1
|
Yasseen BA, Elkhodiry AA, El-sayed H, Zidan M, Kamel AG, Badawy MA, Hamza MS, El-Messiery RM, El Ansary M, Abdel-Rahman EA, Ali SS. The role of neutrophilia in hyperlactatemia, blood acidosis, impaired oxygen transport, and mortality outcome in critically ill COVID-19 patients. Front Mol Biosci 2025; 11:1510592. [PMID: 39834785 PMCID: PMC11743367 DOI: 10.3389/fmolb.2024.1510592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction COVID-19 severity and high in-hospital mortality are often associated with severe hypoxemia, hyperlactatemia, and acidosis, yet the key players driving this association remain unclear. It is generally assumed that organ damage causes toxic acidosis, but since neutrophil numbers in severe COVID-19 can exceed 80% of the total circulating leukocytes, we asked if metabolic acidosis mediated by the glycolytic neutrophils is associated with lung damage and impaired oxygen delivery in critically ill patients. Methods Based on prospective mortality outcome, critically ill COVID-19 patients were divided into ICU- survivors and ICU-non-survivors. Samples were analyzed to explore if correlations exist between neutrophil counts, lung damage, glycolysis, blood lactate, blood pH, hemoglobin oxygen saturation, and mortality outcome. We also interrogated isolated neutrophils, platelets, and PBMCs for glycolytic activities. Results Arterial blood gas analyses showed remarkable hypoxemia in non-survivors with no consistent differences in PCO2 or [HCO3 -]. The hemoglobin oxygen dissociation curve revealed a right-shift, consistent with lower blood-pH and elevated blood lactate in non-survivors. Metabolic analysis of different blood cells revealed increased glycolytic activity only when considering the total number of neutrophils. Conclusion This indicates the role of neutrophilia in hyperlactatemia and lung damage, subsequently contributing to mortality outcomes in severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Basma A. Yasseen
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Aya A. Elkhodiry
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Hajar El-sayed
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Mona Zidan
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Azza G. Kamel
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | | | - Marwa S. Hamza
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Riem M. El-Messiery
- Infectious Disease Unit, Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El Ansary
- Department of Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A. Abdel-Rahman
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
- Pharmacology Department, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Sameh S. Ali
- Research Department, Children’s Cancer Hospital Egypt, Cairo, Egypt
| |
Collapse
|
2
|
Blick-Nitko SK, Ture SK, Schafer XL, Munger JC, Livada AC, Li C, Maurya P, Rondina MT, Morrell CN. Platelet Ido1 expression is induced during Plasmodium yoelii infection, altering plasma tryptophan metabolites. Blood Adv 2024; 8:5814-5825. [PMID: 39133890 PMCID: PMC11609358 DOI: 10.1182/bloodadvances.2024013175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/11/2024] Open
Abstract
ABSTRACT Platelets are immune responsive in many diseases as noted by changes in platelet messenger RNA in conditions such as sepsis, atherosclerosis, COVID-19, and many other inflammatory and infectious etiologies. The malaria causing Plasmodium parasite is a persistent public health threat and significant evidence shows that platelets participate in host responses to infection. Using a mouse model of nonlethal/uncomplicated malaria, non-lethal Plasmodium yoelii strain XNL (PyNL)-infected but not control mouse platelets expressed Ido1, a rate limiting enzyme in tryptophan metabolism that increases kynurenine at the expense of serotonin. Interferon-γ (IFN-γ) is a potent inducer of Ido1 and mice treated with recombinant IFN-γ had increased platelet Ido1 and IDO1 activity. PyNL-infected mice treated with anti-IFN-γ antibody had similar platelet Ido1 and metabolic profiles to that of uninfected controls. PyNL-infected mice become thrombocytopenic by day 7 after infection and transfusion of platelets from IFN-γ-treated wild-type mice but not Ido1-/- mice increased the plasma kynurenine-to-tryptophan ratio, indicating that platelets are a source of postinfection IDO1 activity. We generated platelet-specific Ido1 knockout mice to assess the contribution of platelet Ido1 during PyNL infection. Platelet-specific Ido1-/- mice had increased death and evidence of lung thrombi, which were not present in infected wild-type mice. Platelet Ido1 may be a significant contributor to plasma kynurenine in IFN-γ-driven immune processes and the loss of platelets may limit total Ido1, leading to immune and vascular dysfunction.
