1
|
Wang Q, Wang L, Sheng L, Zhang B, Jieensi B, Zheng S, Liu Y. Correlation between PD-1/PD-L1 and RANKL/OPG in chronic apical periodontitis model of Sprague-Dawley rats. Odontology 2024; 112:1113-1122. [PMID: 38528238 DOI: 10.1007/s10266-024-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Chronic apical periodontitis (CAP) is characterized by inflammation and destruction of the apical periodontium that is of pulpal origin, appearing as an apical radiolucent area, and does not produce clinical symptoms. Little is known about whether the PD-1/PD-L1 ratio is associated with the balance between RANKL and OPG in CAP. The relationship between PD-1/PD-L1 and RANKL/OPG in CAP is investigated in this study. A CAP rat model was established using Sprague-Dawley rats. The pulp chambers were exposed to the oral cavity to allow bacterial contamination. The apical tissues of the bilateral mandibular first molars were analyzed for histological morphology using hematoxylin and eosin (H&E) staining. Immunohistochemistry and qRT-PCR were used to determine the expression of PD-1, PD-L1, OPG, and RANKL mRNA and proteins in periapical tissues and mandibular samples, respectively. The radiological images indicated a poorly defined low-density shadow and alveolar bone resorption after periodontitis induction. Histological analysis revealed an infiltration of inflammatory cells and alveolar bone resorption in the periapical tissues. Mandibular mRNA and periapical protein expression of PD-1, PD-L1, and RANKL was upregulated 7-28 days after periodontitis induction, while the expression of OPG was downregulated. No significant relationship was observed between PD-1/PD-L1 and RANKL/OPG at either mRNA or protein levels in CAP. There is an increased expression of PD-1, PD-L1, and RANKL and a decreased expression of OPG, indicating progression of CAP.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pediatric Dentistry and Oral Prevention, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No.137, Liyushan Road, Xinshi District, UrumqiXinjiang, 830000, China
| | - Liping Wang
- Department of Pediatric Dentistry and Oral Prevention, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No.137, Liyushan Road, Xinshi District, UrumqiXinjiang, 830000, China
| | - Li Sheng
- Department of Pediatric Dentistry and Oral Prevention, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No.137, Liyushan Road, Xinshi District, UrumqiXinjiang, 830000, China
| | - Bei Zhang
- Department of Pediatric Dentistry and Oral Prevention, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No.137, Liyushan Road, Xinshi District, UrumqiXinjiang, 830000, China
| | | | - Shutao Zheng
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Yishan Liu
- Department of Pediatric Dentistry and Oral Prevention, The First Affiliated Hospital of Xinjiang Medical University (The Affiliated Stomatology Hospital of Xinjiang Medical University), No.137, Liyushan Road, Xinshi District, UrumqiXinjiang, 830000, China.
| |
Collapse
|
2
|
Pu D, Zhang HE, Li L. Immune-related osteoblastic bone alterations mimicking bone metastasis in a small-cell lung cancer patient treated with durvalumab: a case report. Transl Lung Cancer Res 2024; 13:2043-2049. [PMID: 39263033 PMCID: PMC11384499 DOI: 10.21037/tlcr-24-461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Background Chemotherapy combined with immunotherapy is currently the standard first-line treatment for advanced small-cell lung cancer (SCLC). Immunotherapy can induce specific adverse events, called immune-related adverse events (irAEs). IrAEs of bones have rarely been reported. However, identifying bone irAEs could be important in avoiding misdiagnosis and ensuring appropriate patient management. This is the first report describing the diagnosis of irAEs of osteoblastic bone changes mimicking bone metastasis in a SCLC patient treated with durvalumab. Case Description In this report, we describe a unique and challenging case in which a 54-year-old female patient with SCLC treated with durvalumab, an immunotherapy drug, exhibited osteoblastic bone changes that appeared similar to bone metastasis on imaging but were actually a side effect of immunotherapy. Before treatment, imaging revealed no bone metastasis. In the third month after treatment with durvalumab, computed tomography (CT) revealed multiple bone alterations, predominantly osteoblastic lesions with minor osteolytic changes. Various imaging tests suggested bone metastasis, but she had no symptoms related to bone disease. Notably, the lesions in the chest had achieved a partial response. Based on a comprehensive analysis of the CT-guided pathological biopsy results, the patient's symptoms, and the biological characteristics of SCLC, we determined that these bone changes were irAEs occurring in the skeletal system. The patient was followed up for 10 months, during which time the bone lesions remained stable. Conclusions IrAEs of bones are rare, and their manifestations vary. Sometimes, the imaging manifestations of bone irAEs are difficult to distinguish from bone metastasis. If patients show variable treatment responses between different lesions, careful evaluation (including a pathological biopsy) is necessary.
