1
|
Geoffroy K, Mullins-Dansereau V, Leclerc-Desaulniers K, Viens M, Bourgeois-Daigneault MC. Oncolytic vesicular stomatitis virus alone or in combination with JAK inhibitors is effective against ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200826. [PMID: 39006945 PMCID: PMC11246050 DOI: 10.1016/j.omton.2024.200826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Therapy-resistant ovarian cancers have a poor prognosis and novel effective treatment options are urgently needed. In this study, we evaluated the therapeutic efficacy of the oncolytic vesicular stomatitis virus (VSV) against a panel of patient-derived ovarian cancer cell lines of all epithelial subtypes. Notably, we found that most of the cell lines were sensitive to VSV virotherapy. With the objective of improving treatment efficacy for the oncolytic virus-resistant cell lines, we tested various combinations with ovarian cancer standard of care drugs: olaparib, carboplatin, paclitaxel, doxorubicin, cyclophosphamide, and gemcitabine. While none of these combinations revealed to be beneficial, further experiments demonstrated that the antiviral interferon pathway was functional in VSV-resistant cell lines. Given that interferons signal through Janus kinase (JAK)-STAT to mediate their antiviral function, we tested combinations of oncolytic VSV with clinically relevant JAK inhibitors. Our results show that combining VSV with various JAK inhibitors, including ruxolitinib, enhances VSV virotherapy and treatment efficacy. Altogether, we show that VSV, either as a stand-alone treatment or in combination with JAK inhibitors provides an effective therapeutic option for ovarian cancer patients.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Victor Mullins-Dansereau
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Kim Leclerc-Desaulniers
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mélissa Viens
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Li QY, Zhu RR, Yu HY, Liu CL, Diao FY, Jiang YQ, Lin YQ, Li XT, Wang WJ. Multifunctional targeting of docetaxel plus bakuchiol micelles in the treatment of invasion and metastasis of ovarian cancer. Biomed Mater 2024; 19:065002. [PMID: 39208838 DOI: 10.1088/1748-605x/ad7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG5000-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV. The surface modification with HA facilitates tumor penetration into the tumor interior, while the incorporation of DSPE-PEG2000-PVGLIG-PEG5000helps conceal DSPE-PEG2000-HA, reducing off-target effects and prolonging drug circulation timein vivo. Bothin vitroandin vivoexperiments demonstrated that these micelles effectively inhibit proliferation, invasion, and metastasis of OC cells while promoting apoptosis. Therefore, our findings suggest that PP-HA-DTX/BAK micelles represent a safe and effective therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qi-Yan Li
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ri-Ran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong 250011, People's Republic of China
| | - Hai-Ying Yu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Chun-Lin Liu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Fei-Yan Diao
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ya-Qi Jiang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Xue-Tao Li
- Liaoning University of Traditional Chinese Medicine, School of Pharmacy, Dalian 116600, People's Republic of China
| | - Wei-Jian Wang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| |
Collapse
|
3
|
Madaan V, Kollara A, Spaner D, Brown TJ. ISGylation enhances dsRNA-induced interferon response and NFκB signaling in fallopian tube epithelial cells. J Biol Chem 2024; 300:107686. [PMID: 39159817 PMCID: PMC11418117 DOI: 10.1016/j.jbc.2024.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Heritable mutations in BRCA1 associate with increased risk of high-grade serous tubo-ovarian cancer. Nongenetic risk factors associated with this cancer, which arises from fallopian tube epithelial (FTE) cells, suggests a role for repetitive ovulation wherein FTE cells are exposed to inflammatory signaling molecules within follicular fluid. We previously reported increased NFκB and EGFR signaling in BRCA1-deficient primary FTE cells, with follicular fluid exposure further increasing abundance of interferon-stimulated gene (ISG) transcripts, including the ubiquitin-like protein ISG15 and other ISGylation pathway members. Both NFκB and type I interferon signaling are upregulated by stimulation of cGAS-STING or MDA5 and RIGI pattern recognition receptors. Since some pattern recognition receptors and their signal transduction pathway members are ISGylated, we tested the impact of ISG15 and ISGylation on interferon regulatory factor 3 (IRF3) and NFκB signaling through cGAS-STING or RIGI and MDA5 activation. Expression of ISG15 or UBA7, the E1-like ISG15-activating enzyme, in immortalized FTE cells was disrupted by CRISPR gene editing. Activation of IRF3 by RIGI or MDA5 but not cGAS-STING was attenuated by loss of either ISG15 or UBA7 and this was reflected by a similar effect on NFκB activation and downstream targets. Loss of ISGylation decreased levels of both MDA5 and RIGI, with knockdown of RIGI but not MDA5, decreasing IRF3 and NFκB activation in parental cells. These finding indicate that ISGylation enhances the ability of dsRNA to activate cytokine release and proinflammatory signaling. Further work to explore ISGylation as a target for prevention of high-grade serous tubo-ovarian cancer in BRCA1 mutation carriers is warranted.