Collapse
Affiliation(s)
- Sara K. Blick-Nitko
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sara K. Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Xenia L. Schafer
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Joshua C. Munger
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Alison C. Livada
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Li
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Preeti Maurya
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
3
|
Tan X, Gao X, Zheng H, Yuan H, Liu H, Ran Q, Luo M. Platelet dysfunction caused by differentially expressed genes as key pathogenic mechanisms in COVID-19. Minerva Cardiol Angiol 2024; 72:517-534. [PMID: 38804627 DOI: 10.23736/s2724-5683.24.06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became prevalent worldwide, which brought a heavy medical burden and tremendous economic losses to the world population. In addition to the common clinical respiratory symptoms such as fever, cough and headache, patients with COVID-19 often have hematological diseases, especially platelet dysfunction. Platelet dysfunction usually leads to multiple organ dysfunction, which is closely related to patient severity or mortality. In addition, studies have confirmed significant changes in the gene expression profile of circulating platelets under SARS-CoV-2 infection, which will further lead to changes in platelet function. At the same time, studies have shown that platelets may absorb SARS-COV-2 mRNA independently of ACE2, which further emphasizes the importance of the stability of platelet function in defense against SARS-CoV-2 infection. This study reviewed the relationship between COVID-19 and platelet and SARS-CoV-2 damage to the circulatory system, and further analyzed the significantly differentially expressed mRNA in platelets after infection with SARS-CoV-2 on the basis of previous studies. The top eight hub genes were identified as NLRP3, MT-CO1, CD86, ICAM1, MT-CYB, CASP8, CXCL8 and CXCR4. Subsequently, the effects of SARS-CoV-2 infection on platelet transcript abnormalities and platelet dysfunction were further explored on the basis of 8 hub genes. Finally, the treatment measures of complications caused by platelet dysfunction in patients with COVID-19 were discussed in detail, so as to provide reference for the prevention, diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyong Tan
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Huanhuan Zheng
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Yuan
- Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Qijun Ran
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China -
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Ren L, Zhang Y, Wu J. Association between urinary metals and prostate-specific antigen in aging population with depression: a cross-sectional study. Front Public Health 2024; 12:1401072. [PMID: 38846601 PMCID: PMC11153824 DOI: 10.3389/fpubh.2024.1401072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aims to investigate the impact of depression and urinary metals on Prostate-Specific Antigen (PSA). Methods Analysis was conducted on 1901 samples collected from the National Health and Nutrition Examination Survey (NHANES) database between 2001 and 2010. Analytical methods included stepwise multiple linear regression (MLR) analysis of the overall population's urinary metals and PSA relationship, analysis of urinary metals and PSA relationship in older adults and BMI subgroups, analysis of urinary metals and PSA relationship in the depressed population, and restricted cubic spline (RCS) analysis. A significance level of p < 0.05 was considered statistically significant. Results In the stepwise multiple linear regression, beryllium (Be) showed a dose-response association with PSA (third quartile: β = 0.05, 95%CI (0.02, 0.09); fourth quartile: β = 0.07, 95%CI (0.02, 0.12), p trend = 0.048). Subgroup analysis indicated that in individuals aged >60, Be at Q4 level [β = 0.09, 95%CI (0.05, 0.21)] exhibited a dose-response correlation with PSA. In the population with 25 ≤ BMI < 30, Be might more significantly elevate PSA, with Q4 level having a pronounced impact on PSA levels [β = 0.03, 95%CI (0.02, 1.27)]. In the depressed population, urinary cadmium (Cd) levels showed a significant positive dose-response relationship, with Q4 level of Cd having the maximum impact on PSA [β = 0.3, 95%CI (0.09, 0.49)]. Conclusion Individuals exposed to beryllium (Be), especially the older adults and overweight, should monitor their PSA levels. In depressed patients, cadmium (Cd) levels may further elevate PSA levels, necessitating increased monitoring of PSA levels among males.
