1
|
Tang J, Zhang Y, Liu X, Lin Y, Liang L, Li X, Casals G, Zhou X, Casals E, Zeng M. Versatile Antibacterial and Antioxidant Bacterial Cellulose@Nanoceria Biotextile: Application in Reusable Antimicrobial Face Masks. Adv Healthc Mater 2024; 13:e2304156. [PMID: 38271691 DOI: 10.1002/adhm.202304156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Despite considerable interest in medical and pharmaceutical fields, there remains a notable absence of functional textiles that concurrently exhibit antibacterial and antioxidant properties. Herein, a new composite fabric constructed using nanostructured bacterial cellulose (BC) covalently-linked with cerium oxide nanoparticles (BC@CeO2NPs) is introduced. The synthesis of CeO2NPs on the BC is performed via a microwave-assisted, in situ chemical deposition technique, resulting in the formation of mixed valence Ce3+/Ce4+ CeO2NPs. This approach ensures the durability of the composite fabric subjected to multiple washing cycles. The Reactive oxygen species (ROS) scavenging activity of CeO2NPs and their rapid and efficient eradication of >99% model microbes, such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus remain unaltered in the composite. To demonstrate the feasibility of incorporating the fabric in marketable products, antimicrobial face masks are fabricated with filter layers made of BC@CeO2NPs cross-linked with propylene or cotton fibers. These masks exhibit complete inhibition of bacterial growth in the three bacterial strains, improved breathability compared to respirator masks and enhanced filtration efficiency compared to single-use surgical face masks. This study provides valuable insights into the development of functional BC@CeO2NPs biotextiles in which design can be extended to the fabrication of medical dressings and cosmetic products with combined antibiotic, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Lihua Liang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xiaofang Li
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari and The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Villarroel, 170, Barcelona, 08036, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, 08007, Spain
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, State Key Lab of Genetic Engineering, Fudan University, Shanghai, 200011, China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| |
Collapse
|
2
|
Zeng M, Zhang X, Tang J, Liu X, Lin Y, Guo D, Zhang Y, Ju S, Fernández-Varo G, Wang YC, Zhou X, Casals G, Casals E. Conservation of the enzyme-like activity and biocompatibility of CeO 2 nanozymes in simulated body fluids. NANOSCALE 2023; 15:14365-14379. [PMID: 37609757 DOI: 10.1039/d3nr03524g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cerium oxide nanozymes (CeO2NZs) are attracting vast attention due to their antioxidant and catalytic properties and mimic the activities of multiple endogenous enzymes. However, as is the case for nanomedicines in general, the success in showing their unique medical applications has not been matched by an understanding of their pharmacokinetics, which is delaying their implementation in clinical settings. Furthermore, the data of their modifications in body fluids and the impact on their activity are scarce. Herein, two types of widely used CeO2NZs, electrostatically stabilized and coated with a mesoporous silica shell, were exposed to simulated saliva and lung, gastric and intestinal fluids, and cell culture media. Their physicochemical modifications and bioactivity were tracked over time up to 15 days combining the data of different characterization techniques and biological assays. The results show that the biocompatibility and antioxidant activity are retained in all cases despite the different evolution behaviors in different fluids, including agglomeration. This work provides an experimental basis from a pharmacokinetic perspective that supports the therapeutic effectiveness of CeO2NZs observed in vivo for the treatment of many conditions related to chronic inflammation and cancer, and suggests that they can be safely administered through different portals of entry including intravenous injection, oral ingestion or inhalation.
Collapse
Affiliation(s)
- Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Dongdong Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Barcelona 08036, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ya-Chao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, State Key Lab of Genetic Engineering, Fudan University, Shanghai 200011, China.
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Barcelona 08036, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona 08007, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
3
|
Ernst LM, Mondragón L, Ramis J, Gustà MF, Yudina T, Casals E, Bastús NG, Fernández-Varo G, Casals G, Jiménez W, Puntes V. Exploring the Long-Term Tissue Accumulation and Excretion of 3 nm Cerium Oxide Nanoparticles after Single Dose Administration. Antioxidants (Basel) 2023; 12:765. [PMID: 36979013 PMCID: PMC10045098 DOI: 10.3390/antiox12030765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Nanoparticle (NP) pharmacokinetics significantly differ from traditional small molecule principles. From this emerges the need to create new tools and concepts to harness their full potential and avoid unnecessary risks. Nanoparticle pharmacokinetics strongly depend on size, shape, surface functionalisation, and aggregation state, influencing their biodistribution, accumulation, transformations, and excretion profile, and hence their efficacy and safety. Today, while NP biodistribution and nanoceria biodistribution have been studied often at short times, their long-term accumulation and excretion have rarely been studied. In this work, 3 nm nanoceria at 5.7 mg/kg of body weight was intravenously administrated in a single dose to healthy mice. Biodistribution was measured in the liver, spleen, kidney, lung, brain, lymph nodes, ovary, bone marrow, urine, and faeces at different time points (1, 9, 30, and 100 days). Biodistribution and urinary and faecal excretion were also studied in rats placed in metabolic cages at shorter times. The similarity of results of different NPs in different models is shown as the heterogeneous nanoceria distribution in organs. After the expectable accumulation in the liver and spleen, the concentration of cerium decays exponentially, accounting for about a 50% excretion of cerium from the body in 100 days. Cerium ions, coming from NP dissolution, are most likely excreted via the urinary tract, and ceria nanoparticles accumulated in the liver are most likely excreted via the hepatobiliary route. In addition, nanoceria looks safe and does not damage the target organs. No weight loss or apathy was observed during the course of the experiments.
