1
|
Méndez Rodríguez ML, Ponciano-Gómez A, Campos-Aguilar M, Tapia-Sánchez WD, Duarte-Martínez CL, Romero-Herrera JS, Olivas-Quintero S, Saucedo-Campos AD, Méndez-Cruz AR, Jimenez-Flores R, Ortiz-Navarrete V, Romero-Ramírez H, Santos-Argumedo L, Rosales-García VH. Neutrophil-to-Lymphocyte Ratio and Cytokine Profiling as Predictors of Disease Severity and Survival in Unvaccinated COVID-19 Patients. Vaccines (Basel) 2024; 12:861. [PMID: 39203987 PMCID: PMC11360520 DOI: 10.3390/vaccines12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, identifying reliable biomarkers for predicting disease severity and patient outcomes in unvaccinated individuals is essential. This study evaluates the efficacy of key hematological markers, including leukocyte and neutrophil counts, Neutrophil-to-Lymphocyte Ratio (NLR), and cytokine profiles (IL-6, INF-γ, TNF-α, IL-17A, CCL2, and CXCL10) for predicting the necessity for mechanical ventilation and assessing survival probabilities. METHODS We conducted an in-depth analysis on a cohort of COVID-19 patients, emphasizing the relationship between NLR, cytokine profiles, and clinical outcomes, utilizing routine leukocyte counting and cytokine quantification by flow cytometry. RESULTS Elevated leukocyte and neutrophil counts, increased NLR, and significant cytokine elevations such as IL-6 and IL-10 were strongly associated with the need for mechanical ventilation, reflecting a pronounced systemic inflammatory response indicative of severe disease outcomes. CONCLUSION Integrating hematological markers, particularly NLR and cytokine profiles, is crucial in predicting mechanical ventilation needs and survival in non-vaccinated COVID-19 patients. Our findings provide critical insights into the pathophysiology of COVID-19, supporting the development of more targeted clinical interventions and potentially informing future strategies for managing infectious disease outbreaks.
Collapse
Affiliation(s)
- Miguel Leonardo Méndez Rodríguez
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Wilfrido David Tapia-Sánchez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Carlos Leonardo Duarte-Martínez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Jesús Salvador Romero-Herrera
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Sandra Olivas-Quintero
- Departamento de Ciencias de la Salud Culiacán, Universidad Autónoma de Occidente, Culiacan 80020, Sinaloa, Mexico;
| | - Alberto Daniel Saucedo-Campos
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Adolfo Rene Méndez-Cruz
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Rafael Jimenez-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
| | - Hector Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Victor Hugo Rosales-García
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 14330, Mexico
| |
Collapse
|
2
|
Domingues KZA, Cobre AF, Lazo REL, Amaral LS, Ferreira LM, Tonin FS, Pontarolo R. Systematic review and evidence gap mapping of biomarkers associated with neurological manifestations in patients with COVID-19. J Neurol 2024; 271:1-23. [PMID: 38015300 DOI: 10.1007/s00415-023-12090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE This study aimed to synthesize the existing evidence on biomarkers related to coronavirus disease 2019 (COVID-19) patients who presented neurological events. METHODS A systematic review of observational studies (any design) following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane Collaboration recommendations was performed (PROSPERO: CRD42021266995). Searches were conducted in PubMed and Scopus (updated April 2023). The methodological quality of nonrandomized studies was assessed using the Newcastle‒Ottawa Scale (NOS). An evidence gap map was built considering the reported biomarkers and NOS results. RESULTS Nine specific markers of glial activation and neuronal injury were mapped from 35 studies published between 2020 and 2023. A total of 2,237 adult patients were evaluated in the included studies, especially during the acute phase of COVID-19. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) biomarkers were the most frequently assessed (n = 27 studies, 77%, and n = 14 studies, 40%, respectively). Although these biomarkers were found to be correlated with disease severity and worse outcomes in the acute phase in several studies (p < 0.05), they were not necessarily associated with neurological events. Overall, 12 studies (34%) were judged as having low methodological quality, 9 (26%) had moderate quality, and 9 (26%) had high quality. CONCLUSIONS Different neurological biomarkers in neurosymptomatic COVID-19 patients were identified in observational studies. Although the evidence is still scarce and conflicting for some biomarkers, well-designed longitudinal studies should further explore the pathophysiological role of NfL, GFAP, and tau protein and their potential use for COVID-19 diagnosis and management.
