni
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| | - Martina Milani
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Della Valle
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
- Institute of Translational Pharmacology, IFT-CNR, Rome, Italy
| | - Nadia D'Ambrosi
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cinzia Volontè
- National Research Council, Institute for Systems Analysis and Computer Science "A. Ruberti", Rome, Italy
- Santa Lucia Foundation IRCCS, Experimental Neuroscience and Neurological Disease Models, Rome, Italy
| | - Susanna Amadio
- Santa Lucia Foundation IRCCS, Experimental Neuroscience and Neurological Disease Models, Rome, Italy
| | - Katia Aquilano
- Department Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department Biology, University of Rome Tor Vergata, Rome, Italy
- IRCCS Fondazione Bietti, Rome, Italy
| |
Collapse
|
19
|
Zhang J, Xie D, Jiao D, Zhou S, Liu S, Ju Z, Hu L, Qi L, Yao C, Zhao C. From inflammatory signaling to neuronal damage: Exploring NLR inflammasomes in ageing neurological disorders. Heliyon 2024; 10:e32688. [PMID: 38975145 PMCID: PMC11226848 DOI: 10.1016/j.heliyon.2024.e32688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
20
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
21
|
Zhao P, Yuan Q, Liang C, Ma Y, Zhu X, Hao X, Li X, Shi J, Fu Q, Fan H, Wang D. GPX4 degradation contributes to fluoride-induced neuronal ferroptosis and cognitive impairment via mtROS-chaperone-mediated autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172069. [PMID: 38582117 DOI: 10.1016/j.scitotenv.2024.172069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Pu Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China; Henan Province Rongkang Hospital, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xinyu Li
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
22
|
Guo L, Hu H, Jiang N, Yang H, Sun X, Xia H, Ma J, Liu H. Electroacupuncture blocked motor dysfunction and gut barrier damage by modulating intestinal NLRP3 inflammasome in MPTP-induced Parkinson's disease mice. Heliyon 2024; 10:e30819. [PMID: 38774094 PMCID: PMC11107113 DOI: 10.1016/j.heliyon.2024.e30819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder commonly accompanied by gut dysfunction. EA has shown anti-inflammatory and neuroprotective effects. Here, we aim to explore whether EA can treat Parkinson's disease by restoring the intestinal barrier and modulating NLRP3 inflammasome. We applied 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish a PD mouse model and EA at the GV16, LR3, and ST36 for 12 consecutive days. The open-field test results indicated that EA alleviated depression and behavioral defects, upregulated the expressions of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF), and blocked the accumulation of α-synuclein (α-syn) in the midbrain. Moreover, EA blocked the damage to intestinal tissues of PD mice, indicative of suppressed NLRP3 inflammasome activation and increased gut barrier integrity. Notably, the antibiotic-treated mouse experiment validated that the gut microbiota was critical in alleviating PD dyskinesia and intestinal inflammation by EA. In conclusion, this study suggested that EA exhibited a protective effect against MPTP-induced PD by alleviating behavioral defects, reversing the block of motor dysfunction, and improving the gut barrier by modulating intestinal NLRP3 inflammasome. Above all, this study could provide novel insights into the pathogenesis and therapy of PD.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, China
| |
Collapse
|
23
|
Wang J, Li H, Wang C, Li D, Zhang Y, Shen M, Xu X, Wu T. Effect of Dl-3-n-Butylphthalide on olfaction in rotenone-induced Parkinson's rats. Front Neurol 2024; 15:1367973. [PMID: 38685946 PMCID: PMC11057415 DOI: 10.3389/fneur.2024.1367973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Olfactory dysfunction (OD) is an important nonmotor feature of PD. Dl-3-n-Butylphthalide (NBP) is a synthetic compound isolated from Apium graveolens seeds. The present study was conducted to investigate the effect of NBP on olfaction in rotenone-induced Parkinson's rats to explore the mechanism and pathway of OD in PD. Methods The PD model was established using rotenone-induced SD rats, divided into blank control, model, and treatment groups. A sham group was also established, with 10 rats in each group. The treatment group was given NBP (1 mg/kg, 10 mg/kg, and 100 mg/kg, dissolved in soybean oil) intragastrically for 28 days. Meanwhile, the control group rats were given intra-gastrically soybean oil. After behavioral testing, all rats were executed, and brain tissue was obtained. Proteomics and Proteomic quantification techniques (prm) quantification were used to detect proteomic changes in rat brain tissues. Results Compared with the control group, the model group showed significant differences in behavioral tests, and this difference was reduced after treatment. Proteomics results showed that after treatment with high-dose NBP, there were 42 differentially expressed proteins compared with the model group. Additionally, the olfactory marker (P08523) showed a significant upregulation difference. We then selected 22 target proteins for PRM quantification and quantified 17 of them. Among them, the olfactory marker protein was at least twofold upregulated in the RTH group compared to the model group.
Collapse
Affiliation(s)
- Jiawei Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Canran Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dayong Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meichan Shen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Geriatrics Department, Yuncheng County Traditional Chinese Medicine Hospital, Heze, China
| | - Xiangdong Xu
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wu
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Liu Y, Gong Z, Zhai D, Yang C, Lu G, Wang S, Xiao S, Li C, Chen L, Lin X, Zhang S, Yu S, Dong Z. Unveiling the therapeutic potential of Dl-3-n-butylphthalide in NTG-induced migraine mouse: activating the Nrf2 pathway to alleviate oxidative stress and neuroinflammation. J Headache Pain 2024; 25:50. [PMID: 38565987 PMCID: PMC10986135 DOI: 10.1186/s10194-024-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1β, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.
