1
|
Yuan C, Zhou K, Pan X, Wang D, Zhang C, Lin Y, Chen Z, Qin J, Du X, Huang Y. Comparative physiological, biochemical and transcriptomic analyses to reveal potential regulatory mechanisms in response to starvation stress in Cipangopaludina chinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101279. [PMID: 38941864 DOI: 10.1016/j.cbd.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Cipangopaludina chinensis, as a financially significant species in China, represents a gastropod in nature which frequently encounters starvation stress owing to its limited prey options. However, the underlying response mechanisms to combat starvation have not been investigated in depth. We collected C. chinensis under several times of starvation stress (0, 7, 30, and 60 days) for nutrient, biochemical characteristics and transcriptome analyses. The results showed that prolonged starvation stress (> 30 days) caused obvious fluctuations in the nutrient composition of snails, with dramatic reductions in body weight, survival and digestive enzyme activity (amylase, protease, and lipase), and markedly enhanced the antioxidant enzyme activities of the snails. Comparative transcriptome analyses revealed 3538 differentially expressed genes (DEGs), which were significantly associated with specific starvation stress-responsive pathways, including oxidative phosphorylation and alanine, aspartate, and glutamate metabolism. Then, we identified 40 candidate genes (e.g., HACD2, Cp1, CYP1A2, and GPX1) response to starvation stress through STEM and WGCNA analyses. RT-qPCR verified the accuracy and reliability of the high-throughput sequencing results. This study provides insights into snail overwintering survival and the potential regulatory mechanisms of snail adaptation to starvation stress.
Collapse
Affiliation(s)
- Chang Yuan
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Kangqi Zhou
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Xianhui Pan
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China.
| | - Dapeng Wang
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China.
| | - Caiqun Zhang
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Yong Lin
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Zhong Chen
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Junqi Qin
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Xuesong Du
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| | - Yin Huang
- Guangxi Academy of Fishery Sciences, Key Laboratory of Aquatic Genetic Breeding and Healthy Farming in Guangxi, Nanning, Guangxi 530021, China
| |
Collapse
|
2
|
Ghosh S, Singh R, Goap TJ, Sunnapu O, Vanwinkle ZM, Li H, Nukavarapu SP, Dryden GW, Haribabu B, Vemula PK, Jala VR. Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis. J Nanobiotechnology 2024; 22:701. [PMID: 39533380 PMCID: PMC11558909 DOI: 10.1186/s12951-024-02990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Tanu Jain Goap
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Zachary M Vanwinkle
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Hong Li
- UofL-Brown Cancer Cancer, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Gerald W Dryden
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India.
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Komatsu W, Kishi H, Uchiyama K, Ohhira S, Kobashi G. Urolithin A suppresses NLRP3 inflammasome activation by inhibiting the generation of reactive oxygen species and prevents monosodium urate crystal-induced peritonitis. Biosci Biotechnol Biochem 2024; 88:966-978. [PMID: 38772744 DOI: 10.1093/bbb/zbae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1β (IL-1β) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1β, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.