Collapse
Affiliation(s)
- K Z A Domingues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - A F Cobre
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - R E L Lazo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L S Amaral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - F S Tonin
- H&TRC- Health & Technology Research Center, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - R Pontarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
3
|
Campos-Ruíz MA, Illades-Aguiar B, Del Moral-Hernández O, Romo-Castillo M, Salazar-García M, Espinoza-Rojo M, Vences-Velázquez A, Cortés-Sarabia K, Luna-Pineda VM. Immunized mice naturally process in silico-derived peptides from the nucleocapsid of SARS-CoV-2. BMC Microbiol 2023; 23:319. [PMID: 37898784 PMCID: PMC10612231 DOI: 10.1186/s12866-023-03076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an excellent immunogen that promotes the production of high-titer antibodies. N protein-derived peptides identified using a bioinformatics approach can potentially be used to develop a new generation of vaccines or diagnostic methods for detecting SARS-CoV-2 and its variants. However, further studies must demonstrate their capacity to be naturally processed by the immune system. OBJECTIVE We aimed to examine the in vivo processing and recognition of in silico-identified peptides using the serum of immunized animals with the complete protein. METHODS Recombinant N (Nrec) protein was subcutaneously administered to six Balb/c mice. Enzyme-linked immunosorbent assay (ELISA), western blotting, dot blotting, and immunoprecipitation were performed to evaluate the recognition of the complete protein and in silico-derived peptides. RESULTS The serum of immunized mice recognized ~ 62.5 ng/µL of Nrec with high specificity to linear and conformational epitopes. Dot blot analysis showed that peptides Npep2 and Npep3 were the most reactive. CONCLUSION Our data confirm the high immunogenicity of the SARS-CoV-2 N protein and provide evidence on the antigenicity of two peptides located in the N-arm/RNA-binding domain (Npep2) and oligomerization domain/C-tail (Npep3), considered the biologically active site of the N protein.
Collapse
Affiliation(s)
- Mario Aldair Campos-Ruíz
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Mariana Romo-Castillo
- Laboratorio de Investigación en COVID-19, Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México, México
| | - Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México.
| | - Victor M Luna-Pineda
- Laboratorio de Investigación en COVID-19, Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| |
Collapse
|
4
|
Verma J, Kaushal N, Manish M, Subbarao N, Shakirova V, Martynova E, Liu R, Hamza S, Rizvanov AA, Khaiboullina SF, Baranwal M. Identification of conserved immunogenic peptides of SARS-CoV-2 nucleocapsid protein. J Biomol Struct Dyn 2023; 42:11098-11114. [PMID: 37750540 DOI: 10.1080/07391102.2023.2260484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
The emergence of the new SARS-CoV-2 variants has led to major concern regarding the efficacy of approved vaccines. Nucleocapsid is a conserved structural protein essential for replication of the virus. This study focuses on identifying conserved epitopes on the nucleocapsid (N) protein of SARS-CoV-2. Using 510 unique amino acid sequences of SARS-CoV-2 N protein, two peptides (193 and 215 aa) with 90% conservancy were selected for T cell epitope prediction. Three immunogenic peptides containing multiple T cell epitopes were identified which were devoid of autoimmune and allergic immune response. These peptides were also conserved (100%) in recent Omicron variants reported in Jan-August 2023. HLA analysis reveals that these peptides are predicted as binding to large number of HLA alleles and 71-90% population coverage in six continents. Identified peptides displayed good binding score with both HLA class I and HLA class II molecules in the docking study. Also, a vaccine construct docked with TLR-4 receptor displays strong interaction with 20 hydrogen bonds and molecular simulation analysis reveals that docked complex are stable. Additionally, the immunogenicity of these N protein peptides was confirmed using SARS-CoV-2 convalescent serum samples. We conclude that the identified N protein peptides contain highly conserved and antigenic epitopes which could be used as a target for the future vaccine development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jigyasa Verma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Manish Manish
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Venera Shakirova
- Department of Infectious Diseases, Kazan State Medical Academy, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