Collapse
Affiliation(s)
- Yingyuan Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, Hebei, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guangshuang Lu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuqing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shaobo Xiao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ludan Chen
- Clinical School of Anhui Medical University, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoxue Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuhua Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
25
|
Jia Y, Li J, Wang Y, Ma Y, Chen L, Zhang H, Xue M, Liang H. Folic Acid Rescues Dopaminergic Neurons in MPTP-Induced Mice by Inhibiting the NLRP3 Inflammasome and Ameliorating Mitochondrial Impairment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5734-5745. [PMID: 38453725 DOI: 10.1021/acs.jafc.3c06337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons of the substantia nigra (SN), with neuroinflammation and mitochondrial dysfunction being key contributors. The neuroprotective potential of folic acid (FA) in the dopaminergic system of PD was assessed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. MPTP (20 mg/kg of body weight) was administered to C57BL/6J mice to simulate PD symptoms followed by FA treatment (5 mg/kg of body weight). Behavioral tests, pole, rotarod, and open-field tests, evaluated motor function, while immunohistochemistry, ELISA, RT-qPCR, and Western blotting quantified neuroinflammation, oxidative stress markers, and mitochondrial function. FA supplementation considerably improved motor performance, reduced homocysteine levels and mitigated oxidative damage in the SN. The FA-attenuated activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome lessened glial cell activity and reduced neuroinflammation. At the molecular level, FA reduced DNA damage, downregulated phosphorylated p53, and induced the expression of peroxisome proliferator-activated receptor α coactivator 1α (PGC-1α), enhancing mitochondrial function. Therefore, FA exerts neuroprotection in MPTP-induced PD by inhibiting neuroinflammation via NLRP3 inflammasome suppression and promoting mitochondrial integrity through the p53-PGC-1α pathway. Notable limitations of our study include its reliance on a single animal model and the incompletely elucidated mechanisms underlying the impact of FA on mitochondrial dynamics. Future investigations will explore the clinical utility of FA and its molecular mechanisms, further advancing it as a potential therapeutic for managing and delaying the progression of PD.
Collapse
Affiliation(s)
- Yina Jia
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yiqing Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
26
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
27
|
Fazzina M, Bergonzoni M, Massenzio F, Monti B, Frabetti F, Casadei R. Selection of suitable reference genes for gene expression studies in HMC3 cell line by quantitative real-time RT-PCR. Sci Rep 2024; 14:2431. [PMID: 38287074 PMCID: PMC10825209 DOI: 10.1038/s41598-024-52415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
Microglia represent the primary immune defense system within the central nervous system and play a role in the inflammatory processes occurring in numerous disorders, such as Parkinson's disease (PD). PD onset and progression are associated with factors considered possible causes of neuroinflammation, i.e. genetic mutations. In vitro models of microglial cells were established to identify specific molecular targets in PD through the analysis of gene expression data. Recently, the Human Microglial Clone 3 cell line (HMC3) has been characterized and a new human microglia model has emerged. Here we perform RT-qPCR analyses to evaluate the expression of ten reference genes in HMC3, untreated or stimulated to a pro-inflammatory status. The comparative ∆CT method, BestKeeper, Normfinder, geNorm and RefFinder algorithms were used to assess the stability of the candidate genes. The results showed that the most suitable internal controls are HPRT1, RPS18 and B2M genes. In addition, the most stable and unstable reference genes were used to normalize the expression of a gene of interest in HMC3, resulting in a difference in the statistical significance in cells treated with Rotenone. This is the first reference gene validation study in HMC3 cell line in pro-inflammatory status and can contribute to more reliable gene expression analysis in the field of neurodegenerative and neuroinflammatory research.
Collapse
Affiliation(s)
- Martina Fazzina
- Department for Life Quality Studies - QUVI, University of Bologna, Rimini, Italy
| | - Matteo Bergonzoni
- Department of Pharmacy and Biotechnology - FABIT, University of Bologna, Bologna, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology - FABIT, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology - FABIT, University of Bologna, Bologna, Italy
| | - Flavia Frabetti
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Bologna, Italy
| | - Raffaella Casadei
- Department for Life Quality Studies - QUVI, University of Bologna, Rimini, Italy.
| |
Collapse
|
28
|
Li F, Weng G, Zhou H, Zhang W, Deng B, Luo Y, Tao X, Deng M, Guo H, Zhu S, Wang Q. The neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and neutrophil-to-high-density-lipoprotein ratio are correlated with the severity of Parkinson's disease. Front Neurol 2024; 15:1322228. [PMID: 38322584 PMCID: PMC10844449 DOI: 10.3389/fneur.2024.1322228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Background Inflammation plays a pivotal role in the pathogenesis of Parkinson's disease (PD). However, the correlation between peripheral inflammatory markers and the severity of PD remains unclear. Methods The following items in plasma were collected for assessment among patients with PD (n = 303) and healthy controls (HCs; n = 303) were assessed for the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-high-density-lipoprotein ratio (NHR) in plasma, and neuropsychological assessments were performed for all patients with PD. Spearman rank or Pearson correlation was used to evaluate the correlation between the NLR, the LMR and the NHR and the severity of PD. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance of the NLR, LMR and NHR for PD. Results The plasma NLR and NHR were substantially higher in patients with PD than in HCs, while the plasma LMR was substantially lower. The plasma NLR was positively correlated with Hoehn and Yahr staging scale (H&Y), Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS-I, UPDRS-II, and UPDRS-III scores. Conversely, it exhibited a negative relationship with Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Furthermore, the plasma NHR was positively correlated with H&Y, UPDRS, UPDRS-I, UPDRS-II and UPDRS-III scores. Moreover, negative associations were established between the plasma LMR and H&Y, UPDRS, UPDRS-I, UPDRS-II, and UPDRS-III scores. Finally, based on the ROC curve analysis, the NLR, LMR and NHR exhibited respectable PD discriminating power. Conclusion Our research indicates that a higher NLR and NHR and a lower LMR may be relevant for assessing the severity of PD and appear to be promising disease-state biomarker candidates.