Collapse
Affiliation(s)
- Liquan Ren
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Yue Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jinyi Wu
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Tessema B, Haag J, Sack U, König B. Analysis of Cellular Stress Assay Parameters and Intracellular ATP in Platelets: Comparison of Platelet Preparation Methods. Int J Mol Sci 2024; 25:4885. [PMID: 38732108 PMCID: PMC11084208 DOI: 10.3390/ijms25094885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Platelets are metabolically active, anucleated and small circulating cells mainly responsible for the prevention of bleeding and maintenance of hemostasis. Previous studies showed that platelets mitochondrial content, function, and energy supply change during several diseases such as HIV/AIDS, COVID-19, pulmonary arterial hypertension, and in preeclampsia during pregnancy. These changes in platelets contributed to the severity of diseases and mortality. In our previous studies, we have shown that the seahorse-based cellular stress assay (CSA) parameters are crucial to the understanding of the mitochondrial performance in peripheral blood mononuclear cells (PBMCS). Moreover, the results of CSA parameters were significantly influenced by the PBMC preparation methods. In this study, we assessed the correlation of CSA parameters and intracellular ATP content in platelets and evaluated the effects of platelet preparation methods on the results of CSA parameters and intracellular ATP content. We compared the results of CSA parameters and intracellular ATP content in platelets isolated by density centrifugation with Optiprep and simple centrifugation of blood samples without Optiprep. Platelets isolated by centrifugation with Optiprep showed a higher spare capacity, basal respiration, and maximal respiration than those isolated without Optiprep. There was a clear correlation between basal respiration and maximal respiration, and the whole-ATP content in both isolation methods. Moreover, a positive correlation was observed between the relative spare capacity and whole-cell ATP content. In conclusion, the results of seahorse-based CSA parameters and intracellular ATP content in platelets are markedly influenced by the platelet isolation methods employed. The results of basal respiration and maximal respiration are hallmarks of cellular activity in platelets, and whole-cell ATP content is a potential hint for basic platelet viability. We recommend further studies to evaluate the role of CSA parameters and intracellular ATP content in platelets as biomarkers for the diagnosis and prediction of disease states.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
- Magdeburg Molecular Detections GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Janine Haag
- Magdeburg Molecular Detections GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Magdeburg Molecular Detections GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Wang Q, Qin Y, Ma J, Zhou K, Xia G, Li Y, Xie L, Afful RG, Lan Q, Huo X, Zou J, Yang H. An early warning indicator of mortality risk in patients with COVID-19: the neutrophil extracellular traps/neutrophilic segmented granulocyte ratio. Front Immunol 2024; 15:1287132. [PMID: 38348024 PMCID: PMC10859410 DOI: 10.3389/fimmu.2024.1287132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) play a key role in thrombus formation in patients with coronavirus disease 2019 (COVID-19). However, the existing detection and observation methods for NETs are limited in their ability to provide quantitative, convenient, and accurate descriptions of in situ NETs. Therefore, establishing a quantitative description of the relationship between NETs and thrombosis remains a challenge. Objective We employed morphological observations of blood cells and statistical analyses to investigate the correlation between the NETs/neutrophilic segmented granulocyte ratio and mortality risk in patients with COVID-19. Methods Peripheral blood samples were collected from 117 hospitalized patients with COVID-19 between November 2022 and February 2023, and various blood cell parameters were measured. Two types of smudge cells were observed in the blood and counted: lymphatic and neutral smudge cells. Statistical data analysis was used to establish COVID-19 mortality risk assessment indicators. Results Morphological observations of neutrophilic smudge cells revealed swelling, eruption, and NETs formation in the neutrophil nuclei. Subsequently, the NETs/neutrophilic segmented granulocyte ratio (NNSR) was calculated. A high concentration of NETs poses a fatal risk for thrombus formation in patients. Statistical analysis indicated that a high NNSR was more suitable for evaluating the risk of death in patients with COVID-19 compared to elevated fibrinogen (FIB) and D-dimer (DD) levels. Conclusion Observing blood cell morphology is an effective method for the detection of NETs, NNSR are important markers for revealing the mortality risk of patients with COVID-19.