Collapse
Affiliation(s)
- Vidushi Madaan
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Kollara
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - David Spaner
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Mohamed NE, Abdel Fattah NF, Seadawy MG, Lymona AM, Nasr SS, El Leithy AA, Abdelwahed FM, Nassar A. The clinical importance of IFN-γ and human epididymis protein 4 in Egyptian patients with epithelial ovarian cancer combined with HPV infection. Hum Immunol 2024; 85:111089. [PMID: 39173571 DOI: 10.1016/j.humimm.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND High-grade Epithelial Ovarian Cancer (HGEOC) is an aggressive disease that usually presents at an advanced stage. Thus, detecting the circulating cytokines (IFNγ and TNF-α) may serve as a biomarker to identify malignancy and manage therapeutic decisions. OBJECTIVES Assessing the clinical importance of inflammatory mediators and tumor markers in EOC Egyptian patients compared with benign cases. Moreover, identifying the distinct inflammatory mediators in EOC patients combined with HPV infection. METHODS This study was conducted on 61 Egyptian patients, divided into 25 patients with HGEOC, 22 patients with LGEOC, and 14 benign ovarian tumor cases. Measurements of serum HE4, CA125, CEA, and CA19-9 were determined by Roche Elecsys immunoassays. Serum levels of TNF-α and IFN-γ were measured using quantitative sandwich ELISA. Quantitative genotyping of HPV DNA types 16, 18, and 45 was assessed for the HPV DNA-positive samples. RESULTS HPV DNA was detected in 25.53 % of malignant cases, HPV 16 was detected in 50 % of HPV-positive cases, and only 1 case of HPV 18 was detected out of 12 positive cases. The Human Epididymis protein 4 (HE4) was statistically different between patients with EOC and benign cases (p-value = 0.007) and between HPV DNA positive and HPV DNA negative cases (p-value = 0.008). The serum levels of IFN- γ were statistically different between HGEOC and LGEOC (p-value < 0.001), while the serum levels of TNF-α didn't differ statistically between the two groups. CONCLUSION IFN-γ could be used as a biomarker to discriminate HGEOC and LGEOC. Initial evidence for the possible association between HE4 and the progression of HPV-associated EOC was speculated.
Collapse
Affiliation(s)
- Nourhan E Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nasra F Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed G Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| | - Ahmed M Lymona
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sarah S Nasr
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Fatma M Abdelwahed
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Auhood Nassar
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
6
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
7
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
8
|
Sahnane N, Libera L, Facchi S, Carnevali I, Ronchi S, Albeni C, Cromi A, Casarin J, Sessa F, Tibiletti MG. Similarities and differences in gene expression profiles of BRCA1 methylated and mutated epithelial ovarian cancers. Front Oncol 2023; 13:1268127. [PMID: 37854675 PMCID: PMC10579792 DOI: 10.3389/fonc.2023.1268127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction BRCA1 methylated (BRCA1met) epithelial ovarian cancer (EOC) is a recently defined and not well-investigated subset of neoplasms. To date, no studies have focused on the transcriptional profiles of BRCA1met cases, and, as a matter of fact, we still do not know if this subset of EOCs is similar, and to what extent, to BRCA1 mutated (BRCA1mut) cases. Methods We compared a group of 17 BRCA1met cases against 10 BRCA1mut cases using a subset of carefully selected 17 BRCAwt EOCs as a control group. Results First, BRCA1met cases showed a downregulation of the relative transcript, while this association was not observed for BRCA1mut EOCs. The BRCA1met group exhibited a general upregulation of homologous recombination (HR)-related genes, as well as BRCA1mut. Overall, BRCA1met had a different gene expression profile, characterized by diffuse downregulation, whereas BRCA1mut showed a general upregulation (p < 0.0001). Both BRCA1-defective groups showed a slightly activated immune response mediated by interferon (IFN) gamma pathways. Discussion In conclusion, even if the expression profile of many genes related to DNA damage and repair system is shared between BRCA1mut and BRCA1met EOCs supporting that BRCA1met EOCs may benefit from PARPi therapies, our data demonstrate that BRCA1mut and BRCA1met EOCs show different expression profiles, suggesting a different mechanism of carcinogenesis that can be reflected in different responses to therapies and disease recovery.
Collapse
Affiliation(s)
- Nora Sahnane
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Laura Libera
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sofia Facchi
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Susanna Ronchi
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Chiara Albeni
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
| | - Antonella Cromi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Jvan Casarin
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria Grazia Tibiletti
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Ma H, Qi G, Han F, Gai P, Peng J, Kong B. HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal 2023; 21:144. [PMID: 37328851 PMCID: PMC10273509 DOI: 10.1186/s12964-023-01172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/21/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Ovarian cancer, particularly epithelial ovarian cancer (EOC), is the leading cause of cancer-related mortality among women. Our previous study revealed that high HMGB3 levels are associated with poor prognosis and lymph node metastasis in patients with high-grade serous ovarian carcinoma; however, the role of HMGB3 in EOC proliferation and metastasis remains unknown. METHODS MTT, clonogenic, and EdU assays were used to assess cell proliferation. Transwell assays were performed to detect cell migration and invasion. Signaling pathways involved in HMGB3 function were identified by RNA sequencing (RNA-seq). MAPK/ERK signaling pathway protein levels were evaluated by western blot. RESULTS HMGB3 knockdown inhibited ovarian cancer cell proliferation and metastasis, whereas HMGB3 overexpression facilitated these processes. RNA-seq showed that HMGB3 participates in regulating stem cell pluripotency and the MAPK signaling pathway. We further proved that HMGB3 promotes ovarian cancer stemness, proliferation, and metastasis through activating the MAPK/ERK signaling pathway. In addition, we demonstrated that HMGB3 promotes tumor growth in a xenograft model via MAPK/ERK signaling. CONCLUSIONS HMGB3 promotes ovarian cancer malignant phenotypes and stemness through the MAPK/ERK signaling pathway. Targeting HMGB3 is a promising strategy for ovarian cancer treatment that may improve the prognosis of women with this disease. Video Abstract.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, 265200, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|