Collapse
Affiliation(s)
- Fangyi Li
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Guomei Weng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Neurology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wenjie Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xi Tao
- Department of Neurological Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Mingzhu Deng
- Department of Neurology, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha, China
| | - Haiqiang Guo
- Department of Neurology, Dafeng Hospital of Chaoyang District in Shantou City, Shantou, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Liu Y, Duan R, Li P, Zhang B, Liu Y. 3-N-butylphthalide attenuates neuroinflammation in rotenone-induced Parkinson's disease models via the cGAS-STING pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241229041. [PMID: 38315064 PMCID: PMC10846052 DOI: 10.1177/03946320241229041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Neuroinflammation is crucial in the onset and progression of dopaminergic neuron loss in Parkinson's disease (PD). We aimed to determine whether 3-N-Butylphthalide (NBP) can protect against PD by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and the inflammatory response of microglia. MitoSOX/MitoTracker/Hoechst staining was used to detect the levels of mitochondrial reactive oxygen species (ROS) in BV2 cells. Quantitative Real-Time Polymerase Chain Reaction was used to measure the levels of free cytoplasmic mitochondrial DNA (mtDNA) in BV2 cells and mouse brain tissues. Behavioral impairments were assessed using rotarod, T-maze, and balance beam tests. Dopaminergic neurons and microglia were observed using immunohistochemical staining. Expression levels of cGAS, STING, nuclear factor kappa-B (NfκB), phospho- NfκB (p-NfκB), inhibitor of NfκBα (IκBα), and phospho-IκBα (p-IκBα) proteins in the substantia nigra and striatum were detected using Western Blot. NBP decreased mitochondrial ROS levels in rotenone-treated BV2 cells. NBP alleviated behavioral impairments and protected against rotenone-induced microgliosis and damage to dopaminergic neurons in the substantia nigra and striatum of rotenone-induced PD mice. NBP decreased rotenone-induced mtDNA leakage and mitigated neuroinflammation by inhibiting cGAS-STING pathway activation. NBP exhibited a protective effect in rotenone-induced PD models by significantly inhibiting the cGAS-STING pathway. Moreover, NBP can alleviate neuroinflammation, and is a potential therapeutic drug for alleviating clinical symptoms and delaying the progression of PD. This study provided insights for the potential role of NBP in PD therapy, potentially mitigating neurodegeneration, and consequently improving the quality of life and lifespan of patients with PD. The limitations are that we have not confirmed the exact mechanism by which NBP decreases mtDNA leakage, and this study was unable to observe the actual clinical therapeutic effect, so further cohort studies are required for validation.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Ruonan Duan
- Qilu Hospital of Shandong University, Jinan, China
| | - Peizheng Li
- Qilu Hospital of Shandong University, Jinan, China
| | - Bohan Zhang
- Qilu Hospital of Shandong University, Jinan, China
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
30
|
Yuan Z, Yu D, Gou T, Tang G, Guo C, Shi J. Research progress of NLRP3 inflammasome and its inhibitors with aging diseases. Eur J Pharmacol 2023; 957:175931. [PMID: 37495038 DOI: 10.1016/j.ejphar.2023.175931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
In recent years, a new target closely linked to a variety of diseases has appeared in the researchers' vision, which is the NLRP3 inflammasome. With the deepening of the study of NLRP3 inflammasome, it was found that it plays an extremely important role in a variety of physiological pathological processes, and NLRP3 inflammasome was also found to be associated with some age-related diseases. It is associated with the development of insulin resistance, Alzheimer's disease, Parkinson's, cardiovascular aging, hearing and vision loss. At present, the only clinical approach to the treatment of NLRP3 inflammasome-related diseases is to use anti-IL-1β antibodies, but NLRP3-specific inhibitors may be better than the IL-1β antibodies. This article reviews the relationship between NLRP3 inflammasome and aging diseases: summarizes some of the relevant experimental results reported in recent years, and introduces the biological signals or pathways closely related to the NLRP3 inflammasome in a variety of aging diseases, and also introduces some promising small molecule inhibitors of NLRP3 inflammasome for clinical treatment, such as: ZYIL1, DFV890 and OLT1177, they have excellent pharmacological effects and good pharmacokinetics.
Collapse
Affiliation(s)
- Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Tingting Gou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyuan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chun Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
31
|
Ye Z, Li C, Liu S, Liang H, Feng J, Lin D, Chen Y, Peng S, Bu L, Tao E, Jing X, Liang Y. Dl-3-n-butylphthalide activates Nrf2, inhibits ferritinophagy, and protects MES23.5 dopaminergic neurons from ferroptosis. Chem Biol Interact 2023; 382:110604. [PMID: 37315914 DOI: 10.1016/j.cbi.2023.110604] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Ferroptosis, a newly identified iron-dependent form of cell death, has recently been implicated in the pathogenesis of Parkinson's disease (PD). Dl-3-n-butylphthalide (NBP) attenuates behavioral and cognitive deficits in animal models of PD. However, the potential of NBP to prevent dopaminergic neuron death by suppressing ferroptosis has rarely been explored. In this study, we aimed to investigate the effects of NBP on ferroptosis in erastin-induced dopaminergic neurons (MES23.5 cells) and the underlying mechanisms involved in these effects. Our results demonstrated that erastin significantly decreased viability of MES23.5 dopaminergic neurons in a dose-dependent manner, which was reversible by ferroptosis inhibitors. We further verified that NBP protected erastin-treated MES23.5 cells from death by inhibiting ferroptosis. Erastin increased the mitochondrial membrane density, caused lipid peroxidation, and decreased GPX4 expression in MES23.5 cells, which could be reversed by NBP preconditioning. NBP pretreatment suppressed erastin-induced labile iron accumulation and reactive oxygen species generation. Moreover, we demonstrated that erastin significantly reduced FTH expression, and pre-administration with NBP promoted Nrf2 translocation into the nucleus and increased the protein level of FTH. Additionally, the expression of LC3B-II in MES23.5 cells pretreated with NBP before administration of erastin was lower than that in cells treated with erastin alone. NBP reduced colocalization of FTH and autophagosomes in MES23.5 cells exposed to erastin. Finally, erastin gradually inhibited NCOA4 expression in a time-dependent manner, which was reversible by NBP pretreatment. Taken together, these results indicated that NBP suppressed ferroptosis via regulating FTH expression, which was achieved by promoting Nrf2 nuclear translocation and inhibiting NCOA4-mediated ferritinophagy. As such, NBP may be a promising therapeutic agent for the treatment of neurological diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Ziying Ye
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Chuna Li
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, China
| | - Shuqiong Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Hongbin Liang
- Department of Neurology, Ordos Central Hospital, No.23 Ejin Horo West Street, Ordos, 017000, China
| | - Jialiang Feng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Danyu Lin
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Lulu Bu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital of Sun Yat-sen University, No. 3025 Shennan Middle Road, Shenzhen, 518033, China.
