1
|
Kou RW, Li ZQ, Wang JL, Jiang SQ, Zhang RJ, He YQ, Xia B, Gao JM. Ganoderic Acid A Mitigates Inflammatory Bowel Disease through Modulation of AhR Activity by Microbial Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17912-17923. [PMID: 39078661 DOI: 10.1021/acs.jafc.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex gastrointestinal condition influenced by genetic, microbial, and environmental factors, among which the gut microbiota plays a crucial role and has emerged as a potential therapeutic target. Ganoderic acid A (GAA), which is a lanostane triterpenoid compound derived from edible mushroom Ganoderma lucidum, has demonstrated the ability to modulate gut dysbiosis. Thus, we investigated the impact of GAA on IBD using a dextran sodium sulfate (DSS)-induced colitis mouse model. GAA effectively prevented colitis, preserved epithelial and mucus layer integrity, and modulated the gut microbiota. In addition, GAA promoted tryptophan metabolism, especially 3-IAld generation, activated the aryl hydrocarbon receptor (AhR), and induced IL-22 production. Fecal microbiota transplantation validated the mediating role of the gut microbiota in the IBD protection conferred by GAA. Our study suggests that GAA holds potential as a nutritional intervention for ameliorating IBD by influencing the gut microbiota, thereby regulating tryptophan metabolism, enhancing AhR activity, and ultimately improving gut barrier function.
Collapse
Affiliation(s)
- Rong-Wei Kou
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jia-Lin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shi-Qi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui-Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yang-Qing He
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Dimopoulou C, Guerra PR, Mortensen MS, Kristensen KA, Pedersen M, Bahl MI, Sommer MAO, Licht TR, Laursen MF. Potential of using an engineered indole lactic acid producing Escherichia coli Nissle 1917 in a murine model of colitis. Sci Rep 2024; 14:17542. [PMID: 39080343 PMCID: PMC11289411 DOI: 10.1038/s41598-024-68412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The gut microbiome is a significant factor in the pathophysiology of ulcerative colitis (UC), prompting investigations into the use of probiotic therapies to counter gastrointestinal inflammation. However, while much attention has been given to the therapeutic potential of microbes at the species and strain level, the discovery and application of their metabolic products may offer more precise and controlled solutions in battling disease. In this work, we examined the therapeutic potential of indole lactic acid (ILA) to alleviate inflammation in a murine model of colitis. A previously constructed ILA-producing Escherichia coli Nissle 1917 strain (EcN aldh) and its isogenic non-ILA producing counterpart (EcN) were studied in a murine model of Dextran Sodium Sulfate (DSS) induced colitis. The colitic animals suffered from severe colitic symptoms, with no differentiation between the groups in body weight loss and disease activity index. However, three days after cessation of DSS treatment the EcN aldh-treated mice showed signs of reduced intestinal inflammation, as manifested by lower concentrations of fecal lipocalin-2. Additionally, expression analysis of the inflamed tissue revealed distinct effects of the EcN aldh strain on proteins associated with intestinal health, such as TFF3, occludin and IL-1β expression. These results show no impact of EcN or EcN aldh on acute DSS-induced colitis, but suggest that in particular EcN aldh may assist recovery from intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
3
|
Ai T, Wan J, Yu X, Liu J, Yin C, Yang L, Liu H, Qin R. The Non-Denatured Processing of Brasenia schreberi Mucilage-Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions. Foods 2024; 13:1824. [PMID: 38928766 PMCID: PMC11203210 DOI: 10.3390/foods13121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Food non-denatured processes, such as freeze-drying and grinding, are commonly applied to raw materials with good bioactive functions. Although the functional components are maintained, whether structural and physical changes impact the in vivo function is often ignored in practical situations. Brasenia schreberi mucilage (BSM) has a significant alleviation effect on DSS-induced colitis. This work focused on the influence of non-denatured manufacture on the colonic benefits of BSM-based products. First, three forms of products including fresh mucilage (FM), freeze-dried products (FS), and freeze-dried powder (FP) were prepared. Then, their in vitro physiochemical properties were compared, analyzing their influence on the gut inflammation degree, microbial composition, and SCFA production in mice. The results suggested that the water retention rate of FS and FP was decreased to 34.59 ± 3.85%, and 9.93 ± 1.76%. The viscosity of FM, FS, and FP was 20.14 Pa∙s, 4.92 Pa∙s, and 0.41 Pa∙s, respectively. The freeze-drying and grinding process also damaged the lamellar microstructure of BSM. Then, animal tests showed that colitis mice intervened with FM, FS, and FP had disease activity scores of 2.03, 3.95, and 4.62. Meanwhile, FM notably changed the gut microbial composition and significantly increased propionate and butyrate levels. It seemed that the distinct colitis alleviation efficacy of BSM-based products is attributed to different hydrodynamic properties in the gut. FM had relatively higher viscosity and correspondingly high nutritional density in the gut lumen, which stimulates Firmicutes growth and promotes butyrate production, and thereby exhibited the best efficiency on protecting from colitis.