Collapse
Affiliation(s)
- Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong-E Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang J, Yan L, Wang X, Jia R, Guo J. Surface PD-1 expression in T cells is suppressed by HNRNPK through an exonic splicing silencer on exon 3. Inflamm Res 2024; 73:1123-1135. [PMID: 38698180 DOI: 10.1007/s00011-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE Immunotherapy targeting programmed cell death 1 (PDCD1 or PD-1) and its ligands has shown remarkable promise and the regulation mechanism of PD-1 expression has received arising attention in recent years. PDCD1 exon 3 encodes the transmembrane domain and the deletion of exon 3 produces a soluble protein isoform of PD-1 (sPD-1), which can enhance immune response by competing with full-length PD-1 protein (flPD-1 or surface PD-1) on T cell surface. However, the mechanism of PDCD1 exon 3 skipping is unclear. METHODS The online SpliceAid program and minigene expression system were used to analyze potential splicing factors involved in the splicing event of PDCD1 exon 3. The potential binding motifs of heterogeneous nuclear ribonucleoprotein K (HNRNPK) on exon 3 predicted by SpliceAid were mutated by site-directed mutagenesis technology, which were further verified by pulldown assay. Antisense oligonucleotides (ASOs) targeting the exonic splicing silencer (ESS) on PDCD1 exon 3 were synthesized and screened to suppress the skipping of exon 3. The alternative splicing of PDCD1 exon 3 was analyzed by semiquantitative reverse transcription PCR. Western blot and flow cytometry were performed to detect the surface PD-1 expression in T cells. RESULTS HNRNPK was screened as a key splicing factor that promoted PDCD1 exon 3 skipping, causing a decrease in flPD-1 expression on T cell membrane and an increase in sPD-1 expression. Mechanically, a key ESS has been identified on exon 3 and can be bound by HNRNPK protein to promote exon 3 skipping. Blocking the interaction between ESS and HNRNPK with an ASO significantly reduced exon 3 skipping. Importantly, HNRNPK can promote exon 3 skipping of mouse Pdcd1 gene as well. CONCLUSIONS Our study revealed a novel evolutionarily conserved regulatory mechanism of PD-1 expression. The splicing factor HNRNPK markedly promoted PDCD1 exon 3 skipping by binding to the ESS on PDCD1 exon 3, resulting in decreased expression of flPD-1 and increased expression of sPD-1 in T cells.
Collapse
Affiliation(s)
- Jiayun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lingyan Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Joseph GJ, Johnson DB, Johnson RW. Immune checkpoint inhibitors in bone metastasis: Clinical challenges, toxicities, and mechanisms. J Bone Oncol 2023; 43:100505. [PMID: 37842554 PMCID: PMC10568292 DOI: 10.1016/j.jbo.2023.100505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the field of anti-cancer therapy over the last decade; they provide durable clinical responses against tumors by inhibiting immune checkpoint proteins that canonically regulate the T cell-mediated immune response. Despite their success in many primary tumors and soft tissue metastases, ICIs function poorly in patients with bone metastases, and these patients do not have the same survival benefit as patients with the same primary tumor type (e.g., non-small cell lung cancer [NSCLC], urothelial, renal cell carcinoma [RCC], etc.) that has not metastasized to the bone. Additionally, immune-related adverse events including rheumatologic and musculoskeletal toxicities, bone loss, and increased fracture risk develop after treatment with ICIs. There are few preclinical studies that investigate the interplay of the immune system in bone metastases; however, the current literature suggests a role for CD8+ T cells and myeloid cell subsets in bone homeostasis. As such, this review focuses on findings from the clinical and pre-clinical studies that have investigated immune checkpoint blockade in the bone metastatic setting and highlights the need for more comprehensive investigations into the relationship between immune cell subsets, ICIs, and the bone-tumor microenvironment.