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
32
|
Tian Y, Yi S, Guo W, Feng C, Zhang X, Dong H, Wang K, Li R, Tian Y, Gan M, Wu T, Xie H, Gao X. SYNJ1 rescues motor functions in hereditary and sporadic Parkinson's disease mice by upregulating TSP-1 expression. Behav Brain Res 2023; 452:114569. [PMID: 37419331 DOI: 10.1016/j.bbr.2023.114569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.
Collapse
Affiliation(s)
- Yueqin Tian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Shang Yi
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Wanyun Guo
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Xiufen Zhang
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Huateng Dong
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Kaitao Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Runtong Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Min Gan
- Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China; Department of Pediatric Neurology, Zhujiang Hospital, Southern Medical University, 253 Gongye Avenue, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|
33
|
Moghimi-Khorasgani A, Homayouni Moghadam F, Nasr-Esfahani MH. Ferulic Acid reduces amyloid beta mediated neuroinflammation through modulation of Nurr1 expression in microglial cells. PLoS One 2023; 18:e0290249. [PMID: 37590236 PMCID: PMC10434858 DOI: 10.1371/journal.pone.0290249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Microglial cells (MGCs) serve as the resident macrophages in the brain and spinal cord, acting as the first line of immune defense against pathological changes. With various phenotypes, they can shift from a homeostatic state to a reactive state or transit from a reactive to a non-inflammatory reactive state (alternative homeostatic). A well-timed transit is crucial in limiting excessive microglial reaction and promoting the healing process. Studies indicate that increased Nurr1 expression promotes anti-neuroinflammatory responses in the brain. In this study, we investigated the possible role of ferulic acid (FA) in facilitating microglia transition due to its anti-inflammatory and Nurr1-inducing effects. MGCs were extracted from the brains of male NMRI mice at postnatal day 2 (P2) and cultured with or without FA and beta-amyloid (Aβ). Real-time qRT-PCR was conducted to measure the expressions of Nurr1, IL-1β, and IL-10 genes. Immunostaining was performed to determine the number of NURR1-positive cells, and the ramification index (RI) of MGCs was calculated using Image J software. Treating MGCs with FA (50 μg/ml) induced Nurr1 and IL-10 expressions, while reducing the level of IL-1β in the absence of Aβ-stress. Further assessments on cells under Aβ-stress showed that FA treatment restored the IL-10 and Nurr1 levels, increased the RI of cells, and the number of NURR1-positive cells. Morphological assessments and measurements of the RI revealed that FA treatment reversed amoeboid and rod-like cells to a ramified state, which is specific morphology for non-inflammatory reactive microglia. To conclude, FA can provide potential alternative homeostatic transition in Aβ-reactive microglia by recruiting the NURR1 dependent anti-inflammatory responses. This makes it a promising therapeutic candidate for suppressing Aβ-induced neuroinflammatory responses in MGCs. Furthermore, given that FA has the ability to increase NURR1 levels in homeostatic microglia, it could be utilized as a preventative medication.
Collapse
Affiliation(s)
- Ali Moghimi-Khorasgani
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
34
|
He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang C. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2023; 24:11054. [PMID: 37446231 DOI: 10.3390/ijms241311054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.
Collapse
Affiliation(s)
- Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Hong Chen
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
35
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
36
|
Liu X, Zhang H, Li C, Chen Z, Gao Q, Han M, Zhao F, Chen D, Chen Q, Hu M, Li Z, Wei S, Geng X. The dosage of curcumin to alleviate movement symptoms in a 6-hydroxydopamine-induced Parkinson's disease rat model. Heliyon 2023; 9:e16921. [PMID: 37484231 PMCID: PMC10360947 DOI: 10.1016/j.heliyon.2023.e16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Background Curcumin is a natural compound with extensive pharmacological effects. This research is to verify the optimal dose and administration duration efficacy of curcumin in alleviating the movement symptoms of Parkinson's disease (PD). Methods Wistar rats were divided into six groups including control, model, levodopa treatment and low/middle/high (40/80/160 mg/kg/d) curcumin treatment groups. After stereotactic brain injection of 6-hydroxydopamine (6-OHDA), curcumin was given by intragastric administration for 2 weeks. To evaluate the drug effect, the rats received behavioral tests including apomorphine (APO)-induced rotation test, rotarod test and open field test. Then the rats were sacrificed and the brain slices including substantia nigra pars compacta (SNc) were used for immunofluorescence staining. Results After 6-OHDA injection, the model group showed typical movement symptoms including the severe APO-induced rotation to the healthy side, decreased latency in the rotarod with constant or accelerative mode, and decreased total distance and average speed in the open field test. In the results of immunofluorescence staining, the 6-OHDA induced a severe damage of dopaminergic neurons in SNc. The 160 mg/kg/d treatment of curcumin to intervene for 2 weeks alleviated most of the behavioral disorders but the 40/80 mg/kg/d treatment showed limitations. Then, we compared the effect of 1 week intervention to the 2 weeks with 160 mg/kg/d treatment of curcumin to intervene and results indicated that the treatment of 2 weeks could better alleviate the symptoms. Conclusions Curcumin alleviated 6-OHDA-induced movement symptoms in a PD rat model. Additionally, the effect of curcumin against PD indicated dose and duration dependent and the intervention of 160 mg/kg/d for 2 weeks showed optimally therapeutic effect.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfen Li