Collapse
Affiliation(s)
- Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Xiujuan Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Lindong Yang
- Conservation and Comprehensive Utilization Engineering Center of Biological Resources in Southern Minority Areas, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China;
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China; (T.A.); (J.W.); (X.Y.); (J.L.); (C.Y.); (H.L.)
| |
Collapse
|
4
|
He N, Chen K, Yu S, Cui L, Vu SH, Jung S, Lee MS, Li S. Stachyose Exerts Anticolitis Efficacy by Re-balancing Treg/Th17 and Activating the Butyrate-Derived PPARγ Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12171-12183. [PMID: 38748640 DOI: 10.1021/acs.jafc.4c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Ulcerative colitis (UC) is a complex chronic inflammatory disease closely associated with gut homeostasis dysfunction. The previous studies have shown that stachyose, a functional food additive, has the potential to enhance gut health and alleviate UC symptoms. However, the underlying mechanism of its effects remains unknown. In this study, our findings showed that dietary supplements of stachyose had a significant dose-dependent protective effect on colitis symptoms, regulation of gut microbiota, and restoration of the Treg/Th17 cell balance in dextran sulfate sodium (DSS) induced colitis mice. To further validate these findings, we conducted fecal microbiota transplantation (FMT) to treat DSS-induced colitis in mice. The results showed that microbiota from stachyose-treated mice exhibited a superior therapeutic effect against colitis and effectively regulated the Treg/Th17 cell balance in comparison to the control group. Moreover, both stachyose supplementation and FMT resulted in an increase in butyrate production and the activation of PPARγ. However, this effect was partially attenuated by PPARγ antagonist GW9662. These results suggested that stachyose alleviates UC symptoms by modulating gut microbiota and activating PPARγ. In conclusion, our work offers new insights into the benefical effects of stachyose on UC and its potential role in modulating gut microbiota.
Collapse
Affiliation(s)
- Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China
| | - Luwen Cui
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China
| | - Son Hai Vu
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul 140-742, Korea
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul 140-742, Korea
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul 140-742, Korea
| |
Collapse
|
5
|
Qiao Y, Tang X, Liu Z, Ocansey DKW, Zhou M, Shang A, Mao F. Therapeutic Prospects of Mesenchymal Stem Cell and Their Derived Exosomes in the Regulation of the Gut Microbiota in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:607. [PMID: 38794176 PMCID: PMC11124012 DOI: 10.3390/ph17050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Xiaohua Tang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China;
| | - Ziyue Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| |
Collapse
|
6
|
OKANO A, TANAKA S, YAMADA K, HASHIMOTO N, WATANABE J. Mechanisms of interleukin-10 induction in murine spleen and RAW264 cells by Latilactobacillus curvatus K4G4 isolated from fermented Brassica rapa L. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:227-233. [PMID: 38966044 PMCID: PMC11220328 DOI: 10.12938/bmfh.2023-073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/18/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are commonly used in fermented foods, and some LAB modulate the immune response. We aimed to investigate the mechanism by which LAB isolates from fermented Brassica rapa L. induce the production of anti-inflammatory interleukin (IL)-10 by the murine spleen and RAW264 cells. Spleen cells from BALB/c mice or the mouse macrophage cell line RAW264 were cultured with heat-killed LAB isolated from fermented B. rapa L., and the IL-10 level in the supernatant was measured. Latilactobacillus curvatus K4G4 provided the most potent IL-10 induction among 13 isolates. Cell wall components of K4G4 failed to induce IL-10, while treatment of the bacteria with RNase A under a high salt concentration altered K4G4 induction of IL-10 by spleen cells. In general, a low salt concentration diminished the IL-10 induction by all strains, including K4G4. In addition, chloroquine pretreatment and knock down of toll-like receptor 7 through small interfering RNA suppressed K4G4 induction of IL-10 production by RAW264 cells. Our results suggest that single-stranded RNA from K4G4 is involved, via endosomal toll-like receptor 7, in the induction of IL-10 production by macrophages. K4G4 is a promising candidate probiotic strain that modulates the immune response by inducing IL-10 from macrophages.
