1
|
Rupani H, Busse WW, Howarth PH, Bardin PG, Adcock IM, Konno S, Jackson DJ. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024; 79:2589-2604. [PMID: 39087443 DOI: 10.1111/all.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The role of eosinophils in airway inflammation and asthma pathogenesis is well established, with raised eosinophil counts in blood and sputum associated with increased disease severity and risk of asthma exacerbation. Conversely, there is also preliminary evidence suggesting antiviral properties of eosinophils in the airways. These dual roles for eosinophils are particularly pertinent as respiratory virus infections contribute to asthma exacerbations. Biologic therapies targeting key molecules implicated in eosinophil-associated pathologies have been approved in patients with severe asthma and, therefore, the effects of depleting eosinophils in a clinical setting are of considerable interest. This review discusses the pathological and antiviral roles of eosinophils in asthma and exacerbations. We also highlight the significant reduction in asthma exacerbations seen with biologic therapies, even at the height of the respiratory virus season. Furthermore, we discuss the implications of these findings in relation to the role of eosinophils in inflammation and antiviral responses to respiratory virus infection in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter H Howarth
- Global Medical, Global Specialty and Primary Care, GSK, Brentford, Middlesex, UK
| | - Philip G Bardin
- Monash Lung Sleep Allergy and Immunology, Monash University and Medical Centre and Hudson Institute, Melbourne, Victoria, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Berdnikovs S, Newcomb DC, Hartert TV. How early life respiratory viral infections impact airway epithelial development and may lead to asthma. Front Pediatr 2024; 12:1441293. [PMID: 39156016 PMCID: PMC11327159 DOI: 10.3389/fped.2024.1441293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Malinczak CA, Fonseca W, Hrycaj SM, Morris SB, Rasky AJ, Yagi K, Wellik DM, Ziegler SF, Zemans RL, Lukacs NW. Early-life pulmonary viral infection leads to long-term functional and lower airway structural changes in the lungs. Am J Physiol Lung Cell Mol Physiol 2024; 326:L280-L291. [PMID: 38290164 PMCID: PMC11281791 DOI: 10.1152/ajplung.00300.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Early-life respiratory virus infections have been correlated with enhanced development of childhood asthma. In particular, significant numbers of respiratory syncytial virus (RSV)-hospitalized infants go on to develop lung disease. It has been suggested that early-life viral infections may lead to altered lung development or repair that negatively impacts lung function later in life. Our data demonstrate that early-life RSV infection modifies lung structure, leading to decreased lung function. At 5 wk postneonatal RSV infection, significant defects are observed in baseline pulmonary function test (PFT) parameters consistent with decreased lung function as well as enlarged alveolar spaces. Lung function changes in the early-life RSV-infected group continue at 3 mo of age. The altered PFT and structural changes induced by early-life RSV were mitigated in TSLPR-/- mice that have previously been shown to have reduced immune cell accumulation associated with a persistent Th2 environment. Importantly, long-term effects were demonstrated using a secondary RSV infection 3 mo following the initial early-life RSV infection and led to significant additional defects in lung function, with severe mucus deposition within the airways, and consolidation of the alveolar spaces. These studies suggest that early-life respiratory viral infection leads to alterations in lung structure/repair that predispose to diminished lung function later in life.NEW & NOTEWORTHY These studies outline a novel finding that early-life respiratory virus infection can alter lung structure and function long-term. Importantly, the data also indicate that there are critical links between inflammatory responses and subsequent events that produce a more severe pathogenic response later in life. The findings provide additional data to support that early-life infections during lung development can alter the trajectory of airway function.
Collapse
Affiliation(s)
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven M Hrycaj
- Department of Internal Medicine, Pulmonary, University of Michigan, Ann Arbor, Michigan, United States
| | - Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington, United States
| | - Rachel L Zemans
- Department of Internal Medicine, Pulmonary, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
5
|
Miles MA, Liong S, Liong F, Coward-Smith M, Trollope GS, Oseghale O, Erlich JR, Brooks RD, Logan JM, Hickey S, Wang H, Bozinovski S, O’Leary JJ, Brooks DA, Selemidis S. TLR7 promotes chronic airway disease in RSV-infected mice. Front Immunol 2023; 14:1240552. [PMID: 37795093 PMCID: PMC10545951 DOI: 10.3389/fimmu.2023.1240552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Gemma S. Trollope
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jessica M. Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, Dublin, Ireland
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Attaianese F, Guiducci S, Trapani S, Barbati F, Lodi L, Indolfi G, Azzari C, Ricci S. Reshaping Our Knowledge: Advancements in Understanding the Immune Response to Human Respiratory Syncytial Virus. Pathogens 2023; 12:1118. [PMID: 37764926 PMCID: PMC10536346 DOI: 10.3390/pathogens12091118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a significant cause of respiratory tract infections, particularly in young children and older adults. In this review, we aimed to comprehensively summarize what is known about the immune response to hRSV infection. We described the innate and adaptive immune components involved, including the recognition of RSV, the inflammatory response, the role of natural killer (NK) cells, antigen presentation, T cell response, and antibody production. Understanding the complex immune response to hRSV infection is crucial for developing effective interventions against this significant respiratory pathogen. Further investigations into the immune memory generated by hRSV infection and the development of strategies to enhance immune responses may hold promise for the prevention and management of hRSV-associated diseases.
Collapse
Affiliation(s)
- Federica Attaianese
- Postgraduate School of Pediatrics, University of Florence, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Sara Guiducci
- Postgraduate School of Immunology, University of Florence, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Sandra Trapani
- Pediatric Unit, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy; (S.T.); (G.I.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
| | - Federica Barbati
- Postgraduate School of Pediatrics, University of Florence, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
- Division of Immunology, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy
| | - Giuseppe Indolfi
- Pediatric Unit, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy; (S.T.); (G.I.)
- NEUROFARBA Department, University of Florence, 50139 Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
- Division of Immunology, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, 50139 Florence, Italy; (L.L.); (C.A.)
- Division of Immunology, Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, 50139 Florence, Italy
| |
Collapse
|
7
|
Zhang D, Zhao Y, You X, He S, Li E. Repurposing Axl Kinase Inhibitors for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother 2023; 67:e0148722. [PMID: 36853000 PMCID: PMC10019287 DOI: 10.1128/aac.01487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection persists as a common pathogen of pulmonary infection in infants and in the elderly with high morbidity and mortality. However, no specific therapeutics are available. Axl, a member of the TAM (Tyro3, Axl, and Mertk) family receptor kinases, is a pleiotropic inhibitor of the innate immune response and functions as a negative regulator of interferon pathway activation. In this report, we investigated Axl inhibitors for their effects against RSV infection. Axl inhibition with kinase inhibitors, including BMS-777607, R428, and TP-0903, or Axl ablation resulted in a significant reduction of RSV infection in cell-based assays. In an animal model of pulmonary RSV infection, treatment with BMS-777607, R428, or TP-0903 ameliorated pulmonary pathology with a significant reduction of RSV titers in the lung tissues and, consequently, decreased the expression of proinflammatory genes. The host promotes ISG expression for the antiviral response and for viral clearance. We found that Axl inhibition led to more robust IFN-β expression and antiviral gene induction. Thus, the results of this study imply that Axl kinase inhibitors may possess a broad spectrum of antiviral effects by promoting ISG expression.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yuanhui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Yancheng Medical Research Center, The Affiliated Yancheng People's 1st Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Xiaoxin You
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Yancheng Medical Research Center, The Affiliated Yancheng People's 1st Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|