1
|
Park MA, Gumpper-Fedus K, Krishna SG, Genilo-Delgado MC, Brantley S, Hart PA, Dillhoff ME, Gomez MF, Basinski TL, Mok SR, Luthra AK, Fleming JB, Mohammadi A, Centeno BA, Jiang K, Karolak A, Jeong D, Chen DT, Stewart PA, Teer JK, Cruz-Monserrate Z, Permuth JB. Molecular Pathway and Immune Profile Analysis of IPMN-Derived Versus PanIN-Derived Pancreatic Ductal Adenocarcinomas. Int J Mol Sci 2024; 25:13164. [PMID: 39684873 DOI: 10.3390/ijms252313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMN) are commonly detected pancreatic cysts that may transform into pancreatic ductal adenocarcinoma (PDAC). Predicting which IPMNs will progress to PDAC remains a clinical challenge. Moreover, identifying those clinically evident IPMNs for which a surveillance approach is best is a dire clinical need. Therefore, we aimed to identify molecular signatures that distinguished between PDAC with and without clinical evidence of an IPMN to identify novel molecular pathways related to IPMN-derived PDAC that could help guide biomarker development. Data from the Oncology Research Information Exchange Network (ORIEN) multi-institute sequencing project were utilized to analyze 66 PDAC cases from Moffitt Cancer Center and The Ohio State University Wexner Medical Center, for which tumor whole transcriptome sequencing datasets were generated. Cases were classified based on whether a tumor had originated from an IPMN (n = 16) or presumably through the pancreatic intraepithelial neoplasia (PanIN) pathway (n = 50). We then performed differential expression and pathway analysis using Gene-Set Enrichment Analysis (GSEA) and Pathway Analysis with Down-weighted Genes (PADOG) algorithms. We also analyzed immune profiles using the Tumor-Immune Microenvironment Deconvolution web portal for Bulk Transcriptomics (TIMEx). Both GSEA and TIMEx indicate that PanIN-derived PDAC tumors enrich inflammatory pathways (complement, hedgehog signaling, coagulation, inflammatory response, apical surface, IL-2/STAT5, IL-6/STAT3, EMT, KRAS signaling, apical junction, IFN-gamma, allograft rejection) and are comparatively richer in almost all immune cell types than those from IPMN-derived PDAC. IPMN-derived tumors were enriched for metabolic and energy-generating pathways (oxidative phosphorylation, unfolded protein response, pancreas beta cells, adipogenesis, fatty acid metabolism, protein secretion), and the most significantly upregulated genes (padj < 0.001) included mucin 2 (MUC2) and gastrokine-2 (GKN2). Further, the metabolic-linked gene signature enriched in the IPMN-derived samples is associated with a cluster of early-stage and long-survival (top 4th quartile) PDAC cases from The Cancer Genome Atlas (TCGA) expression database. Our data suggest that IPMN-derived and PanIN-derived PDACs differ in the expression of immune profiles and metabolic pathways. These initial findings warrant validation and follow-up to develop biomarker-based strategies for early PDAC detection and treatment.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maria C Genilo-Delgado
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Stephen Brantley
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mary E Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Maria F Gomez
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Toni L Basinski
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Shaffer R Mok
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anjuli K Luthra
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jason B Fleming
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amir Mohammadi
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Barbara A Centeno
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kun Jiang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Aleksandra Karolak
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Jeong
- Department of Radiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Qian X, Bian S, Guo Q, Zhu D, Bian F, Song Y, Jiang G. Identification of hub fatty acid metabolism-related genes and immune infiltration in IgA nephropathy. Ren Fail 2024; 46:2427158. [PMID: 39540382 PMCID: PMC11565677 DOI: 10.1080/0886022x.2024.2427158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS To investigate the potential mechanisms of fatty acid metabolism (FAM)-related genes in IgA nephropathy (IgAN) and to explore its immune cell infiltration characteristic. METHODS Datasets for IgAN and FAM-related genes were obtained from GEO and MSigDB database, respectively. We employed differential expression analysis and WGCNA to identify common genes. GO and KEGG analyses were performed to compare the differences between IgAN and control groups. Furthermore, LASSO logistic regression was applied to develop a predictive model based on FAM-related genes. The efficacy of this prognostic model was evaluated using ROC analysis. The infiltration of immune cells and immune-related functions were assessed with CIBERSORT tool. Finally, the identified key genes were validated in blood samples from IgAN and control patients, as well as in human mesangial cells (HMCs) following Gd-IgA stimulation using Real-time PCR. RESULTS A total of 12 hub genes linked to FAM were identified in patients with IgAN. A predictive model consisting of four genes was conducted through COX and LASSO regression analysis, revealing AUC values that indicate a relatively strong diagnostic capability. Immune infiltration analysis indicated that various immune cells have significant associations with IgAN. Additionally, Real-time PCR assays confirmed that the expression levels of hub genes were markedly reduced in IgAN patients and in Gd-IgA treated HMCs compared to controls. CONCLUSION This study employed bioinformatics methods to unveiled the immune cell infiltration associated with IgAN and to explore the potential genetic connection between FAM and IgAN. This could aid in predicting the risk of IgAN and enhance both diagnosis and prognosis of this condition.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | | | - Qin Guo
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Dongdong Zhu
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fan Bian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Yinhui Song
- First Breast Surgery Department, Southern Branch of the First Hospital of Qiqihar, Qiqihar, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
3
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
4
|
Tian W, Zhu L, Luo Y, Tang Y, Tan Q, Zou Y, Chen K, Deng X, Tang H, Li H, Cai M, Xie X, Ye F. Autophagy Deficiency Induced by SAT1 Potentiates Tumor Progression in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309903. [PMID: 39073262 PMCID: PMC11423137 DOI: 10.1002/advs.202309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Aggressive triple-negative breast cancer (TNBC) still lacks approved targeted therapies, requiring more exploration of its underlying mechanisms. Previous studies have suggested a potential role of SAT1 (Spermidine/Spermine N1-acetyltransferase 1) in cancer, which needs to be further elucidated in breast cancer. In this study, highly expressed SAT1 in TNBC signified worse patient prognoses. And SAT1 knockdown effectively inhibited the proliferation and migration abilities of TNBC cells in vitro and in vivo. In terms of mechanism, the transcription factor JUN enhanced SAT1 transcriptional activity by binding to its promoter region. Then, SAT1 protein in the cytoplasm engaged in directly binding with YBX1 for sustaining YBX1 protein stability via deubiquitylation mediated by the E3 ligase HERC5. Further, SAT1 was found to suppress autophagy remarkably via stabilization of mTOR mRNA with the accumulation of YBX1-mediated methyl-5-cytosine (m5C) modification. These findings proved that SAT1 drives TNBC progression through the SAT1/YBX1/mTOR axis, which may provide a potential candidate for targeted therapy in advanced TNBC.