Collapse
Affiliation(s)
- Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
4
|
Bahiraii S, Braunböck-Müller B, Heiss EH. Increased Glycolytic Activity Is Part of Impeded M1(LPS) Macrophage Polarization in the Presence of Urolithin A. PLANTA MEDICA 2024; 90:546-553. [PMID: 38843794 PMCID: PMC11156499 DOI: 10.1055/a-2240-7462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 06/10/2024]
Abstract
Urolithin A is a gut metabolite of ellagitannins and reported to confer health benefits, e.g., by increased clearance of damaged mitochondria by macroautophagy or curbed inflammation. One targeted cell type are macrophages, which are plastic and able to adopt pro- or anti-inflammatory polarization states, usually assigned as M1 and M2 macrophages, respectively. This flexibility is tightly coupled to characteristic shifts in metabolism, such as increased glycolysis in M1 macrophages, and protein expression upon appropriate stimulation. This study aimed at investigating whether the anti-inflammatory properties of U: rolithin A may be driven by metabolic alterations in cultivated murine M1(lipopolysaccharide) macrophages. Expression and extracellular flux analyses showed that urolithin A led to reduced il1β, il6, and nos2 expression and boosted glycolytic activity in M1(lipopolysaccharide) macrophages. The pro-glycolytic feature of UROLITHIN A: occurred in order to causally contribute to its anti-inflammatory potential, based on experiments in cells with impeded glycolysis. Mdivi, an inhibitor of mitochondrial fission, blunted increased glycolytic activity and reduced M1 marker expression in M1(lipopolysaccharide/UROLITHIN A: ), indicating that segregation of mitochondria was a prerequisite for both actions of UROLITHIN A: . Overall, we uncovered a so far unappreciated metabolic facet within the anti-inflammatory activity of UROLITHIN A: and call for caution about the simplified notion of increased aerobic glycolysis as an inevitably proinflammatory feature in macrophages upon exposure to natural products.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | | | - Elke H. Heiss
- Department of Pharmaceutical Sciences/Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lai SW, Lu DY, Yeh WL, Lin C. Inhibitory Effects of Urolithins, Bioactive Gut Metabolites from Natural Polyphenols, against Glioblastoma Progression. Nutrients 2023; 15:4854. [PMID: 38068712 PMCID: PMC10708538 DOI: 10.3390/nu15234854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
We previously reported that proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration, reduced epithelial-mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit GBM progression and provide valuable information for anti-GBM strategy.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Taichung 404, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 404, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Wojciechowska O, Kujawska M. Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants (Basel) 2023; 12:1479. [PMID: 37508017 PMCID: PMC10376282 DOI: 10.3390/antiox12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by a complex pathophysiology and a range of symptoms. The prevalence increases with age, putting the ageing population at risk. Disease management includes the improvement of symptoms, the comfort of the patient's life, and palliative care. As there is currently no cure, growing evidence points towards the beneficial role of polyphenols on neurodegeneration. Numerous studies indicate the health benefits of the family of urolithins, especially urolithin A (UA). UA is a bacterial metabolite produced by dietary ellagitannins and ellagic acid. An expanding body of literature explores the involvement of the compound in mitochondrial health, and its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The review organizes the existing knowledge on the role of UA in health and diseases, emphasizing neurodegenerative diseases, especially PD. We gathered data on the potential neuroprotective effect in in vivo and in vitro models. We discussed the possible mechanisms of action of the compound and related health benefits to give a broader perspective of potential applications of UA in neuroprotective strategies. Moreover, we projected the future directions of applying UA in PD management.
Collapse
Affiliation(s)
- Olga Wojciechowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| |
Collapse
|
9
|
Mei X, Lei Y, Ouyang L, Zhao M, Lu Q. Deficiency of Pink1 promotes the differentiation of Th1 cells. Mol Immunol 2023; 160:23-31. [PMID: 37331031 DOI: 10.1016/j.molimm.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Previous studies have found that Pink1 is crucial for T cell activation and the function of Treg cells. However, the effect of Pink1 on inflammatory Th1 cells is largely unknown. In the process of Th1 differentiation from human naïve T cells, we found a reduction of Pink1 and Parkin. We then focused our attention on the Pink1 KO mice. Although there was no difference in the baseline of the T cell subset of Pink1 KO mice, Th1 differentiation from Pink1 KO naïve T cells in vitro showed a significant increase. Subsequently, we transferred naïve CD4+ T cells into Rag2 KO mice to establish a T-cell colitis mouse model and found that CD4+ T cells in mesentery lymph nodes of mice receiving Pink1 KO cells increased significantly, especially Th1 cells. Intestinal IHC staining also showed that the transcription factor T-bet of Th1 increased. Treatment of CD4+ T cells from lupus-like mice with mitophagy agonist urolithin A, a reduction of Th1 cells was observed, suggesting the clinical value of using mitophagy agonists to suppress Th1-dominated disease in the future.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yu Lei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Lianlian Ouyang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