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Zhibin Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxuan Han
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiuyue Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
37
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
38
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
39
|
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. SCIENCE ADVANCES 2023; 9:eabq1141. [PMID: 36791205 PMCID: PMC9931221 DOI: 10.1126/sciadv.abq1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Karolinska Institutet, Department of Odontology, 171 77 Solna, Sweden
- Faculty of Medical Sciences, Sunway University, Subang Jaya, 47500 Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
40
|
Liu H, Huang Z, Deng B, Chang Z, Yang X, Guo X, Yuan F, Yang Q, Wang L, Zou H, Li M, Zhu Z, Jin K, Wang Q. QEEG Signatures are Associated with Nonmotor Dysfunctions in Parkinson's Disease and Atypical Parkinsonism: An Integrative Analysis. Aging Dis 2023; 14:204-218. [PMID: 36818554 PMCID: PMC9937709 DOI: 10.14336/ad.2022.0514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/14/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonism (AP), including progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), share similar nonmotor symptoms. Quantitative electroencephalography (QEEG) can be used to examine the nonmotor symptoms. This study aimed to characterize the patterns of QEEG and functional connectivity (FC) that differentiate PD from PSP or MSA, and explore the correlation between the differential QEEG indices and nonmotor dysfunctions in PD and AP. We enrolled 52 patients with PD, 31 with MSA, 22 with PSP, and 50 age-matched health controls to compare QEEG indices among specific brain regions. One-way analysis of variance was applied to assess QEEG indices between groups; Spearman's correlations were used to examine the relationship between QEEG indices and nonmotor symptoms scale (NMSS) and mini-mental state examination (MMSE). FCs using weighted phase lag index were compared between patients with PD and those with MSA/PSP. Patients with PSP revealed higher scores on the NMSS and lower MMSE scores than those with PD and MSA, with similar disease duration. The delta and theta powers revealed a significant increase in PSP, followed by PD and MSA. Patients with PD presented a significantly lower slow-to-fast ratio than those with PSP in the frontal region, while patients with PD presented significantly higher EEG-slowing indices than patients with MSA. The frontal slow-to-fast ratio showed a negative correlation with MMSE scores in patients with PD and PSP, and a positive correlation with NMSS in the perception and mood domain in patients with PSP but not in those with PD. Compared to PD, MSA presented enhanced FC in theta and delta bands in the posterior region, while PSP revealed decreased FC in the delta band within the frontal-temporal cortex. These findings suggest that QEEG might be a useful tool for evaluating the nonmotor dysfunctions in PD and AP. Our QEEG results suggested that with similar disease duration, the cortical neurodegenerative process was likely exacerbated in patients with PSP, followed by those with PD, and lastly in patients with MSA.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China.
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaohua Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Feilan Yuan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Qin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Liming Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Haiqiang Zou
- Department of Neurosurgery, General Hospital of Southern Theater Command of PLA, Guangdong, China.
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Correspondence should be addressed to: Dr. Qing Wang, Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China. .
| |
Collapse
|
41
|
Zhao E, Huang P, Zhao Z, Huang S, Hu S, Xie L, Lin J, Wang D. NBP Cytoprotective Effects Promoting Neuronal Differentiation in BMSCs by Inhibiting the p65/Hes1 Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e132496. [PMID: 38116559 PMCID: PMC10728845 DOI: 10.5812/ijpr-132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 12/21/2023]
Abstract
Background Bone marrow-derived mesenchymal stem cell (BMSC) transplantation has become an effective method for treating neurodegenerative diseases. Objectives This study investigated the effect of 3-N-butylphthalide (NBP) on the neuronal differentiation of BMSCs and its potential mechanism. Methods In this study, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect cell proliferation and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was conducted to detect the apoptosis of BMSCs. Quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to detect the messenger RNA (mRNA) and protein expression levels, respectively. An enzyme-linked immunosorbent serologic assay assessed the levels of interleukin-1β, tumor necrosis factor-α, and cyclic adenosine monophosphate (cAMP). Moreover, a flow cytometry assay was used to detect the proportion of active β-tubulin III (TUJ-1) cells, and TUJ-1 expression was observed by immunofluorescence assay. Results The results showed that a low concentration of NBP promoted the proliferation and induction of BMSC neuronal differentiation while inhibiting apoptosis, the production of inflammatory factors, and p65 expression. Compared with differentiation induction alone, combined NBP treatment increased the levels of nestin, neuron-specific enolase (NSE), TUJ-1, and microtubule-associated protein 2 (MAP2) protein, as well as the ratio of TUJ-1-positive cells and cAMP expression. Furthermore, p65 overexpression weakened the effect of NBP, and the overexpression of hairy and enhancer of split homolog-1 (HES1) reversed the effect of NBP in the induction of BMSC neuronal differentiation in vitro. Conclusions We confirmed that NBP exhibited potential therapeutic properties in the stem cell transplantation treatment of neurodegenerative diseases by protecting cells and promoting BMSC neuronal differentiation by inhibiting the p65/HES 1 pathway.