Collapse
Affiliation(s)
- Wenwen Tian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Lewei Zhu
- The First People's Hospital of Foshan, Foshan, 528000, P. R. China
| | - Yongzhou Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qingjian Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Chen
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hongsheng Li
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| |
Collapse
|
5
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Li H, Zhou T, Zhang Q, Yao Y, Hua T, Zhang J, Wang H. Characterization and validation of fatty acid metabolism-related genes predicting prognosis, immune infiltration, and drug sensitivity in endometrial cancer. Biotechnol Appl Biochem 2024; 71:909-928. [PMID: 38616327 DOI: 10.1002/bab.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Endometrial cancer is considered to be the second most common tumor of the female reproductive system, and patients diagnosed with advanced endometrial cancer have a poor prognosis. The influence of fatty acid metabolism in the prognosis of patients with endometrial cancer remains unclear. We constructed a prognostic risk model using transcriptome sequencing data of endometrial cancer and clinical information of patients from The Cancer Genome Atlas (TCGA) database via least absolute shrinkage and selection operator regression analysis. The tumor immune microenvironment was analyzed using the CIBERSORT algorithm, followed by functional analysis and immunotherapy efficacy prediction by gene set variation analysis. The role of model genes in regulating endometrial cancer in vitro was verified by CCK-8, colony formation, wound healing, and transabdominal invasion assays, and verified in vivo by subcutaneous tumor transplantation in nude mice. A prognostic model containing 14 genes was constructed and validated in 3 cohorts and clinical samples. The results showed differences in the infiltration of immune cells between the high-risk and low-risk groups, and that the high-risk group may respond better to immunotherapy. Experiments in vitro confirmed that knockdown of epoxide hydrolase 2 (EPHX2) and acyl-CoA oxidase like (ACOXL) had an inhibitory effect on EC cells, as did overexpression of hematopoietic prostaglandin D synthase (HPGDS). The same results were obtained in experiments in vivo. Prognostic models related to fatty acid metabolism can be used for the risk assessment of endometrial cancer patients. Experiments in vitro and in vivo confirmed that the key genes HPGDS, EPHX2, and ACOXL in the prognostic model may affect the development of endometrial cancer.
Collapse
Affiliation(s)
- Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Teng Hua
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, China
| |
Collapse
|
7
|
Dai C, Man Y, Zhang L, Zhang X, Xie C, Wang S, Zhang Y, Guo Q, Zou L, Hong H, Jiang L, Shi Y. Identifying SLC2A6 as the novel protective factor in breast cancer by TP53-related genes affecting M1 macrophage infiltration. Apoptosis 2024; 29:1211-1231. [PMID: 38622369 DOI: 10.1007/s10495-024-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
The high heterogeneity of breast cancer (BC) caused by pathogenic gene mutations poses a challenge to immunotherapy, but the underlying mechanism remains unknown. The difference in the infiltration of M1 macrophages induced by TP53 mutations has a significant impact on BC immunotherapy. The aim of this study was to develop a TP53-related M1 macrophage infiltration molecular typing risk signature in BC and evaluate the biological functions of the key gene to find new immunotherapy biomarkers. Weighted correlation network analysis (WGCNA) and negative matrix factorization (NMF) were used for distinguishing BC subtypes. The signature and the nomogram were both constructed and evaluated. Biological functions of the novel signature gene SLC2A6 were confirmed through in vitro and in vivo experiments. RNA-Sequencing and protein profiling were used for detecting the possible mechanism of SLC2A6. The results suggested that four BC subtypes were distinguished by TP53-related genes that affect M1 macrophage infiltration. The signature constructed by molecular typing characteristics could evaluate BC's clinical features and tumor microenvironment. The nomogram could accurately predict the prognosis. The signature gene SLC2A6 was found to have an abnormally low expression in tumor tissues. Overexpression of SLC2A6 could inhibit proliferation, promote mitochondrial damage, and result in apoptosis of tumor cells. The HSP70 family member protein HSPA6 could bind with SLC2A6 and increase with the increased expression of SLC2A6. In summary, the risk signature provides a reference for BC risk assessment, and the signature gene SLC2A6 could act as a tumor suppressor in BC.
Collapse
Affiliation(s)
- Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuxin Man
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Luhan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiao Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chunbao Xie
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shan Wang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yinjie Zhang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Qian Guo
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
8
|
Chen Y, Zhou Y, Ren R, Chen Y, Lei J, Li Y. Harnessing lipid metabolism modulation for improved immunotherapy outcomes in lung adenocarcinoma. J Immunother Cancer 2024; 12:e008811. [PMID: 38977328 PMCID: PMC11256034 DOI: 10.1136/jitc-2024-008811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND While anti-programmed cell death protein-1 (PD-1) monotherapy has shown effectiveness in treating lung cancer, its response rate is limited to approximately 20%. Recent research suggests that abnormal lipid metabolism in patients with lung adenocarcinoma may hinder the efficacy of anti-PD-1 monotherapy. METHODS Here, we delved into the patterns of lipid metabolism in patients with The Cancer Genome Atlas (TCGA)-lung adenocarcinoma (LUAD) and their correlation with the immune microenvironment's cellular infiltration characteristics of the tumor. Furthermore, the lipid metabolism score (LMS) system was constructed, and based on the LMS system, we further performed screening for potential agents targeting lipid metabolism. The mechanism of MK1775 was further validated using RNA sequencing, co-culture technology, and in vivo experiments. RESULTS We developed an LSM system and identified a potential sensitizing agent, MK1775, which targets lipid metabolism and enhances the effects of anti-PD-1 treatment. Our results demonstrate that MK1775 inhibits tumor progression by influencing lipid crosstalk between tumor cells and tumor-associated macrophages and CD8+T cells, thereby increasing the effectiveness of anti-PD-1 treatment. Further, we found that MK1775 inhibited the phosphatidylinositol 3-kinase(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which on one hand downregulated FASN-mediated synthesis of fatty acids (FAs) to inhibit fatty acid oxidation of tumor-associated macrophages, and on the other hand, promoted IRF-mediated secretion of CXCL10 and CXCL11 to facilitate the infiltration of CD8+ T cells. CONCLUSIONS These findings emphasize the important role of lipid metabolism in shaping the complex tumor microenvironment. By manipulating the intricate intricacies of lipid metabolism within the tumor microenvironment, we can uncover and develop promising strategies to sensitize immunotherapy, potentially revolutionizing cancer treatment approaches.