Collapse
Affiliation(s)
- Aki OKANO
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Sachi TANAKA
- Academic Assembly (Institute of Agriculture), Shinshu
University, Minami-Minowa, Nagano 399-4598, Japan
| | - Kazuha YAMADA
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoto HASHIMOTO
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Jun WATANABE
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
7
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
8
|
Gubernatorova EO, Gorshkova EA, Bondareva MA, Podosokorskaya OA, Sheynova AD, Yakovleva AS, Bonch-Osmolovskaya EA, Nedospasov SA, Kruglov AA, Drutskaya MS. Akkermansia muciniphila - friend or foe in colorectal cancer? Front Immunol 2023; 14:1303795. [PMID: 38124735 PMCID: PMC10731290 DOI: 10.3389/fimmu.2023.1303795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Akkermansia muciniphila is a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of A. muciniphila among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing Akkermansia sp. appears as a promising approach to the treatment of metabolic and inflammatory diseases. In particular, a number of studies have focused on the role of A. muciniphila in colorectal cancer. Of note, the results of these studies in mice are contradictory: some reported a protective role of A. muciniphila in colorectal cancer, while others demonstrated that administration of A. muciniphila could aggravate the course of the disease resulting in increased tumor burden. More recent studies suggested the immunomodulatory effect of certain unique surface antigens of A. muciniphila on the intestinal immune system. In this Perspective, we attempt to explain how A. muciniphila contributes to protection against colorectal cancer in some models, while being pathogenic in others. We argue that differences in the experimental protocols of administration of A. muciniphila, as well as viability of bacteria, may significantly affect the results. In addition, we hypothesize that antigens presented by pasteurized bacteria or live A. muciniphila may exert distinct effects on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin barrier and exerts combined effects with other bacterial species in either promoting or inhibiting cancer development.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
| | - Marina A. Bondareva
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, Germany
| | - Olga A. Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences (RAS), Moscow, Russia
| | - Anna D. Sheynova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Yakovleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University, Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Andrey A. Kruglov
- German Rheumatism Research Center (DRFZ), Leibniz Institute, Berlin, Germany
| | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| |
Collapse
|
9
|
Diwan B, Yadav R, Singh A, Kumar D, Sharma R. Murine sterile fecal filtrate is a potent pharmacological agent that exerts age-independent immunomodulatory effects in RAW264.7 macrophages. BMC Complement Med Ther 2023; 23:362. [PMID: 37833682 PMCID: PMC10576334 DOI: 10.1186/s12906-023-04193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Sterile fecal filtrate (SFF) is being considered a safer alternative to fecal microbiota transplantation (FMT) therapy; however, its bioactive potency is very little understood. The present study thus assessed the age-dependent immunostimulatory and immunomodulatory attributes of murine SFF in vitro. METHODS SFF from young (Y-SFF) and old (O-SFF) Swiss albino mice were prepared. Immunostimulatory and immunomodulatory effects of SFF were evaluated in resting and lipopolysaccharide (LPS) stimulated macrophage cells by measuring intracellular reactive oxygen species (ROS), nitric oxide (NO) production, inflammatory cytokines profile, as well as gene expression of oxidative and inflammatory transcription factors. SFF were also evaluated for native antioxidant capacity by measuring DPPH and ABTS free radical scavenging activity. Bioactive components present in SFF were also determined by GC/MS analysis. RESULTS Both Y-SFF and O-SFF induced potent immunostimulatory effects characterized by changes in cell morphology, a significant increase in NO production, ROS levels, and an increased ratio of pro-inflammatory (IL-6, TNF-α, IL-1β) to anti-inflammatory (IL-10) secretory proteins although no significant aggravation in the transcription of NF-κB and Nrf-2 could be observed. Application of LPS to cells significantly augmented a pro-oxidative and