Collapse
Affiliation(s)
- Gwenyth J. Joseph
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Douglas B. Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Gong Y, Hao D, Zhang Y, Tu Y, He B, Yan L. Molecular Subtype Classification of Postmenopausal Osteoporosis and Immune Infiltration Microenvironment Based on Bioinformatics Analysis of Osteoclast-Regulatory Genes. Biomedicines 2023; 11:2701. [PMID: 37893075 PMCID: PMC10604900 DOI: 10.3390/biomedicines11102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is common in postmenopausal women but is often asymptomatic until a fracture occurs, highlighting the importance of early screening and preventive interventions. This study aimed to develop molecular subtype risk stratification of postmenopausal osteoporosis and analyze the immune infiltration microenvironment. Microarray data for osteoporosis were downloaded and analyzed. Logistic and least absolute shrinkage and selection operator (LASSO) regression analyses were used to construct the molecular risk model. Circulating blood samples were collected from 10 enrolled participants to validate the key differentially expressed genes, and consistent clustering based on the expression profiles of candidate genes was performed to obtain molecular subtypes. Three key genes, CTNNB1, MITF, and TNFSF11, were obtained as variables and used to construct the risk model. External experimental validation showed substantial differences in the three key genes between patients with osteoporosis and the controls (p < 0.05). Three subtypes were obtained based on dimensionality reduction clustering results. Cluster 3 had significantly more patients with low bone mineral density (BMD), whereas Cluster 2 had significantly more patients with high BMD (p < 0.05). This study introduced a novel molecular risk model and subtype classification system, which is an evidence-based screening strategy that will guide the active prevention, early diagnosis, and treatment of osteoporosis in high-risk postmenopausal women.
Collapse
Affiliation(s)
- Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.G.); (D.H.); (Y.Z.); (Y.T.); (B.H.)
- Institute of Orthopedic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.G.); (D.H.); (Y.Z.); (Y.T.); (B.H.)
- Institute of Orthopedic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yong Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.G.); (D.H.); (Y.Z.); (Y.T.); (B.H.)
| | - Yongyong Tu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.G.); (D.H.); (Y.Z.); (Y.T.); (B.H.)
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.G.); (D.H.); (Y.Z.); (Y.T.); (B.H.)
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.G.); (D.H.); (Y.Z.); (Y.T.); (B.H.)
| |
Collapse
|
6
|
Brom VC, Strauss AC, Sieberath A, Salber J, Burger C, Wirtz DC, Schildberg FA. Agonistic and antagonistic targeting of immune checkpoint molecules differentially regulate osteoclastogenesis. Front Immunol 2023; 14:988365. [PMID: 36817431 PMCID: PMC9931766 DOI: 10.3389/fimmu.2023.988365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Immune checkpoint inhibitors are used in the treatment of various cancers and have been extensively researched with regard to inflammatory and autoimmune diseases. However, this revolutionary therapeutic strategy often provokes critical auto-inflammatory adverse events, such as inflammatory reactions affecting the cardiovascular, gastrointestinal, nervous, and skeletal systems. Because the function of these immunomodulatory co-receptors is highly cell-type specific and the role of macrophages as osteoclast precursors is widely published, we aimed to analyze the effect of immune checkpoint inhibitors on these bone-resorbing cells. Methods We established an in vitro model of osteoclastogenesis using human peripheral blood mononuclear cells, to which various immune checkpoints and corresponding antagonistic antibodies were administered. Formation of osteoclasts was quantified and cell morphology was analyzed via immunofluorescence staining, cell size measurements, and calculation of cell numbers in a multitude of samples. Results