Collapse
Affiliation(s)
- Yang Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, Chongqing, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, Chongqing, China
| | - Ran Ren
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, Chongqing, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, Chongqing, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, Chongqing, China
| |
Collapse
|
9
|
Yang W, Peng C, Li Z, Yang W. Identification of PATL1 as a prognostic and immunotherapeutic predictive factor for nasal-type natural killer/T-cell lymphoma and head and neck squamous cell carcinoma. Heliyon 2024; 10:e32158. [PMID: 38912458 PMCID: PMC11190607 DOI: 10.1016/j.heliyon.2024.e32158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
This research examines the function of protein associated with topoisomerase II homolog 1 (PATL1) in nasal-type natural killer/T-cell lymphoma (NKTCL) and head and neck squamous cell carcinoma (HNSCC). We analyzed bulk RNA-seq data from NKTCL, nasal polyps, and normal nasal mucosa, identifying 439 differentially expressed genes. Machine learning algorithms highlighted PATL1 as a hub gene. PATL1 exhibited significant upregulation in NKTCL and HNSCC tumor samples in comparison to normal tissues, showing high diagnostic accuracy (AUC = 1.000) for NKTCL. Further analysis of local hospital data identified PATL1 as an independent prognostic risk factor for NKTCL. Data analysis of TCGA and GEO datasets revealed that high PATL1 expression correlated with poorer prognosis in HNSCC patients (p < 0.05). We also constructed a PATL1-based nomogram, which emerged as an independent prognostic predictor for HNSCC after addressing missing values. Additionally, we found a strong correlation between PATL1 and various immune cell infiltrates (e.g., activated.CD4 T cell), and a significant association with the expression of 37 immune checkpoints genes (e.g., CTLA4, PDCD1) and 20 N6-methyladenosine-related genes (e.g., ZC3H13, METTL3) (all p < 0.05). Both TCIA and TIDE algorithms suggested that PATL1 could potentially predict immunotherapy efficacy (p < 0.05). Cellular experiments demonstrated that transfection with a silencing plasmid of PATL1 significantly inhibited the malignant behaviors of SNK6 and FaDu cell lines(p < 0.05). In conclusion, our findings suggest that PATL1 may serve as a valuable prognostic and predictive biomarker in NKTCL and HNSCC, highlighting its significant role in these cancers.
Collapse
Affiliation(s)
- Wen Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, China
- Department of Pathology, Guizhou Medical University, China
| | - Cong Peng
- Department of Otolaryngology, Guizhou Provincial People's Hospital, China
| | - Zhengyang Li
- Department of Otolaryngology, Guizhou Provincial People's Hospital, China
| | - Wenxiu Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, China
- Department of Pathology, Guizhou Medical University, China
| |
Collapse
|
10
|
Li S, Liu Z, Chen Q, Chen Y, Ji S. A novel fatty acid metabolism-related signature identifies MUC4 as a novel therapy target for esophageal squamous cell carcinoma. Sci Rep 2024; 14:12476. [PMID: 38816411 PMCID: PMC11139939 DOI: 10.1038/s41598-024-62917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Fatty acid metabolism has been identified as an emerging hallmark of cancer, which was closely associated with cancer prognosis. Whether fatty acid metabolism-related genes (FMGs) signature play a more crucial role in biological behavior of esophageal squamous cell carcinoma (ESCC) prognosis remains unknown. Thus, we aimed to identify a reliable FMGs signature for assisting treatment decisions and prognosis evaluation of ESCC. In the present study, we conducted consensus clustering analysis on 259 publicly available ESCC samples. The clinical information was downloaded from The Cancer Genome Atlas (TCGA, 80 ESCC samples) and Gene Expression Omnibus (GEO) database (GSE53625, 179 ESCC samples). A consensus clustering arithmetic was used to determine the FMGs molecular subtypes, and survival outcomes and immune features were evaluated among the different subtypes. Kaplan-Meier analysis and the receiver operating characteristic (ROC) was applied to evaluate the reliability of the risk model in training cohort, validation cohort and all cohorts. A nomogram to predict patients' 1-year, 3-year and 5-year survival rate was also studied. Finally, CCK-8 assay, wound healing assay, and transwell assay were implemented to evaluate the inherent mechanisms of FMGs for tumorigenesis in ESCC. Two subtypes were identified by consensus clustering, of which cluster 2 is preferentially associated with poor prognosis, lower immune cell infiltration. A fatty acid (FA) metabolism-related risk model containing eight genes (FZD10, TACSTD2, MUC4, PDLIM1, PRSS12, BAALC, DNAJA2 and ALOX12B) was established. High-risk group patients displayed worse survival, higher stromal, immune and ESTIMATE scores than in the low-risk group. Moreover, a nomogram revealed good predictive ability of clinical outcomes in ESCC patients. The results of qRT-PCR analysis revealed that the MUC4 and BAALC had high expression level, and FZD10, PDLIM1, TACSTD2, ALOX12B had low expression level in ESCC cells. In vitro, silencing MUC4 remarkably inhibited ESCC cell proliferation, invasion and migration. Our study fills the gap of FMGs signature in predicting the prognosis of ESCC patients. These findings revealed that cluster subtypes and risk model of FMGs had effects on survival prediction, and were expected to be the potential promising targets for ESCC.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Operating Room, Weifang Traditional Chinese Hospital, Weifang, China
| | - Zhengcao Liu
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Qingqing Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Yuetong Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Shengjun Ji
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China.
| |
Collapse
|
11
|
Liu Y, Zhang X, Pang Z, Wang Y, Zheng H, Wang G, Wang K, Du J. Prediction of prognosis and immunotherapy efficacy based on metabolic landscape in lung adenocarcinoma by bulk, single-cell RNA sequencing and Mendelian randomization analyses. Aging (Albany NY) 2024; 16:8772-8809. [PMID: 38771130 PMCID: PMC11164486 DOI: 10.18632/aging.205838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Immunotherapy has been a remarkable clinical advancement in cancer treatment, but only a few patients benefit from it. Metabolic reprogramming is tightly associated with immunotherapy efficacy and clinical outcomes. However, comprehensively analyzing their relationship is still lacking in lung adenocarcinoma (LUAD). Herein, we evaluated 84 metabolic pathways in TCGA-LUAD by ssGSEA. A matrix of metabolic pathway pairs was generated and a metabolic pathway-pair score (MPPS) model was established by univariable, LASSO, multivariable Cox regression analyses. The differences of metabolic reprogramming, tumor microenvironment (TME), tumor mutation burden and drug sensitivity in different MPPS groups were further explored. WGCNA and 117 machine learning algorithms were performed to identify MPPS-related genes. Single-cell RNA sequencing and in vitro experiments were used to explore the role of C1QTNF6 on TME. The results showed MPPS model accurately predicted prognosis and immunotherapy efficacy of LUAD patients regardless of sequencing platforms. High-MPPS group had worse prognosis, immunotherapy efficacy and lower immune cells infiltration, immune-related genes expression and cancer-immunity cycle scores than low-MPPS group. Seven MPPS-related genes were identified, of which C1QTNF6 was mainly expressed in fibroblasts. High C1QTNF6 expression in fibroblasts was associated with more infiltration of M2 macrophage, Treg cells and less infiltration of NK cells, memory CD8+ T cells. In vitro experiments validated silencing C1QTNF6 in fibroblasts could inhibit M2 macrophage polarization and migration. The study depicted the metabolic landscape of LUAD and constructed a MPPS model to accurately predict prognosis and immunotherapy efficacy. C1QTNF6 was a promising target to regulate M2 macrophage polarization and migration.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Xiangwei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhaofei Pang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
| | - Jiajun Du
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
12
|
Wang Y, Chen X, Li Y, Zhang Z, Xia L, Jiang J, Chai Y, Wang Z, Wan Y, Li T, Jin F, Li H. SLC27A2 is a potential immune biomarker for hematological tumors and significantly regulates the cell cycle progression of diffuse large B-cell lymphoma. BMC Med Genomics 2024; 17:105. [PMID: 38664735 PMCID: PMC11046844 DOI: 10.1186/s12920-024-01853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Cell Cycle
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Fatty Acids/metabolism
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Xue Chen
- Graduate School Internal Medicine, Bengbu Medical College, Anhui, China
| | - Yun Li
- Kindstar Global Precision Medicine Institute, Wuhan, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd, Wuhan, Hubei, China
| | - Zhixue Zhang
- Department of Hematology, The Ji'an Central Hospital, Jiangxi, China
| | - Leiming Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical, Anhui, China
| | - Jiang Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical, Hefei, Anhui, China
| | - Yuqin Chai
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Ziming Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Yu Wan
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China
| | - Tongyu Li
- Ningbo Clinical Research Center for Hematologic Malignancies, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fengbo Jin
- Department of Hematology, The First Affiliated Hospital of Anhui Medical, Anhui, China.