pro-inflammatory response which was much higher in comparison to Y-SFF or O-SFF application alone and mediated by strong suppression of Nrf-2 gene expression. Pre-treatment of macrophages with both Y-SFF and O-SFF robustly attenuated cellular hyperresponsiveness to LPS characterized by significantly decreased levels of NO, ROS, and inflammatory cytokines while a concomitant increase in anti-inflammatory protein (IL-10) was observed. Further, both Y-SFF and O-SFF strongly resisted LPS-induced downregulation of Nrf-2 expression although O-SFF appeared to protect cells slightly better from the overall LPS threat. Neat SFF samples exhibited moderate antioxidant capacity and GC/MS analysis of SFF revealed diverse volatile organic compounds characterized by alkanes, organosulphur compounds, furans, amides, amino acids, and antimicrobial elements. CONCLUSION Our results indicate that SFF is a potent stimulant of macrophages and confers strong anti-inflammatory effects regardless of donor age thereby suggesting its therapeutic efficacy in lieu of FMT therapy.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rahul Yadav
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Anamika Singh
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Dinesh Kumar
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
10
|
Lopetuso LR, Laterza L, Petito V, Pecere S, Quaranta G, Del Chierico F, Puca P, Schiavoni E, Napolitano D, Poscia A, Ianiro G, Pugliese D, Putignani L, Sanguinetti M, Armuzzi A, Masucci L, Gasbarrini A, Cammarota G, Scaldaferri F. Serial Fecal Microbiota Infusions via Colonoscopy for Active Ulcerative Colitis: A Feasibility, Safety, and Translational Monocentric Italian Study. Microorganisms 2023; 11:2536. [PMID: 37894194 PMCID: PMC10609093 DOI: 10.3390/microorganisms11102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The effectiveness of fecal microbiota transplantation (FMT) in ulcerative colitis (UC) remains unclear. This study aimed to investigate the feasibility and effectiveness of serial fecal infusions via colonoscopy in patients with active UC. Subjects with mild-to-moderate UC received three consecutive fecal infusions via colonoscopy. A control population with the same baseline features receiving Infliximab treatment was enrolled. Adverse events and clinical, endoscopic, and microbial outcomes were investigated. Nineteen patients with mildly-to-moderately active UC were enrolled. Clinical response was obtained in six patients at week 2, in eight at week 6, and in nine at week 12. Clinical response was maintained in eight patients at week 24. Endoscopic remission at week 12 was reached in six patients. In the control population, 13/19 patients achieved clinical response at week 6, and 10/19 patients maintained clinical response after 6 months. Microbiota richness was higher in responders compared with the non-responders. Peptostreptococcus, Lactobacillus, and Veillonella were higher in non-responders, while Parabacteroides, Bacteroides, Faecalibacterium, and Akkermansia were higher in responders at all timepoints. Serial FMT infusions appear to be feasible, safe, and effective in UC patients, with a potential role in inducing and maintaining clinical response. Specific bacteria predict the response to FMT.
Collapse
Affiliation(s)
- Loris Riccardo Lopetuso
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucrezia Laterza
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Valentina Petito
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| | - Silvia Pecere
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Gianluca Quaranta
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.Q.); (M.S.); (L.M.)
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy;
| | - Pierluigi Puca
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| | - Elisa Schiavoni
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Daniele Napolitano
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Andrea Poscia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- UOC ISP Prevention and Surveillance of Infectious and Chronic Diseases, Department of Prevention, Local Health Authority (ASUR-AV2), 60035 Jesi, Italy
| | - Gianluca Ianiro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
- UOC di Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy
| | - Daniela Pugliese
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Lorenza Putignani
- Unit of Microbiomics and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.Q.); (M.S.); (L.M.)
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.Q.); (M.S.); (L.M.)