These methodical approaches for osteoclast research achieved objective, comparable, and reproducible results despite the great heterogeneity in the form, size, and number of osteoclasts. In addition to the standardization of experimental analyses involving osteoclasts, our study has revealed the substantial effects of agonistic and antagonistic checkpoint modulation on osteoclastogenesis, confirming the importance of immune checkpoints in bone homeostasis. Discussion Our work will enable more robust and reproducible investigations into the use of immune checkpoint inhibitors in conditions with diminished bone density such as osteoporosis, aseptic loosening of endoprostheses, cancer, as well as the side effects of cancer therapy, and might even pave the way for novel individualized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Victoria C Brom
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Strauss
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Alexander Sieberath
- Department of Experimental Surgery, Centre for Clinical Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Jochen Salber
- Department of Experimental Surgery, Centre for Clinical Research, Ruhr-Universität Bochum, Bochum, Germany.,Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Wang B, Chen C, Liu X, Zhou S, Xu T, Wu M. The effect of combining PD-1 agonist and low-dose Interleukin-2 on treating systemic lupus erythematosus. Front Immunol 2023; 14:1111005. [PMID: 36969198 PMCID: PMC10030866 DOI: 10.3389/fimmu.2023.1111005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. It is often called "immortal cancer" due to the difficulties in disease treatment. As the cornerstone of immune regulation, the programmed cell death protein 1 (PD-1) has been extensively studied in the context of chronic inflammation due to its ability of regulating immune response and immunosuppression. Recently, more and more studies on rheumatic immune related complications have also focused on PD-1 and proposed that the use of PD-1 agonist could inhibit the activation of lymphocytes and alleviate SLE disease activity. In this review, we summarized the role of PD-1 in SLE, implicating its potential application as a biomarker to predict SLE disease activity; we also proposed that the combination of PD-1 agonist and low-dose IL-2 may have better therapeutic efficacy, shining light on a new direction for developing specific treatment approaches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xia Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shuang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| |
Collapse
|
8
|
Serum sPD1 and sPDL1 as Biomarkers for Evaluating the Immune State of Lung Adenocarcinoma Patients. J Immunol Res 2022; 2022:9101912. [PMID: 36479137 PMCID: PMC9720235 DOI: 10.1155/2022/9101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
A large proportion of cancer patients benefit from immune checkpoint therapy, while few studies focused on the relationship between soluble PD1 (sPD1) and soluble PDL1 (sPDL1) in serum and immune status of patients. ILC2 and M2 were confirmed to be related to immunosuppression in tumor patients. To determine whether sPD1 and sPDL1 are correlated with the ratio of ILC2 and M2 is helpful to explore the possibility of using sPD1 and sPDL1 as tumor molecular markers. Our results showed an immune balance toward ILC2 and M2-like monocytes in patients with LUAD compared with healthy controls. Meanwhile, decreased CD4+T and CD8+T cells, as well as elevated PD1+CD8+T cells, were found in patients with LUAD. The relative mRNA expression levels of ILC2- and M2-characteristic cytokines were also upregulated accompanied by decreased mRNA expression levels of ILC1- and M1-characteristic cytokines in patients with LUAD compared to healthy controls. Moreover, elevated ILC2 frequencies as well as the amount of IL-13 were positively correlated with the amount of sPD1, however, there was no correlation between them and sPDL1. These results suggested that sPD1 and sPDL1 can serve as diagnostic markers to predict the immune state of cancer patients.