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical, Anhui, China.
- Graduate School Internal Medicine, Bengbu Medical College, Anhui, China.
| |
Collapse
|
13
|
Pan B, Xu Z, Du K, Gao R, Zhang J, Yin H, Shen H, Liang J, Li Y, Wang L, Li J, Xu W, Wu J. Investigation of fatty acid metabolism in chronic lymphocytic leukemia to guide clinical outcome and therapy. Ann Hematol 2024; 103:1241-1254. [PMID: 38150112 DOI: 10.1007/s00277-023-05590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the West. With CLL's heterogeneity, some people still develop disease refractory and relapse despite advances in treatment. Thus, early diagnosis and treatment of high-risk CLL patients is critical. Fatty acid (FA) metabolism contributes to tumorigenesis, progression, and therapy resistance through enhanced lipid synthesis, storage, and catabolism. In this study, we aimed to construct a prognostic model to improve the risk stratification of CLL and reveal the link between FA metabolism and CLL. The differentially expressed FA metabolism-related genes (FMGs) in CLL were filtered through univariate Cox regression analysis based on public databases. Functional enrichment was examined using prognostic FA metabolism-related gene enrichment analysis. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) estimated immune infiltration score and immune-related pathways. Pearson's correlation analysis investigated FA metabolism-related genes and drug sensitivity. A novel prognostic model was built using least absolute shrinkage and selection operator (LASSO) Cox algorithms. This validation cohort included 36 CLL patients from our center. We obtained CLL RNA microarray profiles from public databases and identified 15 prognostic-related FMGs. CLL patients were divided into two molecular clusters based on the expression of FMGs. The Kaplan-Meier analysis revealed a significant difference in TFS (P < 0.001) and OS (P < 0.001) between the two clusters. KEGG functional analysis showed that several pathways were enriched, including the chemokine and immune-related signaling pathways. In the training and validation cohorts, patients with higher FA metabolism-related prognostic index (FAPI) levels had worse outcomes. Finally, a novel nomogram prognostic model including CLL international prognostic index (CLL-IPI) was constructed, exhibiting reliable effectiveness and accuracy. In conclusion, we established a reliable predictive signature based on FA metabolism-related genes and constructed a novel nomogram prognostic model, supporting the potential preclinical implications of FA metabolism in CLL research.
Collapse
Affiliation(s)
- Bihui Pan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Zhangdi Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Kaixin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiale Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Haorui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jinhua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
14
|
Wang S, Huang X, Zhao S, Lv J, Li Y, Wang S, Guo J, Wang Y, Wang R, Zhang M, Qiu W. Progressions of the correlation between lipid metabolism and immune infiltration characteristics in gastric cancer and identification of BCHE as a potential biomarker. Front Immunol 2024; 15:1327565. [PMID: 38357546 PMCID: PMC10864593 DOI: 10.3389/fimmu.2024.1327565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Background Globally, gastric cancer (GC) is a category of prevalent malignant tumors. Its high occurrence and fatality rates represent a severe threat to public health. According to recent research, lipid metabolism (LM) reprogramming impacts immune cells' ordinary function and is critical for the onset and development of cancer. Consequently, the article conducted a sophisticated bioinformatics analysis to explore the potential connection between LM and GC. Methods We first undertook a differential analysis of the TCGA queue to recognize lipid metabolism-related genes (LRGs) that are differentially expressed. Subsequently, we utilized the LASSO and Cox regression analyses to create a predictive signature and validated it with the GSE15459 cohort. Furthermore, we examined somatic mutations, immune checkpoints, tumor immune dysfunction and exclusion (TIDE), and drug sensitivity analyses to forecast the signature's immunotherapy responses. Results Kaplan-Meier (K-M) curves exhibited considerably longer OS and PFS (p<0.001) of the low-risk (LR) group. PCA analysis and ROC curves evaluated the model's predictive efficacy. Additionally, GSEA analysis demonstrated that a multitude of carcinogenic and matrix-related pathways were much in the high-risk (HR) group. We then developed a nomogram to enhance its clinical practicality, and we quantitatively analyzed tumor-infiltrating immune cells (TIICs) using the CIBERSORT and ssGSEA algorithms. The low-risk group has a lower likelihood of immune escape and more effective in chemotherapy and immunotherapy. Eventually, we selected BCHE as a potential biomarker for further research and validated its expression. Next, we conducted a series of cell experiments (including CCK-8 assay, Colony formation assay, wound healing assay and Transwell assays) to prove the impact of BCHE on gastric cancer biological behavior. Discussion Our research illustrated the possible consequences of lipid metabolism in GC, and we identified BCHE as a potential therapeutic target for GC. The LRG-based signature could independently forecast the outcome of GC patients and guide personalized therapy.
Collapse
Affiliation(s)
- Shibo Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojuan Huang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Li
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rui Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengqi Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Li Q, Liu G, Qiu Q, Zhang J, Li R, Zhao J, She J, Chen Y. Establish a novel tumor budding-related signature to predict prognosis and guide clinical therapy in colorectal cancer. Sci Rep 2024; 14:2180. [PMID: 38273073 PMCID: PMC10810877 DOI: 10.1038/s41598-024-52596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Tumor budding is a long-established independent adverse prognostic marker for colorectal cancer (CRC), yet assessment of tumor budding was not reproducible. Therefore, development of precise diagnostic approaches to tumor budding is in demand. In this study, we first performed bioinformatic analysis in our single-center CRC patients' cohort (n = 84) and identified tumor budding-associated hub genes using the weighted gene co-expression network analysis (WGCNA). A machine learning methodology was used to identify hub genes and construct a prognostic signature. Nomogram model was used to identified hub genes score for tumor budding, and the receiver operating characteristic (ROC) curve and calibration plot indicated high accuracy and stability of hub gene score for predicted the prognosis of CRC. The association between budding-associated hub genes and score and prognosis of CRC were further verified in TCGA CRC cohort (n = 342). Then gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were applied to explore the signaling pathways related to the tumor budding and validated by immunohistochemistry (IHC) of our clinical samples. Subsequently, immune infiltration analysis demonstrated that there was a high correlation between hub genes score and M2-like macrophages infiltrated in tumor tissue. In addition, somatic mutation and chemotherapeutic response prediction were analyzed based on the risk signature. In summary, we established a tumor budding diagnostic molecular model, which can improve tumor budding assessment and provides a promising novel molecular marker for immunotherapy and prognosis of CRC.