| | - Antonio Gasbarrini
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
- UOC di Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy
| | - Franco Scaldaferri
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| |
Collapse
|
11
|
Ang WS, Law JWF, Letchumanan V, Hong KW, Wong SH, Ab Mutalib NS, Chan KG, Lee LH, Tan LTH. A Keystone Gut Bacterium Christensenella minuta-A Potential Biotherapeutic Agent for Obesity and Associated Metabolic Diseases. Foods 2023; 12:2485. [PMID: 37444223 DOI: 10.3390/foods12132485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Wei-Shan Ang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Kar Wai Hong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Nurul Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Innovative Bioprospection Development Research Group (InBioD), Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| |
Collapse
|
12
|
Oliveira ECSD, Quaglio AEV, Magro DO, Di Stasi LC, Sassaki LY. Intestinal Microbiota and miRNA in IBD: A Narrative Review about Discoveries and Perspectives for the Future. Int J Mol Sci 2023; 24:ijms24087176. [PMID: 37108339 PMCID: PMC10138604 DOI: 10.3390/ijms24087176] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC) and comprises a chronic gastrointestinal tract disorder characterized by hyperactive and dysregulated immune responses to environmental factors, including gut microbiota and dietary components. An imbalance of the intestinal microbiota may contribute to the development and/or worsening of the inflammatory process. MicroRNAs (miRNAs) have been associated with various physiological processes, such as cell development and proliferation, apoptosis, and cancer. In addition, they play an important role in inflammatory processes, acting in the regulation of pro- and anti-inflammatory pathways. Differences in the profiles of miRNAs may represent a useful tool in the diagnosis of UC and CD and as a prognostic marker in both diseases. The relationship between miRNAs and the intestinal microbiota is not completely elucidated, but recently this topic has gained prominence and has become the target of several studies that demonstrate the role of miRNAs in the modulation of the intestinal microbiota and induction of dysbiosis; the microbiota, in turn, can regulate the expression of miRNAs and, consequently, alter the intestinal homeostasis. Therefore, this review aims to describe the interaction between the intestinal microbiota and miRNAs in IBD, recent discoveries, and perspectives for the future.
Collapse
Affiliation(s)
- Ellen Cristina Souza de Oliveira
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| | - Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Daniéla Oliveira Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo CEP 13083-970, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-689, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, Medical School, Sao Paulo State University (UNESP), Campus Botucatu, Sao Paulo CEP 18618-970, Brazil
| |
Collapse
|
13
|
Wan J, Yu X, Liu J, Li J, Ai T, Yin C, Liu H, Qin R. A special polysaccharide hydrogel coated on Brasenia schreberi: preventive effects against ulcerative colitis via modulation of gut microbiota. Food Funct 2023; 14:3564-3575. [PMID: 36946057 DOI: 10.1039/d2fo03207d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ulcerative colitis (UC) is a growing health concern in humans, but it can be prevented by using special dietary strategies. Young stems and leaves of Brasenia schreberi (BS) are coated with a special polysaccharide hydrogel (BS mucilage) which can be beneficial for colon health. The aim of this study was to investigate the preventive effects of BS mucilage against UC in a DSS-treated mouse model. Although containing only 0.3% solid content, our research showed that BS mucilage effectively attenuated the disease activity index (DAI) and the spleen index and downregulated IL-1β, IL-18, IL-6 and CAT mRNA levels in DSS-treated mice, which is a promising UC alleviation function. Additionally, BS mucilage also improved the propionate and butyrate levels in mouse feces and alleviated the imbalanced gut microbiota induced by DSS. The abundance of pro-inflammatory and colorectal cancer related bacteria, such as Prevotella, Ruminococcus, Acutalibacter and Christensenella, was decreased by BS mucilage feeding, whereas the abundance of anti-inflammatory and SCFA-producing bacteria including Alistipes and Odoribacter was increased. In conclusion, the current study shows that the daily consumption of BS mucilage could be an effective way to prevent UC in mice, via modulation of gut microbiota.
Collapse
Affiliation(s)
- Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Xiujuan Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingyang Ai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Brown EL, Essigmann HT, Hoffman KL, Alexander AS, Newmark M, Jiang ZD, Suescun J, Schiess MC, Hanis CL, DuPont HL. IgA-Biome Profiles Correlate with Clinical Parkinson's Disease Subtypes. JOURNAL OF PARKINSON'S DISEASE 2023; 13:501-513. [PMID: 37212075 PMCID: PMC10357173 DOI: 10.3233/jpd-230066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parkinson's disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson's disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson's disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches.