Collapse
Affiliation(s)
- Eryi Zhao
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Peijian Huang
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Zhongyan Zhao
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Shixiong Huang
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Shijun Hu
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Ling Xie
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jie Lin
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Daimei Wang
- Hainan General Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
42
|
Feng L, Sharma A, Wang Z, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Co-administration of Nanowired DL-3-n-Butylphthalide (DL-NBP) Together with Mesenchymal Stem Cells, Monoclonal Antibodies to Alpha Synuclein and TDP-43 (TAR DNA-Binding Protein 43) Enhance Superior Neuroprotection in Parkinson's Disease Following Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:97-138. [PMID: 37480460 DOI: 10.1007/978-3-031-32997-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is one of the potent antioxidant compounds that induces profound neuroprotection in stroke and traumatic brain injury. Our previous studies show that dl-NBP reduces brain pathology in Parkinson's disease (PD) following its nanowired delivery together with mesenchymal stem cells (MSCs) exacerbated by concussive head injury (CHI). CHI alone elevates alpha synuclein (ASNC) in brain or cerebrospinal fluid (CSF) associated with elevated TAR DNA-binding protein 43 (TDP-43). TDP-43 protein is also responsible for the pathologies of PD. Thus, it is likely that exacerbation of brain pathology in PD following brain injury may be thwarted using nanowired delivery of monoclonal antibodies (mAb) to ASNC and/or TDP-43. In this review, the co-administration of dl-NBP with MSCs and mAb to ASNC and/or TDP-43 using nanowired delivery in PD and CHI-induced brain pathology is discussed based on our own investigations. Our observations show that co-administration of TiO2 nanowired dl-NBP with MSCs and mAb to ASNC with TDP-43 induced superior neuroprotection in CHI induced exacerbation of brain pathology in PD, not reported earlier.
Collapse
Affiliation(s)
- Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Liu S, Li F, Yang J, Xie D, Yue C, Luo W, Hu J, Song J, Li L, Huang J, Zhao C, Gong Z, Yang Q, Zi W. Efficacy and safety of 3-n-butylphthalide combined with endovascular treatment in acute ischemic stroke due to large vessel occlusion. CNS Neurosci Ther 2022; 28:2298-2307. [PMID: 36184804 PMCID: PMC9627349 DOI: 10.1111/cns.13978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The drug 3-n-butylphthalide (NBP) was developed and approved in China, where it has been used to treat ischemic cerebrovascular diseases. It is also considered to have a neuroprotective effect. This study aimed to evaluate whether NBP combined with endovascular treatment (EVT) can improve the clinical outcome and safety in patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO). METHODS Data from three studies of patients treated with EVT for AIS due to LVO were combined in this study. Patients of LVO undergoing EVT were dichotomized into NBP and non-NBP subgroups. The primary efficacy outcome was the shift of the modified Rankin Scale (mRS) score at 90 days. The secondary efficacy outcome included favorable functional outcomes, functional independence, and excellent outcome (defined as an mRS score of 3 or less) at 90 days. Safety outcomes included mortality within 90 days and symptomatic intracranial hemorrhage (sICH) within 48 h. RESULTS A total of 1820 patients undergoing EVT were included in this study; 628 (37.5%) patients received NBP treatment, whereas 1138 (62.5%) did not. After adjusting for multiple factors, NBP was associated with the improvement of functional outcomes at 90 days (adjusted common odds ratio [OR]: 1.503; 95% confidence interval (CI): 1.254-1.801; p < 0.001). NBP was associated with a higher rate of 90-day favorable outcomes (adjusted OR: 1.589; 95% CI: 1.251-2.020; p < 0.001) and a lower rate of 90-day mortality (adjusted OR: 0.486 [95% CI: 0.372-0.635]; p < 0.001). sICH occurred in 74 of 682 (10.9%) patients in the NBP group and 155 of 1126 (13.8%) patients in the non-NBP group; no statistical difference was detected (adjusted OR: 0.787 [95% CI: 0.567-1.092]; p = 0.152). CONCLUSION Among patients with AIS due to LVO, NBP combined with EVT is associated with better functional outcomes and reduced mortality risk without increasing the risk of sICH.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Fengli Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jie Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Dongjie Xie
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Chengsong Yue
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Weidong Luo
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jinrong Hu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jiaxing Song
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Linyu Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Jiacheng Huang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Chenhao Zhao
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Zili Gong
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| | - Wenjie Zi
- Department of Neurology, Xinqiao Hospital and The Second Affiliated HospitalArmy Medical University (Third Military Medical University)ChongqingChina,Department of Neurology, Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqingChina
| |
Collapse
|
44
|
Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H, Sim A, Tang B, Wang Q. Efficacy of repetitive transcranial magnetic stimulation in Parkinson's disease: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 2022; 52:101589. [PMID: 35923424 PMCID: PMC9340539 DOI: 10.1016/j.eclinm.2022.101589] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive form of brain stimulation that positively regulates the motor and non-motor symptoms of Parkinson's disease (PD). Although, most reviews and meta-analysis have shown that rTMS intervention is effective in treating motor symptoms and depression, very few have used randomised controlled trials (RCTs) to analyse the efficacy of this intervention in PD. We aimed to review RCTs of rTMS in patients with PD to assess the efficacy of rTMS on motor and non-motor function in patients with PD. METHODS In this systematic review and meta-analysis, we searched PubMed, MEDLINE and Web of Science databases for RCTs on rTMS in PD published between January 1, 1988 to January 1, 2022. Eligible studies included sham-controlled RCTs that used rTMS stimulation for motor or non-motor symptoms in PD. RCTs not focusing on the efficacy of rTMS in PD were excluded. Summary data were extracting from those RCTs by two investigators independently. We then calculated standardised mean difference with random-effect models. The main outcome included motor and non-motor examination of scales that were used in PD motor or non-motor assessment. This study was registered with PROSPERO, CRD42022329633. FINDINGS Fourteen studies with 469 patients met the criteria for our meta-analysis. Twelve eligible studies with 381 patients were pooled to analyse the efficacy of rTMS on motor function improvement. The effect size on motor scale scores was 0.51 (P < 0.0001) and were not distinctly heterogeneous (I2 = 29%). Five eligible studies with 202 patients were collected to evaluate antidepressant-like effects. The effect size on depression scale scores was 0.42 (P = 0.004), and were not distinctly heterogeneous (I2 = 25%), indicating a significant anti-depressive effect (P = 0.004). The results suggest that high-frequency of rTMS on primary motor cortex (M1) is effective in improving motor symptoms; while the dorsolateral prefrontal cortex (DLPFC) may be a potentially effective area in alleviating depressive symptom. INTERPRETATION The findings suggest that rTMS could be used as a possible adjuvant therapy for PD mainly to improve motor symptoms, but could have potential efficacy on depressive symptoms of PD. However, further investigation is needed. FUNDING The National Natural Science Foundation of China (NO: 81873777, 82071414), Initiated Foundation of Zhujiang Hospital (NO: 02020318005), Scientific Research Foundation of Guangzhou (NO: 202206010005), and Science and Technology Program of Guangdong of China (NO: 2020A0505100037).