Collapse
Affiliation(s)
- Qixin Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gaixia Liu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quanpeng Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiaqi Zhang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruizhe Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiamian Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Tang Y, Tian W, Zheng S, Zou Y, Xie J, Zhang J, Li X, Sun Y, Lan J, Li N, Xie X, Tang H. Dissection of FOXO1-Induced LYPLAL1-DT Impeding Triple-Negative Breast Cancer Progression via Mediating hnRNPK/β-Catenin Complex. RESEARCH (WASHINGTON, D.C.) 2023; 6:0289. [PMID: 38111678 PMCID: PMC10726293 DOI: 10.34133/research.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/β-catenin signaling pathway, explicitly destabilizing and diminishing β-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/β-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/β-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.
Collapse
Affiliation(s)
- Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Wenwen Tian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou 510095, P. R. China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jing Lan
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Ning Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
17
|
Li J, Yao J, Qi L. HER2 low expression breast cancer subtyping and their correlation with prognosis and immune landscape based on the histone modification related genes. Sci Rep 2023; 13:21753. [PMID: 38066224 PMCID: PMC10709565 DOI: 10.1038/s41598-023-49010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) plays an important role in diagnosis and treatment of breast cancer (BRCA). The histone modification has been found to be related to the progression of cancer. This study aimed to probe the low HER2 expression BRCA heterogeneity by histone modification genes. The BRCA data and cell lines were collected from The Cancer Genome Atlas database. Weighted gene co-expression network analysis and non-negative matrix factorization clustering were jointly applied to obtain BRCA clusters. The expression of hub histone modification gene was detected using western blot assay. The gene ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal functional information. The overall survival analysis was performed using survival and survminer packages, and the immune landscape was mainly analyzed using CIBERSORT software. Totally 43 histone modification genes correlated with survival of BRCA patients with HER2 low expression were screened. Based on these 43 histone modification genes, the BRCA samples were classified into cluster1, cluster2 and cluster3. Histone modification gene NFKBIZ exhibited high expression, while RAD51 demonstrated low expression in low HER2 expression BRCA cell. Cluster1 exhibited the best prognosis, while cluster3 had the worse outcomes. Tumor mutational burden (TMB) was remarkably increased in cluster3 group compared to cluster1 and cluster2. Moreover, the relative proportion of 16 immune cell infiltration and 8 immune checkpoint expression were remarkably differential among cluster1, cluster2 and cluster3, and the drug sensitivity exhibited difference among cluster1, cluster2 and cluster3 in BRCA patients with low HER2 expression. This study identified three HER2 low expression BRCA clusters with different characteristics based on histone modification genes. The TMB, immune cell infiltration, immune checkpoints and drug sensitivity were different among the three clusters.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Jingchun Yao
- Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan, Huawei South Road, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
18
|
Tian W, Tang Y, Luo Y, Xie J, Zheng S, Zou Y, Huang X, Wu L, Zhang J, Sun Y, Tang H, Du W, Li X, Xie X. AURKAIP1 actuates tumor progression through stabilizing DDX5 in triple negative breast cancer. Cell Death Dis 2023; 14:790. [PMID: 38040691 PMCID: PMC10692340 DOI: 10.1038/s41419-023-06115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 12/03/2023]
Abstract
Aurora-A kinase interacting protein 1 (AURKAIP1) has been proved to take an intermediary role in cancer by functioning as a negative regulator of Aurora-A kinase. However, it remains unclear whether and how AURKAIP1 itself would directly engage in regulating malignancies. The expression levels of AURKAIP1 were detected in triple negative breast cancer (TNBC) by immunohistochemistry and western blots. The CCK8, colony formation assays and nude mouse model were conducted to determine cell proliferation whereas transwell and wound healing assays were performed to observe cell migration. The interaction of AURKAIP1 and DEAD-box helicase 5 (DDX5) were verified through co-immunoprecipitation and successively western blots. From the results, we found that AURKAIP1 was explicitly upregulated in TNBC, which was positively associated with tumor size, lymph node metastases, pathological stage and unfavorable prognosis. AURKAIP1 silencing markedly inhibited TNBC cell proliferation and migration in vitro and in vivo. AURKAIP1 directly interacted with and stabilized DDX5 protein by preventing ubiquitination and degradation, and DDX5 overexpression successfully reversed proliferation inhibition induced by knockdown of AURKAIP1. Consequently, AURKAIP1 silencing suppressed the activity of Wnt/β-catenin signaling in a DDX5-dependent manner. Our study may primarily disclose the molecular mechanism by which AURKAIP1/DDX5/β-catenin axis modulated TNBC progression, indicating that AURKAIP1 might serve as a therapeutic target as well as a TNBC-specific biomarker for prognosis.
Collapse
Affiliation(s)
- Wenwen Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, China
| | - Yuhui Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yongzhou Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jindong Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yutian Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Xiaojia Huang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, China
| | - Linyu Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Junsheng Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yuying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Wei Du
- Department of pathology, The First People's Hospital of Changde City, Changde, Hunan, China.
| | - Xing Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Zou M, Li H, Su D, Xiong Y, Wei H, Wang S, Sun H, Wang T, Xi Q, Zuo Y, Yang L. Integrating somatic mutation profiles with structural deep clustering network for metabolic stratification in pancreatic cancer: a comprehensive analysis of prognostic and genomic landscapes. Brief Bioinform 2023; 25:bbad430. [PMID: 38040491 PMCID: PMC10783866 DOI: 10.1093/bib/bbad430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023] Open
Abstract
Pancreatic cancer is a globally recognized highly aggressive malignancy, posing a significant threat to human health and characterized by pronounced heterogeneity. In recent years, researchers have uncovered that the development and progression of cancer are often attributed to the accumulation of somatic mutations within cells. However, cancer somatic mutation data exhibit characteristics such as high dimensionality and sparsity, which pose new challenges in utilizing these data effectively. In this study, we propagated the discrete somatic mutation data of pancreatic cancer through a network propagation model based on protein-protein interaction networks. This resulted in smoothed somatic mutation profile data that incorporate protein network information. Based on this smoothed mutation profile data, we obtained the activity levels of different metabolic pathways in pancreatic cancer patients. Subsequently, using the activity levels of various metabolic pathways in cancer patients, we employed a deep clustering algorithm to establish biologically and clinically relevant metabolic subtypes of pancreatic cancer. Our study holds scientific significance in classifying pancreatic cancer based on somatic mutation data and may provide a crucial theoretical basis for the diagnosis and immunotherapy of pancreatic cancer patients.