Collapse
Affiliation(s)
- Qiong Wang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yu Qin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingyun Ma
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Kehao Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guiping Xia
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ya Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Xie
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qian Lan
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Xingyu Huo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Zou
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Sütő R, Pócsi M, Fagyas M, Kalina E, Fejes Z, Szentkereszty Z, Kappelmayer J, Nagy Jr. B. Comparison of Different Vascular Biomarkers for Predicting In-Hospital Mortality in Severe SARS-CoV-2 Infection. Microorganisms 2024; 12:229. [PMID: 38276214 PMCID: PMC10820061 DOI: 10.3390/microorganisms12010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Severe SARS-CoV-2 elicits a hyper-inflammatory response that results in intravascular inflammation with endothelial injury, which contributes to increased mortality in COVID-19. To predict the outcome of severe SARS-CoV-2 infection, we analyzed the baseline level of different biomarkers of vascular disorders in COVID-19 subjects upon intensive care unit (ICU) admission and prior to any vaccination. A total of 70 severe COVID-19 patients (37 survivors and 33 non-survivors) were included with 16 age- and sex-matched controls. Vascular dysfunction was monitored via soluble VCAM-1, E-selectin, ACE2 and Lp-PLA2, while abnormal platelet activation was evaluated by soluble P-selectin and CD40L in parallel. These results were correlated with routine laboratory parameters and disease outcomes. Among these parameters, VCAM-1 and ACE2 showed significantly higher serum levels in COVID-19 patients with early death vs. convalescent subjects. VCAM-1 was significantly correlated with the Horowitz index (r = 0.3115) and IL-6 (r = 0.4599), while ACE2 was related to E-selectin (r = 0.4143) and CD40L (r = 0.2948). Lp-PLA2 was altered in none of these COVID-19 subcohorts and showed no relationship with the other parameters. Finally, the pre-treatment level of VCAM-1 (≥1420 ng/mL) and ACE2 activity (≥45.2 μU/mL) predicted a larger risk for mortality (Log-Rank p = 0.0031 and p = 0.0117, respectively). Vascular dysfunction with endothelial cell activation is linked to lethal COVID-19, and highly elevated soluble VCAM-1 and ACE2 at admission to ICU may predict unfavorable outcomes.
Collapse
Affiliation(s)
- Renáta Sütő
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.S.); (M.P.); (E.K.); (Z.F.); (J.K.)
- Doctoral School of Kalman Laki, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Gyula Kenézy Campus, Intensive Care Unit, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.S.); (M.P.); (E.K.); (Z.F.); (J.K.)
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Edit Kalina
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.S.); (M.P.); (E.K.); (Z.F.); (J.K.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.S.); (M.P.); (E.K.); (Z.F.); (J.K.)
| | - Zoltán Szentkereszty
- Gyula Kenézy Campus, Intensive Care Unit, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.S.); (M.P.); (E.K.); (Z.F.); (J.K.)
| | - Béla Nagy Jr.
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (R.S.); (M.P.); (E.K.); (Z.F.); (J.K.)
| |
Collapse
|
9
|
Hirsch J, Uzun G, Zlamal J, Singh A, Bakchoul T. Platelet-neutrophil interaction in COVID-19 and vaccine-induced thrombotic thrombocytopenia. Front Immunol 2023; 14:1186000. [PMID: 37275917 PMCID: PMC10237318 DOI: 10.3389/fimmu.2023.1186000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is known to commonly induce a thrombotic diathesis, particularly in severely affected individuals. So far, this COVID-19-associated coagulopathy (CAC) has been partially explained by hyperactivated platelets as well as by the prothrombotic effects of neutrophil extracellular traps (NETs) released from neutrophils. However, precise insight into the bidirectional relationship between platelets and neutrophils in the pathophysiology of CAC still lags behind. Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare autoimmune disorder caused by auto-antibody formation in response to immunization with adenoviral vector vaccines. VITT is associated with life-threatening thromboembolic events and thus, high fatality rates. Our concept of the thrombophilia observed in VITT is relatively new, hence a better understanding could help in the management of such patients with the potential to also prevent VITT. In this review we aim to summarize the current knowledge on platelet-neutrophil interplay in COVID-19 and VITT.
Collapse
Affiliation(s)
- Johannes Hirsch
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Günalp Uzun
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Jan Zlamal
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anurag Singh
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|