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Amy Sim
- Department of Neurology, Texas Tech University Health Sciences Centre El Paso, El Paso, TX 79905, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, PR China
- Corresponding author at: Department of Neurology, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, Guangdong Province 510282, PR China.
| |
Collapse
|
45
|
Itaconate Attenuates Neuroinflammation and Exerts Dopamine Neuroprotection in Parkinson's Disease through Inhibiting NLRP3 Inflammasome. Brain Sci 2022; 12:brainsci12091255. [PMID: 36138991 PMCID: PMC9496935 DOI: 10.3390/brainsci12091255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a common age-associated neurodegenerative motor disorder, which is mainly caused by dopaminergic neuron loss in the substantia nigra. This study aimed to evaluate the function and the underlying molecular mechanism of itaconate in PD. PD models were established in vivo and in vitro using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Pole and rotarod tests were applied to evaluate the motor coordination of mice. The expression of tyrosine hydroxylase (TH) in MPTP-induced mice and the MPP+ revulsive PD cell model were detected using Western blotting and immunofluorescence. The inflammatory factors level was detected by quantitative real-time polymerase chain reaction. The content of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) in substantia nigra, striatum, and SH-SY5Y cells were analyzed. Moreover, the apoptosis of MPP+ revulsive SH-SY5Y cells was determined using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) staining and flow cytometry. The expression of apoptosis- and Nod-like receptor family protein 3 (NLRP3) inflammasome-associated proteins was measured using Western blotting and immunofluorescence. Itaconate attenuated motor deficits of MPTP-induced PD mice. Itaconate inhibited dopamine neuronal damage, inflammatory response, oxidative stress, and neuronal apoptosis in MPTP-caused PD mice and the MPP+ revulsive PD cell model. Additionally, itaconate notably repressed the activation of NLRP3 inflammasome. This research demonstrated that itaconate could attenuate neuroinflammation and exert dopamine neuroprotection in PD through inhibiting NLRP3 inflammasome.
Collapse
|
46
|
Protective effect of 3-n-butylphthalide against intrastriatal injection of malonic acid-induced neurotoxicity and biochemical alteration in rats. Biomed Pharmacother 2022; 155:113664. [PMID: 36095961 DOI: 10.1016/j.biopha.2022.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial abnormalities and a defective expression of neurotrophic factors contribute to neuronal damage in Huntington's disease (HD). HD patients showed a reduction in transforming growth factor-β1 (TGF-β1) levels in the peripheral blood and in cortical neurons. 3-n-butylphthalide (NBP) is first isolated from the seeds of celery, treats ischemic stroke in China. NBP could attenuate cognitive and motor impairments in the experimental models of Parkinson's disease and Alzheimer's disease, reduce mitochondrial oxidative stress and increase the expression of TGF-β1 in rats with focal cerebral ischemia. To our knowledge, the effect of NBP on Huntington's disease has not been reported. We proposed the hypothesis that whether NBP could protect mitochondria and regulate TGF-β1 and its downstream signaling in a HD animal model, further prevents motor dysfunction. Malonic acid is a reversible inhibitor of mitochondrial enzyme complex-II, induces energy crisis and free radical generation. In this study, we used intrastriatal injections of malonic acid in rats to mimic mitochondrial abnormalities and the other HD like symptoms. We found that treatment with NBP significantly attenuated malonic acid-induced motor and cognitive dysfunction in locomotor behaviour test, rotarod test, novel object recognition test and morris water maze test, prevented neurotoxicity and mitochondrial damage, activated TGF-β1/Akt/Wnt/β-Catenin pathway in striatum, but didn't regulate mitochondrial fusion and fission. The above effect was partly reversed by a PI3K/Akt inhibitor. Our data support NBP as a potential candidate for the treatment of HD.
Collapse
|
47
|
Yu X, Yu C, He W. Emerging trends and hot spots of NLRP3 inflammasome in neurological diseases: A bibliometric analysis. Front Pharmacol 2022; 13:952211. [PMID: 36160384 PMCID: PMC9490172 DOI: 10.3389/fphar.2022.952211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: NLRP3 inflammasome has been of great interest in the field of neurological diseases. To visualize the research hotspots and evolutionary trends in this area, we collected the relevant articles in the Web of Science Core Collection database from 2010 to 2022 and analyzed them using CiteSpace software. Methods: We performed a systematic search of the literature within the Web of Science Core Collection database using the strategy described below: TS = NLRP3 inflammasome AND TS = neurological diseases OR TS = neurological disorder OR TS = brain disorder OR TS = brain injury OR TS = central nervous system disease OR TS = CNS disease OR TS = central nervous system disorder OR TS = CNS disorder AND Language = English from 2010 to 2022. The type of literature was limited to articles and reviews. The data were processed using CiteSpace software (version 5.8. R3). Results: A total of 1,217 literature from 67 countries/regions and 337 research institutions was retrieved. Publications in this area have increased rapidly since 2013. China presents the highest number of published articles, but the United States has a higher centrality and h-index. The top five most published institutions and authors are from China, Zhejiang University and Li Y ranking first, respectively. Of the ten most cited articles, Prof. Heneka MT and colleagues accounted for three of them. In terms of the co-occurrence keyword diagram, the five most frequent keywords are “nlrp3 inflammasome”, “activation”, “oxidative stress”, “expression”, and “alzheimers disease”. Conclusion: The research of NLRP3 inflammasome in neurological disorders is overall developing well. Chinese scholars contributed the most significant number of articles, while researchers from developed countries presented more influential papers. The importance of NLRP3 inflammasome in neurological diseases is widely appreciated, and the mechanism is under study. Moreover, NLRP3 inflammasome is emerging as a promising therapeutic target in treating neurological disorders. However, despite decades of research, our understanding of NLRP3 inflammasome in central nervous system diseases is still lacking. More and more profound research is needed in the future.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wenfang He,