Collapse
Affiliation(s)
- Min Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Honghao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Dongqing Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuqiang Xiong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Haodong Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shiyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongmei Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qilemuge Xi
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd. Hohhot 010010, China
- Inner Mongolia International Mongolian Hospital, Hohhot 010065, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
20
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
21
|
Liu G, Wang L, Ji L, He D, Zeng L, Zhuo G, Zhang Q, Wang D, Pan Y. Identifying prognostic markers in spatially heterogeneous breast cancer microenvironment. J Transl Med 2023; 21:580. [PMID: 37644433 PMCID: PMC10463390 DOI: 10.1186/s12967-023-04395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023] Open
Abstract
To gain deeper insights into the microenvironment of breast cancer, we utilized GeoMx Digital Spatial Profiling (DSP) technology to analyze transcripts from 107 regions of interest in 65 untreated breast cancer tissue samples. Our study revealed spatial heterogeneity in the expression of marker genes in tumor cell enriched, immune cell enriched, and normal epithelial areas. We evaluated a total of 55 prognostic markers in tumor cell enriched regions and 15 in immune cell enriched regions, identifying that tumor cell enriched regions had higher levels of follicular helper T cells, resting dendritic cells, and plasma cells than immune cell enriched regions, while the levels of resting CD4 memory in T cells and regulatory (Treg) T cells were lower. Additionally, we analyzed the heterogeneity of HLA gene families, immunological checkpoints, and metabolic genes in these areas. Through univariate Cox analysis, we identified 5 prognosis-related metabolic genes. Furthermore, we conducted immunostaining experiments, including EMILIN2, SURF4, and LYPLA1, to verify our findings. Our investigation into the spatial heterogeneity of the breast cancer tumor environment has led to the discovery of specific diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Lili Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan He
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, No.21 Hetian Road, Houjie Town, Dongguan, 523000, China
| | - Lihua Zeng
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, No.21 Hetian Road, Houjie Town, Dongguan, 523000, China
| | - Guangzheng Zhuo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, No.21 Hetian Road, Houjie Town, Dongguan, 523000, China.
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
22
|
Chen Y, Wu W, Jin C, Cui J, Diao Y, Wang R, Xu R, Yao Z, Li X. Integrating Single-Cell RNA-Seq and Bulk RNA-Seq Data to Explore the Key Role of Fatty Acid Metabolism in Breast Cancer. Int J Mol Sci 2023; 24:13209. [PMID: 37686016 PMCID: PMC10487665 DOI: 10.3390/ijms241713209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer immune escape is associated with the metabolic reprogramming of the various infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with immunotherapy shows great promise for improving clinical outcomes. Among all metabolic processes, lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival, migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes (FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15 FMGs associated with overall survival. We systematically evaluated the correlation between FMGs' modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed to quantify the FMG modification patterns using principal component analysis. Three clusters based on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI) scores, increased immune microenvironment infiltration, better survival advantage, and were more sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation and migration of MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaofeng Li
- Department of Epidemiology and Health Statistics, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
23
|
Tan Z, Fu S, Zuo J, Wang J, Wang H. Prognosis analysis and validation of lipid metabolism-associated lncRNAs and tumor immune microenvironment in bladder cancer. Aging (Albany NY) 2023; 15:8384-8407. [PMID: 37632832 PMCID: PMC10496992 DOI: 10.18632/aging.204975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/25/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Numerous types of research revealed that long noncoding RNAs (lncRNAs) played a significant role in immune response and the tumor microenvironment of bladder cancer (BLCA). Dysregulated lipid metabolism is considered to be one of the major risk factors for BLCA, the study aimed to detect the lipid metabolism-related lncRNAs (LMRLs) along with their potential prognostic values and immune correlations in BLCA. METHODS We collected lipid metabolism-related genes, expression profiles, and clinical information on BLCA from the Molecular Signature Database (MSigDB) and the TCGA database, respectively. Differentially expressed lipid metabolism genes (DE-LMRGs) and differentially expressed long non-coding RNAs (DE-lncRNAs) were selected using the limma package. Spearman correlation analysis was employed to explore the correlations between DE-lncRNAs and DE-LMRGs and to further develop protein-protein interaction (PPI) networks and perform mutational analysis. The least absolute shrinkage and selection operator (LASSO) and univariate Cox analysis were then employed to construct a prognostic risk model. The performance of the model was evaluated using Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, and consistency indices. In addition, we downloaded the GSE31684 dataset for external validation of the prognostic signature. Moreover, we explored the association of the risk model with immune cell infiltration and chemotherapy response analysis to reveal the tumor immune microenvironment of BLCA. Finally, RT-qPCR was utilized to validate the expression of prognostic genes. RESULTS A total of 48 DE-LncRNAs and 33 DE-LMRGs were found to be robustly correlated, and were used to construct a lncRNA-mRNA co-expression network, in which ACACB, ACOX2, and BCHE showed high mutation rates. Then, a risk model based on three LMRLs (RP11-465B22.8, MIR100HG, and LINC00865) was constructed. The risk model effectively distinguished between the clinical outcomes of BLCA patients, with high-risk scores indicating a worse prognosis and with substantial prognostic prediction accuracy. The model's results were consistent in the GSE31684 dataset. In addition, a nomogram was constructed based on the risk score, age, pathological T-stage, and pathological N-stage, which showed robust predictive power. Immune landscape analysis indicated that the risk model was significantly associated with T-cell CD4 memory activation, M1 macrophage, M2 macrophage, dendritic cell activation, and T-cell regulatory. We predicted that 49 drugs would perform satisfactorily in the high-risk group. Additionally, we found five m6A regulators associated with the high- and low-risk groups, suggesting that upstream regulation of LncRNA could be a novel target for BLCA treatment. Finally, RT-qPCR showed that RP11-465B22.8 was highly expressed in BLCA, while MIR100HG and LINC00865 were downregulated in BLCA. CONCLUSION Our findings suggest that the three LMRLs may serve as potential prognostic and immunotherapeutic biomarkers in BLCA. In addition, our study provides new ideas for understanding the pathogenic mechanisms and developing therapeutic strategies for BLCA patients.
Collapse
Affiliation(s)
- Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Jieming Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| |
Collapse
|
24
|
Zhang D, Wang M, Huang X, Wang L, Liu Y, Zhou S, Tang Y, Wang Q, Li Z, Wang G. GLS as a diagnostic biomarker in breast cancer: in-silico, in-situ, and in-vitro insights. Front Oncol 2023; 13:1220038. [PMID: 37664031 PMCID: PMC10471892 DOI: 10.3389/fonc.2023.1220038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Recently, a novel programmed cell death mechanism, Cuproptosis, has been discovered and found to play an important role in the development and progression of diverse tumors. In the present study, we comprehensively investigated the core gene of this mechanism, GLS, in breast cancer. Materials and methods Bulk RNA sequencing data were curated from the TCGA repository to investigate the aberrant expression of GLS over diverse cancer types. Then, we examined its efficacy as a diagnostic biomarker in breast cancer by Area Under Curve (AUC) of the Receiver Operative Characteristic (ROC) curve. Furthermore, by applying siRNA technique, we knocked down the GLS expression level in cancerous cell lines, measuring the corresponding effects on cell proliferation and metastasis. Afterward, we explored the potential implications of GLS expression in the tumor immune microenvironment quantitatively by using several R packages and algorithms, including ESTIMATE, CIBERSORT, etc. Results Pan-cancer analysis suggested that GLS was aberrantly over-expressed in many cancer types, with breast cancer being typical. More in-depth analyses revealed the expression of GLS exerted a high ROC-AUC value in breast cancer diagnosis. Through the knock-down of GLS expression, it was found that GLS expression was strongly relevant to the growth and metastasis of tumor. Furthermore, it was also found to be correlated with the immune tumor microenvironment. Conclusion We highlighted that GLS expression might be applicable as a diagnostic biomarker in breast cancer and possess significant implications in the growth and metastasis of tumor and the immune tumor microenvironment, sharing new insights into ontological and personalized medicine.