5
|
Hamza S, Martynova E, Garanina E, Shakirova V, Bilalova A, Moiseeva S, Khaertynova I, Ohlopkova O, Blatt N, Markelova M, Khaiboullina S. Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia. Int J Mol Sci 2023; 24:10181. [PMID: 37373331 DOI: 10.3390/ijms241210181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The severity of COVID-19 is a result of the complex interplay between various branches of the immune system. However, our understanding of the role of neutralizing antibodies and the activation of cellular immune response in COVID-19 pathogenesis remains limited. In this study, we investigated neutralizing antibodies in patients with mild, moderate, and severe COVID-19, analyzing their cross-reactivity with the Wuhan and Omicron variants. We also assessed the activation of the immune response by measuring serum cytokines in patients with mild, moderate, and severe COVID-19. Our findings suggest the early activation of neutralizing antibodies in moderate COVID-19 compared to mild cases. We also observed a strong correlation between the cross-reactivity of neutralizing antibodies to the Omicron and Wuhan variants and the severity of the disease. In addition, we found that Th1 lymphocyte activation was present in mild and moderate cases, while inflammasomes and Th17 lymphocytes were activated in severe COVID-19. In conclusion, our data indicate that the early activation of neutralizing antibodies is evident in moderate COVID-19, and there is a strong correlation between the cross-reactivity of neutralizing antibodies and the severity of the disease. Our findings suggest that the Th1 immune response may play a protective role, while inflammasome and Th17 activation may be involved in severe COVID-19.
Collapse
Affiliation(s)
- Shaimaa Hamza
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Ekaterina Martynova
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Venera Shakirova
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Alisa Bilalova
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Svetlana Moiseeva
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Ilsiyar Khaertynova
- Department of Infectious Diseases, Kazan State Medical Academy, 420012 Kazan, Russia
| | - Olesia Ohlopkova
- State Research Center of Virology and Biotechnology «Vector» of Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Nataliya Blatt
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Maria Markelova
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| | - Svetlana Khaiboullina
- OpenLab "Gene and Cell Technologies", Kazan Federal University, 420021 Kazan, Russia
| |
Collapse
|
6
|
Peng P, Deng H, Li Z, Chen Y, Fang L, Hu J, Wu K, Xue J, Wang D, Liu B, Long Q, Chen J, Wang K, Tang N, Huang AL. Distinct immune responses in the early phase to natural SARS-CoV-2 infection or vaccination. J Med Virol 2022; 94:5691-5701. [PMID: 35906179 PMCID: PMC9353276 DOI: 10.1002/jmv.28034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023]
Abstract
Immune responses elicited by viral infection or vaccination play key roles in the viral elimination and the prevention of reinfection, as well as the protection of healthy persons. As one of the most widely used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there have been increasing concerns about the necessity of additional doses of inactivated vaccines, due to the waning immune response several months after vaccination. To further optimize inactivated SARS-CoV-2 vaccines, we compared immune responses to SARS-CoV-2 elicited by natural infection and immunization with inactivated vaccines in the early phase. We observed the lower antibody levels against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in the early phase of postvaccination with a slow increase, compared to the acute phase of SARS-CoV-2 natural infection. Specifically, IgA antibodies have the most significant differences. Moreover, we further analyzed cytokine expression between these two groups. A wide variety of cytokines presented high expression in the infected individuals, while a few cytokines were elicited by inactivated vaccines. The differences in antibody responses and cytokine levels between natural SARS-CoV-2 infection and vaccination with the inactivated vaccines may provide implications for the optimization of inactivated SARS-CoV-2 vaccines and the additional application of serological tests.
Collapse
Affiliation(s)
- Pai Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Zhihong Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Yao Chen
- Health management center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Jianjiang Xue
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| |
Collapse
|