10
|
Chen H, Li S, Pan B, Liu K, Yu H, Ma C, Qi H, Zhang Y, Huang X, Ouyang D, Xie Z. Qing-Kai-Ling oral liquid alleviated pneumonia via regulation of intestinal flora and metabolites in rats. Front Microbiol 2023; 14:1194401. [PMID: 37362920 PMCID: PMC10288885 DOI: 10.3389/fmicb.2023.1194401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Qing-Kai-Ling (QKL) oral liquid, evolving from a classical Chinese formula known as An-Gong-Niu-Huang pills, is a well-established treatment for pneumonia with its mechanism remaining muddled. Studies have shown that the regulation of both intestinal flora and host-microbiota co-metabolism may contribute to preventing and treating pneumonia. The study aimed to investigate the potential mechanism by which QKL alleviates pneumonia from the perspective of 'microbiota-metabolites-host' interaction. Methods We evaluated the therapeutic effects of QKL on lipopolysaccharide (LPS)-induced pneumonia rats. To explore the protective mechanism of QKL treatment, a multi-omics analysis that included 16S rDNA sequencing for disclosing the key intestinal flora, the fecal metabolome to discover the differential metabolites, and whole transcriptome sequencing of lung tissue to obtain the differentially expressed genes was carried out. Then, a Spearman correlation was employed to investigate the association between the intestinal flora, the fecal metabolome and inflammation-related indices. Results The study demonstrated that pneumonia symptoms were significantly attenuated in QKL-treated rats, including decreased TNF-α, NO levels and increased SOD level. Furthermore, QKL was effective in alleviating pneumonia and provided protection equivalent to that of the positive drug dexamethasone. Compared with the Model group, QKL treatment significantly increased the richness and αlpha diversity of intestinal flora, and restored multiple intestinal genera (e.g., Bifidobacterium, Ruminococcus_torques_group, Dorea, Mucispirillum, and Staphylococcus) that were correlated with inflammation-related indices. Interestingly, the intestinal flora demonstrated a strong correlation with several metabolites impacted by QKL. Furthermore, metabolome and transcriptome analyses showed that enrichment of several host-microbiota co-metabolites [arachidonic acid, 8,11,14-eicosatrienoic acid, LysoPC (20:0/0:0), LysoPA (18:0e/0:0), cholic acid, 7-ketodeoxycholic acid and 12-ketodeoxycholic acid] levels and varying lung gene (Pla2g2a, Pla2g5, Alox12e, Cyp4a8, Ccl19, and Ccl21) expression were observed in the QKL group. Moreover, these metabolites and genes were involved in arachidonic acid metabolism and inflammation-related pathways. Conclusion Our findings indicated that QKL could potentially modulate intestinal flora dysbiosis, improve host-microbiota co-metabolism dysregulation and regulate gene expression in the lungs, thereby mitigating LPS-induced pneumonia in rats. The study may provide new ideas for the clinical application and further development of QKL.
Collapse
Affiliation(s)
- Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Guangzhou Baiyunshan Mingxing Pharmaceutical Company Limited, Guangzhou, China
- Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Siju Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Biyan Pan
- Guangzhou Baiyunshan Mingxing Pharmaceutical Company Limited, Guangzhou, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Hansheng Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Huiyuan Qi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yuefeng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Ma M, Wang Y, Fan S, Huang Y, Su X, Lu C. Urolithin A Alleviates Colitis in Mice by Improving Gut Microbiota Dysbiosis, Modulating Microbial Tryptophan Metabolism, and Triggering AhR Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7710-7722. [PMID: 37167350 DOI: 10.1021/acs.jafc.3c00830] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Urolithin A (UroA) is a microbial metabolite derived from ellagitannins and ellagic acid with good bioavailability. In this study, we explored the anticolitis activity of UroA and clarified the mechanism by 16S rDNA sequencing and metabonomics. UroA alleviated dextran sulfate sodium (DSS)-induced colitis in mice, characterized by a decreased disease activity index, increased colon length, and improved colonic histopathological lesions, along with inhibited phosphorylation of the mitogen-activated protein kinase signaling pathway. In addition, UroA improved gut microbiota dysbiosis and modulated the microbiota metabolome. Furthermore, targeted metabolomics focused on tryptophan catabolites showed that UroA significantly increased the production of indole-3-aldehyde (IAld) and subsequently led to increased colonic expression of aryl hydrocarbon receptor (AhR) and promoted the serum content of IL-22 in mice with colitis. Collectively, our data identified a novel anticolitis mechanism of UroA by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, promoting IAld production, and triggering AhR/IL-22 axis activation. However, a limitation noted in this study is that these beneficial effects of UroA were found at 50 μM in vitro and 20 mg/kg in vivo, which were nonphysiological concentrations.