| |
Collapse
|
48
|
Chen X, He JL, Liu XT, Zhao N, Geng F, Zhu MM, Liu GP, Ren QG. DI-3-n-butylphthalide mitigates stress-induced cognitive deficits in mice through inhibition of NLRP3-Mediated neuroinflammation. Neurobiol Stress 2022; 20:100486. [PMID: 36160816 PMCID: PMC9489537 DOI: 10.1016/j.ynstr.2022.100486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Our previous study has demonstrated that chronic stress could cause cognitive deficits and tau pathology. However, the underlying mechanism and whether/how DI-3-n-Butylphthalide (NBP) ameliorates these effects are still unclear. Here, Wild-type mice were subjected to chronic unpredictable and mild stress (CUMS) for 8 weeks. Following the initial 4 weeks, the stressed animals were separated into susceptible (depressive) and unsusceptible (resilient) groups based on behavioral tests. Then, NBP (30 mg/kg i.g) was administered for 4 weeks. Morris water maze (MWM), Western-blot, Golgi staining, immunofluorescence staining and ELISA were used to examine behavioral, biochemical, and pathological changes. The results showed that both depressive and resilient mice displayed spatial memory deficits and an accumulation of tau in the hippocampus. Activated microglia and NLRP3 inflammasome were found after 8-week chronic stress. We also found a decreased level of postsynaptic density (PSD) related proteins (PSD93 and PSD95) and decreased the number of dendritic spines in the hippocampus. Interestingly, almost all the pathological changes in depressive and resilient mice previously mentioned could be reversed by NBP treatment. To further investigate the role of NLRP3 inflammasome in chronic stress-induced cognitive deficits, NLRP3 KO mice were also exposed to chronic stress. And these changes induced by chronic stress could not be found in NLRP3 KO mice. These results show an important role for the NLRP3/caspase-1/IL-1β axis in chronic stress-induced cognitive deficits and NBP meliorates cognitive impairments and selectively attenuates phosphorylated tau accumulation in stressed mice through regulation of NLRP3 inflammatory signaling pathway.
Collapse
Affiliation(s)
- Xiu Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Juan-Ling He
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xue-Ting Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fan Geng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng-Meng Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Gong-Ping Liu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Co-innovation Center of Neurodegeneration, Nantong University, Nantong, 226019, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, China
| |
Collapse
|
49
|
Dl-3-n-Butylphthalide Reduced Neuroinflammation by Inhibiting Inflammasome in Microglia in Mice after Middle Cerebral Artery Occlusion. Life (Basel) 2022; 12:life12081244. [PMID: 36013423 PMCID: PMC9410391 DOI: 10.3390/life12081244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory response is one of the key events in cerebral ischemia, causing secondary brain injury and neuronal death. Studies have shown that the NLRP3 inflammasome is a key factor in initiating the inflammatory response and that Dl-3-n-butylphthalide (NBP) can attenuate the inflammatory response and improve neuronal repair during ischemic stroke. However, whether NBP attenuates the inflammatory response via inhibition of NLRP3 remains unclear. A 90 min middle cerebral artery occlusion was induced in 62 2-month-old adult male ICR mice, and NBP was administered by gavage zero, one, or two days after ischemia. Brain infarct volume, neurological deficits, NLRP3, microglia, and neuronal death were examined in sacrificed mice to explore the correction between NBP effects and NLRP3 expression. NBP significantly reduced infarct volume and attenuated neurological deficits after ischemic stroke compared to controls (p < 0.05). Moreover, it inhibited ASC+ microglia activation and NLRP3 and CASP1 expression in ischemic mice. In addition, neuronal apoptosis was reduced in NBP-treated microglia cultures (p < 0.05). Our results indicate that NBP attenuates the inflammatory response in ischemic mouse brains, suggesting that NBP protects against microglia activation via the NLRP3 inflammasome.
Collapse
|
50
|
Liu DX, Zhao CS, Wei XN, Ma YP, Wu JK. Semaglutide Protects against 6-OHDA Toxicity by Enhancing Autophagy and Inhibiting Oxidative Stress. PARKINSON'S DISEASE 2022; 2022:6813017. [PMID: 35873704 PMCID: PMC9300292 DOI: 10.1155/2022/6813017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder for which no effective treatment is available. Studies have demonstrated that improving insulin resistance in type 2 diabetes mellitus (T2DM) can benefit patients with PD. In addition, a neuroprotective effect of glucagon-like peptide-1 (GLP-1) receptor agonists was demonstrated in experimental models of PD. In addition, there are some clinical trials to study the neuroprotective effect of GLP-1 analog on PD patients. Semaglutide is a long-acting, once-a-week injection treatment and the only available oral form of GLP-1 analog. In the present study, we treated the human neuroblastoma SH-SY5Y cell line with 6-hydroxydopamine (6-OHDA) as a PD in vitro model to explore the neuroprotective effects and potential mechanisms of semaglutide to protect against PD. Moreover, we compared the effect of semaglutide with liraglutide given at the same dose. We demonstrated that both semaglutide and liraglutide protect against 6-OHDA cytotoxicity by increasing autophagy flux and decreasing oxidative stress as well as mitochondrial dysfunction in SH-SY5Y cells. Moreover, by comparing the neuroprotective effects of semaglutide and liraglutide on PD cell models at the same dose, we found that semaglutide was superior to liraglutide for most parameters measured. Our results indicate that semaglutide, the new long-acting and only oral GLP-1 analog, may be represent a promising treatment for PD.
Collapse
Affiliation(s)
- Dong-xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Chen-sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Xiao-na Wei
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Yi-peng Ma
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Jian-kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| |
Collapse
|