Collapse
Affiliation(s)
- Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Heather T. Essigmann
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Jessika Suescun
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Mya C. Schiess
- Department of Neurology/UTMOVE University of Texas McGovern Medical School, Houston, TX, USA
| | - Craig L. Hanis
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
15
|
Bullard BM, VanderVeen BN, McDonald SJ, Cardaci TD, Murphy EA. Cross talk between the gut microbiome and host immune response in ulcerative colitis: nonpharmacological strategies to improve homeostasis. Am J Physiol Gastrointest Liver Physiol 2022; 323:G554-G561. [PMID: 36283090 PMCID: PMC9678428 DOI: 10.1152/ajpgi.00210.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/31/2023]
Abstract
Ulcerative colitis (UC) is a chronic disease that is characterized by diffuse inflammation of the colonic and rectal mucosa. The burden of UC is rising globally with significant disparities in levels and trends of disease in different countries. The pathogenesis of UC involves the presence of pathogenic factors including genetic, environmental, autoimmune, and immune-mediated components. Evidence suggests that disturbed interactions between the host immune system and gut microbiome contribute to the origin and development of UC. Current medications for UC include antibiotics, corticosteroids, and biological drugs, which can have deleterious off-target effects on the gut microbiome, contributing to increased susceptibility to severe infections and chronic immunosuppression. Alternative, nonpharmacological, and behavioral interventions have been proposed as safe and effective treatments to alleviate UC, while also holding the potential to improve overall life quality. This mini-review will discuss the interactions between the immune system and the gut microbiome in the case of UC. In addition, we suggest nonpharmacological and behavioral strategies aimed at restoring a proper microbial-immune relationship.
Collapse
Affiliation(s)
- Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Sierra J McDonald
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
16
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|
17
|
Chen X, Ma L, Liu X, Wang J, Li Y, Xie Q, Liang J. Clostridium butyricum alleviates dextran sulfate sodium-induced experimental colitis and promotes intestinal lymphatic vessel regeneration in mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:341. [PMID: 35434001 PMCID: PMC9011313 DOI: 10.21037/atm-22-1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Background Inflammatory bowel disease (IBD) is the most common precancerous lesion of colitis-associated colon cancer (CAC). Studies have confirmed that pathological changes in intestinal lymphatic vessels (LVs) significantly promoted the development of IBD-associated carcinogenesis. An imbalance in the microecology of the intestinal flora is a key factor in the progression of IBD. As a result, therapeutic techniques that focus on the relationship between LV regeneration and flora management might be a potential treatment strategy. Methods We investigated the role of Clostridium butyricum (C butyricum) in a dextran sulfate sodium (DSS)-induced IBD mouse model. Balb/c mice were given 3% DSS in their drinking water for 8 days to produce acute colitis and simultaneously administrated with C butyricum for 12 days. Hematoxylin and eosin (H&E) staining was used to evaluate the degree of colitis tissue damage. Levels of the lymphatic endothelial cell (LEC)-specific marker LYVE-1 and intestinal expressions of pro-lymphatic vascular endothelial growth factor (VEGF)-C and VEGF-D were determined using immunohistochemical assays. Results In a DSS-induced IBD mouse model, we found that butyric acid-producing C butyricum significantly reduced disease activity index (DAI) scores in mice, reversed the shortening of the colon, weakened the degree of damage to colonic epithelial tissues, inhibited lymphocyte infiltration, and reduced pathological damage to the colon. To our knowledge, this is the first time that tissue expressions of LYVE-1, VEGF-C, and VEGF-D have been seen to increase in IBD-model mice after treatment with C butyricum. Conclusions Our findings suggest that C butyricum might alleviate IBD in DSS-induced IBD-model mice by promoting intestinal LV regeneration.
Collapse
Affiliation(s)
- Xing Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
18
|
Sauceda C, Bayne C, Sudqi K, Gonzalez A, Dulai PS, Knight R, Gonzalez DJ, Gonzalez CG. Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease. Gut Microbes 2022; 14:2154092. [PMID: 36503356 PMCID: PMC9746627 DOI: 10.1080/19490976.2022.2154092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic immune-mediated inflammatory disease of the gastrointestinal tract that is a growing public burden. Gut microbes and their interactions with hosts play a crucial role in disease pathogenesis and progression. These interactions are complex, spanning multiple physiological systems and data types, making comprehensive disease assessment difficult, and often overwhelming single-omic capabilities. Stool-based multi-omics is a promising approach for characterizing host-gut microbiome interactions using deep integration of technologies such as 16S rRNA sequencing, shotgun metagenomics, meta-transcriptomics, metabolomics, and metaproteomics. The wealth of information generated through multi-omic studies is poised to usher in advancements in IBD research and precision medicine. This review highlights historical and recent findings from stool-based muti-omic studies that have contributed to unraveling IBD's complexity. Finally, we discuss common pitfalls, issues, and limitations, and how future pipelines should address them to standardize multi-omics in IBD research and beyond.
Collapse
Affiliation(s)
- Consuelo Sauceda
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Charlie Bayne
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Khadijeh Sudqi
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Parambir S. Dulai
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|