Collapse
|
9
|
Zhang P, Chen H, Shang Q, Chen G, He J, Shen G, Yu X, Zhang Z, Zhao W, Zhu G, Huang J, Liang D, Tang J, Cui J, Liu Z, Jiang X, Ren H. Zuogui Pill Ameliorates Glucocorticoid-Induced Osteoporosis through ZNF702P-Based ceRNA Network: Bioinformatics Analysis and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8020182. [PMID: 39280960 PMCID: PMC11401717 DOI: 10.1155/2022/8020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/08/2022] [Accepted: 08/07/2022] [Indexed: 09/18/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a musculoskeletal disease with increased fracture risk caused by long-term application of glucocorticoid, but there exist few effective interventions. Zuogui Pill (ZGP) has achieved clinical improvement for GIOP as an ancient classical formula, but its molecular mechanisms remain unclear due to scanty relevant studies. This study aimed to excavate the effective compounds and underlying mechanism of ZGP in treating GIOP and construct relative ceRNA network by using integrated analysis of bioinformatics analysis and experimental validation. Results show that ZNF702P is significantly upregulated in GIOP than normal cases based on gene chip sequencing analysis. Totally, 102 ingredients and 535 targets of ZGP as well as 480 GIOP-related targets were selected, including 122 common targets and 8 intersection targets with the predicted mRNAs. The ceRNA network contains one lncRNA (ZNF702P), 6 miRNAs, and 8 mRNAs. Four hub targets including JUN, CCND1, MAPK1, and MAPK14 were identified in the PPI network. Six ceRNA interaction axes including ZNF702P-hsa-miR-429-JUN, ZNF702P-hsa-miR-17-5p/hsa-miR-20b-5p-CCND1, ZNF702P-hsa-miR-17-5p/hsa-miR-20b-5p-MAPK1, and ZNF702P-hsa-miR-24-3p-MAPK14 were obtained. By means of molecular docking, we found that all the hub targets could be effectively combined with related ingredients. GO enrichment analysis showed 649 biological processes, involving response to estrogen, response to steroid hormone, inflammatory response, macrophage activation, and osteoclast differentiation, and KEGG analysis revealed 102 entries with 36 relative signaling pathways, which mainly contained IL-17 signaling pathway, T cell receptor signaling pathway, FoxO signaling pathway, the PD-L1 expression and PD-1 checkpoint pathway, MAPK signaling pathway, TNF signaling pathway, Estrogen signaling pathway, and Wnt signaling pathway. Our experiments confirmed that ZNF702P exhibited gradually increasing expression levels during osteoclast differentiation of human peripheral blood monocytes (HPBMs) induced by RANKL, while ZGP could inhibit osteoclast differentiation of HPBMs induced by RANKL in a concentration-dependent manner. Therefore, by regulating inflammatory response, osteoclast differentiation, and hormone metabolism, ZGP may treat GIOP by regulating hub target genes, such as JUN, CCND1, MAPK1, and MAPK14, and acting on numerous key pathways, which involve the ZNF702P-based ceRNA network.
Collapse
Affiliation(s)
- Peng Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Honglin Chen
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Guifeng Chen
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui He
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Zhida Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Guangye Zhu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinglin Huang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Zhixiang Liu
- Affiliated Huadu Hospital, Southern Medical University, Guangzhou 510800, China
| | - Xiaobing Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
10
|
Greisen SR, Aspari M, Deleuran B. Co-Inhibitory Molecules – Their Role in Health and Autoimmunity; Highlighted by Immune Related Adverse Events. Front Immunol 2022; 13:883733. [PMID: 35784333 PMCID: PMC9243421 DOI: 10.3389/fimmu.2022.883733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint receptors are key players in regulating the immune response. They are responsible for both generating an immune response sufficient to kill invading pathogens, balancing the same response, and protecting against tissue destruction or the development of autoimmune events. The central role of the co-inhibitory receptors also referred to as inhibitory immune checkpoints, including PD-1 and CTLA-4 has become especially evident with the cancer treatments targeting these receptors. Blocking these pathways enhances the immune activity, resulting in both an increased chance of cancer clearance, at the same time induction of immune-related adverse events (irAE). Some of these irAE progress into actual autoimmune diseases with autoantibodies and symptoms, undistinguished from the naturally occurring diseases. This review will take advantage of the lessons learned from immune checkpoint blockade and relate this knowledge to our understanding of the same pathways in naturally occurring autoimmune diseases, mainly focusing on rheumatic diseases.
Collapse
Affiliation(s)
- Stinne R. Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Stinne R. Greisen,
| | - Maithri Aspari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|