Collapse
Affiliation(s)
- Danfeng Zhang
- Departments of Breast Thyroid Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Man Wang
- Departments of Outpatient Department, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Faculty of Life Science, Huazhong Agricultural University, Wuhan, China
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qi Wang
- Faculty of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhengrui Li
- Faculty of Dentistry, Shanghai Jiaotong University, Shanghai, China
| | - Geng Wang
- Departments of Breast Thyroid Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
25
|
Xu K, Zhang Y, Yan Z, Wang Y, Li Y, Qiu Q, Du Y, Chen Z, Liu X. Identification of disulfidptosis related subtypes, characterization of tumor microenvironment infiltration, and development of DRG prognostic prediction model in RCC, in which MSH3 is a key gene during disulfidptosis. Front Immunol 2023; 14:1205250. [PMID: 37426643 PMCID: PMC10327482 DOI: 10.3389/fimmu.2023.1205250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Disulfidptosis is a newly discovered mode of cell death induced by disulfide stress. However, the prognostic value of disulfidptosis-related genes (DRGs) in renal cell carcinoma (RCC) remains to be further elucidated. In this study, consistent cluster analysis was used to classify 571 RCC samples into three DRG-related subtypes based on changes in DRGs expression. Through univariate regression analysis and LASSO-Cox regression analysis of differentially expressed genes (DEGs) among three subtypes, we constructed and validated a DRG risk score to predict the prognosis of patients with RCC, while also identifying three gene subtypes. Analysis of DRG risk score, clinical characteristics, tumor microenvironment (TME), somatic cell mutations, and immunotherapy sensitivity revealed significant correlations between them. A series of studies have shown that MSH3 can be a potential biomarker of RCC, and its low expression is associated with poor prognosis in patients with RCC. Last but not least, overexpression of MSH3 promotes cell death in two RCC cell lines under glucose starvation conditions, indicating that MSH3 is a key gene in the process of cell disulfidptosis. In summary, we identify potential mechanism of RCC progression through DRGs -related tumor microenvironment remodeling. In addition, this study has successfully established a new disulfidptosis-related genes prediction model and discovered a key gene MSH3. They may be new prognostic biomarkers for RCC patients, provide new insights for the treatment of RCC patients, and may inspire new methods for the diagnosis and treatment of RCC patients.
Collapse
Affiliation(s)
- Kai Xu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiwei Yan
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yuchan Wang
- School of Science, Hubei University of Technology, Wuhan, China
| | - Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Qiangmin Qiu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
26
|
Liu J, Sun M, Li L, Chai Y, Kang Y, Yuan R. PEG-functionalized black phosphorus quantum dots as stable and biocompatible electrochemiluminescence luminophores for sensitive detection of tumor biomarker. Mikrochim Acta 2023; 190:228. [PMID: 37204518 DOI: 10.1007/s00604-023-05768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
Despite black phosphorous (BP) QDs possess the merits of size-tunable band-gap, high electron mobility, and intrinsic defects, the spontaneous agglomeration and rapid oxidation of BP QDs in aqueous solution caused low electrochemiluminescence (ECL) efficiency and unstable ECL signal, which confined its further application of biological analysis. Herein, polyethylene glycol-functionalized BP QDs (PEG@BP QDs) were prepared showing an efficient and stable ECL response, which is attributed to the fact that PEG as protectant not only effectively prevented the spontaneous agglomeration, but also restrained the rapid oxidation of BP QDs in aqueous solution. As proof-of-concept, PEG@BP QDs were used as an efficient ECL emitter to combine with palindrome amplification-induced DNA walker to construct a sensitive ECL aptasensing platform for detecting cancer marker mucin 1 (MUC1). Interestingly, with the aid of positively charged thiolated PEG, the reaction rate of DNA walker on the electrode interface was clearly increased for the recovery of the ECL signal. The ECL aptasensor provides sensitive determination with the detection limit of 16.5 fg/mL. The proposed strategy paves a path for the development of efficient and stable ECL nanomaterials to construct biosensors for biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Jiali Liu
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, People's Republic of China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, People's Republic of China
| | - Manfei Sun
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, People's Republic of China
| | - Lanxi Li
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, People's Republic of China
| | - Yaqin Chai
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, People's Republic of China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Ruo Yuan
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, People's Republic of China.
| |
Collapse
|
27
|
Li L, Yang W, Jia D, Zheng S, Gao Y, Wang G. Establishment of a N1-methyladenosine-related risk signature for breast carcinoma by bioinformatics analysis and experimental validation. Breast Cancer 2023:10.1007/s12282-023-01458-1. [PMID: 37178414 DOI: 10.1007/s12282-023-01458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Breast carcinoma (BRCA) has resulted in a huge health burden globally. N1-methyladenosine (m1A) RNA methylation has been proven to play key roles in tumorigenesis. Nevertheless, the function of m1A RNA methylation-related genes in BRCA is indistinct. METHODS The RNA sequencing (RNA-seq), copy-number variation (CNV), single-nucleotide variant (SNV), and clinical data of BRCA were acquired via The Cancer Genome Atlas (TCGA) database. In addition, the GSE20685 dataset, the external validation set, was acquired from the Gene Expression Omnibus (GEO) database. 10 m1A RNA methylation regulators were obtained from the previous literature, and further analyzed through differential expression analysis by rank-sum test, mutation by SNV data, and mutual correlation by Pearson Correlation Analysis. Furthermore, the differentially expressed m1A-related genes were selected through overlapping m1A-related module genes obtained by weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) in BRCA and DEGs between high- and low- m1A score subgroups. The m1A-related model genes in the risk signature were derived by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. In addition, a nomogram was built through univariate and multivariate Cox analyses. After that, the immune infiltration between the high- and low-risk groups was investigated through ESTIMATE and CIBERSORT. Finally, the expression trends of model genes in clinical BRCA samples were further confirmed by quantitative real-time PCR (RT‒qPCR). RESULTS Eighty-five differentially expressed m1A-related genes were obtained. Among them, six genes were selected as prognostic biomarkers to build the risk model. The validation results of the risk model showed that its prediction was reliable. In addition, Cox independent prognosis analysis revealed that age, risk score, and stage were independent prognostic factors for BRCA. Moreover, 13 types of immune cells were different between the high- and low-risk groups and the immune checkpoint molecules TIGIT, IDO1, LAG3, ICOS, PDCD1LG2, PDCD1, CD27, and CD274 were significantly different between the two risk groups. Ultimately, RT-qPCR results confirmed that the model genes MEOX1, COL17A1, FREM1, TNN, and SLIT3 were significantly up-regulated in BRCA tissues versus normal tissues. CONCLUSIONS An m1A RNA methylation regulator-related prognostic model was constructed, and a nomogram based on the prognostic model was constructed to provide a theoretical reference for individual counseling and clinical preventive intervention in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Wenhui Yang
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China
| | - Daqi Jia
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Shiqi Zheng
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yuzhe Gao
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| |
Collapse
|
28
|
