1
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
2
|
Rheumatic Immune-Related Adverse Events due to Immune Checkpoint Inhibitors—A 2023 Update. Int J Mol Sci 2023; 24:ijms24065643. [PMID: 36982715 PMCID: PMC10051463 DOI: 10.3390/ijms24065643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
With the aging of the population, malignancies are becoming common complications in patients with rheumatoid arthritis (RA), particularly in elderly patients. Such malignancies often interfere with RA treatment. Among several therapeutic agents, immune checkpoint inhibitors (ICIs) which antagonize immunological brakes on T lymphocytes have emerged as a promising treatment option for a variety of malignancies. In parallel, evidence has accumulated that ICIs are associated with numerous immune-related adverse events (irAEs), such as hypophysitis, myocarditis, pneumonitis, and colitis. Moreover, ICIs not only exacerbate pre-existing autoimmune diseases, but also cause de novo rheumatic disease–like symptoms, such as arthritis, myositis, and vasculitis, which are currently termed rheumatic irAEs. Rheumatic irAEs differ from classical rheumatic diseases in multiple aspects, and treatment should be individualized based on the severity. Close collaboration with oncologists is critical for preventing irreversible organ damage. This review summarizes the current evidence regarding the mechanisms and management of rheumatic irAEs with focus on arthritis, myositis, and vasculitis. Based on these findings, potential therapeutic strategies against rheumatic irAEs are discussed.
Collapse
|
3
|
Zhao L, Zhang W, Liu M, Jia R, Wang J, Wang F, Xu Y. OX40L enhances the immunogenicity of dendritic cells and inhibits tumor metastasis in mice. Microbiol Immunol 2023; 67:79-89. [PMID: 36345699 DOI: 10.1111/1348-0421.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Abstract
A well preserved immune system is a powerful tool to prevent foreign invasion or to suppress internal mutation, which must be tightly controlled by co-stimulatory molecules in different pathophysiological conditions. One such critical molecule is OX40L expressed on activated antigen-presenting cells (APCs). Consistently, its abnormality is associated with various immunological disorders such as autoinflammatory diseases and allergy. However, a comprehensive analysis of the immune-moderating role of OX40L in dendritic cells (DCs), the most powerful APCs to initiate immune responses in vivo, and investigation of its anti-tumor efficacy in the disease setting have not been performed properly. In this study, genetic approaches for both gain-of-function and reduction-of-function were employed to reveal that OX40L was required for the efficient presentation, but not uptake, of antigens by DCs to stimulate CD4+ , as well as CD8+ T cells in vivo. As a result, CD4+ T cells were promoted towards Th1, but inhibited on Treg differentiation, by the LPS-induced OX40L on DCs, which was supported by their altered expression of co-inhibitory receptor, PD-L1. CD8+ T cells, on the other hand, also enhanced their cytotoxicity towards target cells in response to OX40L expression on the DCs transferred in vivo. Finally, in a DC-mediated tumor immunity model, the strong immunogenic roles of OX40L on DCs led to better metastasis inhibition in vivo. Collectively, our results demonstrate that OX40L could serve as a potential target in the DC-based vaccine for enhanced anti-tumor efficacy in vivo.
Collapse
Affiliation(s)
- Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ruoyu Jia
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
4
|
Li M, Lu W, Meng Y, Zhang W, Wang F, Sun L, Xu Y. Tetrahydroxy Stilbene Glucoside Alleviates Ischemic Stroke by Regulating Conformation-Dependent Intracellular Distribution of PKM2 for M2 Macrophage Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15449-15463. [PMID: 36468551 DOI: 10.1021/acs.jafc.2c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tetrahydroxy stilbene glucoside (TSG) is a bioactive ingredient with powerful anti-inflammatory and neuroprotective properties. However, the detailed mechanisms concerning the neuroprotective effect of TSG are not fully understood. This study aims to address the molecular mechanism involved in the protective effects of TSG on murine ischemic stroke. We found that TSG meliorated the phenotypes of ischemic stroke in vivo, which was correlated with the increased percentage of infiltrated M2 macrophages in brain after stroke. Mechanistically, TSG regulated macrophage polarization by significantly downregulating the transcriptional levels of M1 marker genes (iNOS and IL-1β) but upregulating that of the M2 marker genes (arg-1 and IL-4) following lipopolysaccharide/interferon-γ stimulation. Consistently, TSG reversed the metabolic profiling of M1 macrophage toward the M2 status at intracellular energy levels. Surprisingly, the knockdown of an established metabolic enzyme pyruvate kinase M2 (PKM2) that is important for M1 switch in macrophages abolished the promotive effect of TSG on the M2 polarization. Further investigation revealed that TSG markedly downregulated the intracellular ratio of dimer/monomer to the tetramer of PKM2 without affecting its total protein expression, leading to a suppressed nuclear translocation of functioning PKM2 in macrophages for M1 differentiation. Taken together, we identified a novel mechanism for macrophage M2 polarization regulation by a small-molecule chemical that controls the quality (conformation) rather than the quantity (expression) of an intracellular M1-promoting metabolic enzyme, which offers a better understanding of the mechanisms of macrophage plasticity and has serious implication in translational strategies for the treatment of macrophage-mediated neurological diseases with natural bioactive products.