Collapse
Affiliation(s)
- Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Siqing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo City 315832, China
| | - Yumeng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| |
Collapse
|
12
|
Mattioli LB, Corazza I, Micucci M, Pallavicini M, Budriesi R. Tannins-Based Extracts: Effects on Gut Chicken Spontaneous Contractility. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010395. [PMID: 36615589 PMCID: PMC9824427 DOI: 10.3390/molecules28010395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
The impossibility of using drugs for the health of farm animals leads to the search for alternative strategies with two purposes: to maintain animal health and safeguard human health. In this perspective, tannins have shown great promises. These phytocomplexes obtained from natural matrices with multiple health properties may be used as a feed supplement in chicken farms. In this work, we studied two tannin-based extracts (from Castanea sativa Mill. wood and from Schinopsis balansae Engl. Quebracho Colorado hardwood) with different chemical compositions on the spontaneous contractility on the isolated intestinal tissues of healthy chicken. The results showed that the chemical composition of the two phytocomplexes influenced the spontaneous intestinal contractility in different ways by regulating the tone and consequent progression of the food bolus. The chemical analysis of the two extracts revealed that Castanea sativa Mill. wood mainly contains hydrolysable tannins, while Schinopsis balansae Engl. hardwood mainly contains condensed tannins. The two phytocomplexes showed different effects towards gastrointestinal smooth muscle contractility, with Castanea sativa Mill. wood providing a better activity profile than Schinopsis balansae Engl. hardwood.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Food Chemistry and Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Ivan Corazza
- Department of Specialistic, Diagnostic and Experimental Medicine (DIMES), University of Bologna, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
- Correspondence: (M.M.); (R.B.)
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, University of Milano, 20129 Milan, Italy
| | - Roberta Budriesi
- Food Chemistry and Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.M.); (R.B.)
| |
Collapse
|
13
|
Han X, Li M, Sun L, Liu X, Yin Y, Hao J, Zhang W. p-Hydroxybenzoic Acid Ameliorates Colitis by Improving the Mucosal Barrier in a Gut Microbiota-Dependent Manner. Nutrients 2022; 14:nu14245383. [PMID: 36558542 PMCID: PMC9784546 DOI: 10.3390/nu14245383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by intestinal inflammatory cell infiltration and intestinal mucosal damage. The mechanism by which diet contributes to the pathogenesis of IBD remains largely unknown. In this study, we explored the therapeutic effect of p-hydroxybenzoic acid (HA), a phenolic acid mainly derived from dietary polyphenols in the gut, on DSS-induced colitis. HA intervention effectively relieved the dextran sulfate sodium salt (DSS)-induced colitis, reduced inflammation, and enhanced mucosal barrier function, as evidenced by an increment of goblet cell numbers and MUC2. These effects were largely dependent on the gut microbiota (GM), as antibiotics treatment substantially attenuated the improvement of colitis by HA. On the other hand, transplantation of GM from colitis mice treated with HA significantly reduced the colitis induced by DSS. Our study demonstrates that HA ameliorates DSS-induced colitis by improving the mucosal barrier in a GM-dependent manner. This study provides new dietary choices for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (J.H.); (W.Z.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (J.H.); (W.Z.)
| |
Collapse
|