Collapse
Affiliation(s)
- Lena M. Ernst
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Laura Mondragón
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Joana Ramis
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Muriel F. Gustà
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tetyana Yudina
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Eudald Casals
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Neus G. Bastús
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Wladimiro Jiménez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Victor Puntes
- Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
4
|
Szucs AM, Maddin M, Brien D, Rateau R, Rodriguez-Blanco JD. The role of nanocerianite (CeO 2) in the stability of Ce carbonates at low-hydrothermal conditions. RSC Adv 2023; 13:6919-6935. [PMID: 36865577 PMCID: PMC9972569 DOI: 10.1039/d3ra00519d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
The formation of cerianite (CeO2) was investigated at low hydrothermal conditions (35-205 °C) via two experimental settings: (1) crystallisation from solution experiments, and (2) replacement of Ca-Mg carbonates (calcite, dolomite, aragonite) mediated by Ce-bearing aqueous solutions. The solid samples were studied with a combination of powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results revealed a multi-step crystallisation pathway: amorphous Ce carbonate → Ce-lanthanite [Ce2(CO3)3·8H2O] → Ce-kozoite [orthorhombic CeCO3(OH)] → Ce-hydroxylbastnasite [hexagonal CeCO3(OH)] → cerianite [CeO2]. We found that Ce carbonates can decarbonise in the final stage of the reaction, forming cerianite which significantly increases the porosity of the solids. The redox behaviour of Ce combined with the temperature, and the availability of CO2 3- govern this crystallisation sequence, the sizes, morphologies, and crystallisation mechanisms of the solid phases. Our results explain the occurrence and behaviour of cerianite in natural deposits. These findings also present a simple, environmental-friendly, and cost-efficient method for the synthesis of Ce carbonates and cerianite with tailored structures and chemistries.
Collapse
Affiliation(s)
- Adrienn Maria Szucs
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Melanie Maddin
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Daniel Brien
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Remi Rateau
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | | |
Collapse
|
5
|
Badia A, Duarri A, Salas A, Rosell J, Ramis J, Gusta MF, Casals E, Zapata MA, Puntes V, García-Arumí J. Repeated Topical Administration of 3 nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS NANO 2023; 17:910-926. [PMID: 36596252 DOI: 10.1021/acsnano.2c05447] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increased oxidative stress in the retina and retinal pigment epithelium is implicated in age-related macular degeneration (AMD). Antioxidant cerium oxide nanoparticles (CeO2NPs) have been used to treat degenerative retinal pathologies in animal models, although their delivery route is not ideal for chronic patient treatment. In this work, we prepared a formulation for ocular topical delivery that contains small (3 nm), nonaggregated biocompatible CeO2NPs. In vitro results indicate the biocompatible and protective character of the CeO2NPs, reducing oxidative stress in ARPE19 cells and inhibiting neovascularization related to pathological angiogenesis in both HUVEC and in in vitro models of neovascular growth. In the in vivo experiments, we observed the capacity of CeO2NPs to reach the retina after topical delivery and a subsequent reversion of the altered retinal transcriptome of the retinal degenerative mouse model DKOrd8 toward that of healthy control mice, together with signs of decreased inflammation and arrest of degeneration. Furthermore, CeO2NP eye drops' treatment reduced laser-induced choroidal neovascular lesions in mice by lowering VEGF and increasing PEDF levels. These results indicate that CeO2NP eye drops are a beneficial antioxidant and neuroprotective treatment for both dry and wet forms of AMD disease.
Collapse
Affiliation(s)
- Anna Badia
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Salas
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Jordi Rosell
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Joana Ramis
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Muriel Freixanet Gusta
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Miguel A Zapata
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| | - Victor Puntes
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, 08010,Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Josep García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| |
Collapse
|
6
|
Galyamin D, Ernst LM, Fitó-Parera A, Mira-Vidal G, Bastús NG, Sabaté N, Puntes V. Nanoceria dissolution at acidic pH by breaking off the catalytic loop. NANOSCALE 2022; 14:14223-14230. [PMID: 36125109 PMCID: PMC9536484 DOI: 10.1039/d2nr03586c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This manuscript proves the reproducibility and robustness of cerium oxide nanoparticles, nanoceria, employed as a chemical reagent with oxidizing capacity (as an electron sink) at acidic pH. Unlike nanoceria multi-enzyme-mimetic capabilities at neutral or high pH, nanoceria can behave as a stoichiometric reagent at low pH where insoluble Ce4+ ions transform into soluble Ce3+ in the nanocrystal that finally dissolves. This behaviour can be interpreted as enzyme-like when nanoceria is in excess with respect to the substrate. Under these conditions, the Ce3+/Ce4+ ratio in the NPs can easily be estimated by titration with ferrocyanide. This procedure could become a rapid assessment tool for evaluating nanoceria capacity in liquid environments.
Collapse
Affiliation(s)
- Dmitry Galyamin
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC). C/dels Til·lers, Campus Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Lena M Ernst
- Vall d'Hebron Research Institute (VHIR). Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 129, 08035 Barcelona, Spain.
| | - Aina Fitó-Parera
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC). C/dels Til·lers, Campus Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Guillem Mira-Vidal
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST). Campus UAB, 08193, Barcelona, Spain
| | - Neus G Bastús
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST). Campus UAB, 08193, Barcelona, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC). C/dels Til·lers, Campus Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Victor Puntes
- Vall d'Hebron Research Institute (VHIR). Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 129, 08035 Barcelona, Spain.
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST). Campus UAB, 08193, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
| |
Collapse
|