Collapse
Affiliation(s)
- Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wei Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanyuan Meng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fengge Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
5
|
Rizzo C, La Barbera L, Miceli G, Tuttolomondo A, Guggino G. The innate face of Giant Cell Arteritis: Insight into cellular and molecular innate immunity pathways to unravel new possible biomarkers of disease. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:933161. [PMID: 39086970 PMCID: PMC11285707 DOI: 10.3389/fmmed.2022.933161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 08/02/2024]
Abstract
Giant cell arteritis (GCA) is an inflammatory chronic disease mainly occurring in elderly individuals. The pathogenesis of GCA is still far from being completely elucidated. However, in susceptible arteries, an aberrant immune system activation drives the occurrence of vascular remodeling which is mainly characterized by intimal hyperplasia and luminal obstruction. Vascular damage leads to ischemic manifestations involving extra-cranial branches of carotid arteries, mostly temporal arteries, and aorta. Classically, GCA was considered a pathological process resulting from the interaction between an unknown environmental trigger, such as an infectious agent, with local dendritic cells (DCs), activated CD4 T cells and effector macrophages. In the last years, the complexity of GCA has been underlined by robust evidence suggesting that several cell subsets belonging to the innate immunity can contribute to disease development and progression. Specifically, a role in driving tissue damage and adaptive immunity activation was described for dendritic cells (DCs), monocytes and macrophages, mast cells, neutrophils and wall components, such as endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). In this regard, molecular pathways related to cytokines, chemokines, growth factors, vasoactive molecules and reactive oxygen species may contribute to the inflammatory process underlying GCA. Altogether, innate cellular and molecular pathways may clarify many pathogenetic aspects of the disease, paving the way for the identification of new biomarkers and for the development of new treatment targets for GCA. This review aims to deeply dissect past and new evidence on the innate immunological disruption behind GCA providing a comprehensive description of disease development from the innate perspective.
Collapse
Affiliation(s)
- Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Unit of Internal Medicine and Stroke Care, University of Palermo, Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Unit of Internal Medicine and Stroke Care, University of Palermo, Palermo, Italy
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Watanabe R, Hashimoto M. Aging-Related Vascular Inflammation: Giant Cell Arteritis and Neurological Disorders. Front Aging Neurosci 2022; 14:843305. [PMID: 35493934 PMCID: PMC9039280 DOI: 10.3389/fnagi.2022.843305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Aging is characterized by the functional decline of the immune system and constitutes the primary risk factor for infectious diseases, cardiovascular disorders, cancer, and neurodegenerative disorders. Blood vessels are immune-privileged sites and consist of endothelial cells, vascular smooth muscle cells, macrophages, dendritic cells, fibroblasts, and pericytes, among others. Aging also termed senescence inevitably affects blood vessels, making them vulnerable to inflammation. Atherosclerosis causes low-grade inflammation from the endothelial side; whereas giant cell arteritis (GCA) causes intense inflammation from the adventitial side. GCA is the most common autoimmune vasculitis in the elderly characterized by the formation of granulomas composed of T cells and macrophages in medium- and large-sized vessels. Recent studies explored the pathophysiology of GCA at unprecedented resolutions, and shed new light on cellular signaling pathways and metabolic fitness in wall-destructive T cells and macrophages. Moreover, recent reports have revealed that not only can cerebrovascular disorders, such as stroke and ischemic optic neuropathy, be initial or coexistent manifestations of GCA, but the same is true for dementia and neurodegenerative disorders. In this review, we first outline how aging affects vascular homeostasis. Subsequently, we review the updated pathophysiology of GCA and explain the similarities and differences between vascular aging and GCA. Then, we introduce the possible link between T cell aging, neurological aging, and GCA. Finally, we discuss therapeutic strategies targeting both senescence and vascular inflammation.
Collapse
|