Hu Y, Fan S, Zhu Y, Xie X. A novel circadian cycle-related gene signature for prognosis prediction of patients with breast cancer. Medicine (Baltimore) 2023; 102:e33718. [PMID: 37144994 PMCID: PMC10158864 DOI: 10.1097/md.0000000000033718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
The extensive and intricate relationships between circadian rhythm and cancer have been reported in numerous studies. However, in breast cancer (BC), the potential role of circadian clock-related genes (CCRGs) in prognosis prediction has not been fully clarified. The transcriptome data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. A CCRGs-based risk signature was established by differential expression analysis, univariate, Lasso and multivariate Cox regression analyses. we conducted a gene set enrichment analysis (GSEA) between groups. A nomogram integrating independent clinical factors and risk score was generated and evaluated by calibration curves and decision curve analysis (DCA). Differentially expression analysis revealed 80 differentially expressed CCRGs, and 27 of them were significantly associated with the overall survival (OS) of BC. BC can be classified into 4 molecular subtypes with significant differences in prognosis based on the 27 CCRGs. Three prognostic CCRGs, including desmocollin 1 (DSC1), LEF1, and protocadherin 9 (PCDH9), were identified to be independent risk factors of BC prognosis and were used to construct a risk score model. BC patients were divided into high- and low-risk groups, and there were significant differences in prognosis between the 2 groups both in the training and validation cohorts. It was found that patients in different groups of race, status, or T stage had significant levels of risk score. Furthermore, patients of different risk levels exhibit varying degrees of sensitivity to vinorelbine, lapatinib, metformin, and vinblastine. GSEA showed that in the high-risk group, immune response-related activities were dramatically repressed whereas cilium-related processes were significantly stimulated. Cox regression analysis demonstrated that age, N stage, radiotherapy and the risk score were independent prognostic risk factors of BC, and a nomogram was established based on these variables. The nomogram exerted a favorable concordance index (0.798) as well as calibration performance, which strongly supports the clinical application of the nomogram. Our study indicated the disruption of the expression of CCRGs in BC and built a favorable prognostic risk model based on 3 independent prognostic CCRGs. These genes may be applied as candidate molecular targets for the diagnosis and therapy of BC.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shuyao Fan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yiwan Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Pan Y, Zhang D, Chen Y, Li H, Wang J, Yuan Z, Sun L, Zhou Z, Chen M, Zhang Y, Hu D. Development and validation of robust metabolism-related gene signature in the prognostic prediction of hepatocellular carcinoma. J Cell Mol Med 2023; 27:1006-1020. [PMID: 36919714 PMCID: PMC10064027 DOI: 10.1111/jcmm.17718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. Given metabolic reprogramming in tumours was a crucial hallmark, several studies have demonstrated its value in the diagnostics and surveillance of malignant tumours. The present study aimed to identify a cluster of metabolism-related genes to construct a prediction model for the prognosis of HCC. Multiple cohorts of HCC cases (466 cases) from public datasets were included in the present analysis. (GEO cohort) After identifying a list of metabolism-related genes associated with prognosis, a risk score based on metabolism-related genes was formulated via the LASSO-Cox and LASSO-pcvl algorithms. According to the risk score, patients were stratified into low- and high-risk groups, and further analysis and validation were accordingly conducted. The results revealed that high-risk patients had a significantly worse 5-year overall survival (OS) than low-risk patients in the GEO cohort. (30.0% vs. 57.8%; hazard ratio [HR], 0.411; 95% confidence interval [95% CI], 0.302-0.651; p < 0.001) This observation was confirmed in the external TCGA-LIHC cohort. (34.5% vs. 54.4%; HR 0.452; 95% CI, 0.299-0.681; p < 0.001) To promote the predictive ability of the model, risk score, age, gender and tumour stage were integrated into a nomogram. According to the results of receiver operating characteristic curves and decision curves analysis, the nomogram score possessed a superior predictive ability than conventional factors, which indicate that the risk score combined with clinicopathological features was able to achieve a robust prediction for OS and improve the individualized clinical decision making of HCC patients. In conclusion, the metabolic genes related to OS were identified and developed a metabolism-based predictive model for HCC. Through a series of bioinformatics and statistical analyses, the predictive ability of the model was approved.
Collapse
Affiliation(s)
- Yangxun Pan
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Deyao Zhang
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yuheng Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Huake Li
- Department of Oncology, Changning County People's Hospital, Baoshan, China
| | - Jiongliang Wang
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Ze Yuan
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Liyang Sun
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongguo Zhou
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Minshan Chen
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yaojun Zhang
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Dandan Hu
- Department of Liver Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Yang C, Wang W, Li S, Qiao Z, Ma X, Yang M, Zhang J, Cao L, Yao S, Yang Z, Wang W. Identification of cuproptosis hub genes contributing to the immune microenvironment in ulcerative colitis using bioinformatic analysis and experimental verification. Front Immunol 2023; 14:1113385. [PMID: 36960059 PMCID: PMC10028083 DOI: 10.3389/fimmu.2023.1113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Instruction Ulcerative colitis (UC) can cause a variety of immune-mediated intestinal dysfunctions and is a significant model of inflammatory bowel disease (IBD). Colorectal cancer (CRC) mostly occurs in patients with ulcerative colitis. Cuproptosis is a type of procedural death that is associated with different types of diseases to various degrees. Methods We used a combination of bioinformatic prediction and experimental verification to study the correlation between copper poisoning and UC. We used the Gene Expression Omnibus database to obtain disease gene expression data and then identified relevant genes involved in various expression levels in normal and UC samples. The Kyoto Encyclopedia of Genes and Genomes pathway analysis was performed to cluster the genes that are highly responsible and find the central interaction in gene crosstalk. Notably, DLD, DLAT, and PDHA1 were present in high-scoring PPI networks. In addition, hub gene expression information in UC tissues was integrated to estimate the relationship between UC copper poisoning and the immune environment. Results In our study, the expression of DLD, DLAT, and PDHA1 in UC tissues was lower than that in normal tissues. The key genes associated with cuproptosis have therapeutic effects on immune infiltration. We verified the expression of DLD, DLAT, and PDHA1 using real-time quantitative polymerase chain reaction in mouse models of UC induced by DSS. Discussion Notably, this study clearly indicates that bioinformatic analysis performed to verify the experimental methods provides evidence that cuproptosis is associated with UC. This finding suggests that immune cell infiltration in UC patients is associated with cuproptosis. The key genes associated with cuproptosis can be helpful for discovering the molecular mechanism of UC, thus facilitating the improvement of UC treatment and preventing the associated CRC.
Collapse
Affiliation(s)
- Cejun Yang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wendi Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Sang Li
- Department of Research, Engineering and Technology Research Center for Xenotransplantation of Human Province, Changsha, China
| | - Zhengkang Qiao
- College of Life Science, Liaoning University, Shenyang, China
| | - Xiaoqian Ma
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Yang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Zhang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lu Cao
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shanhu Yao
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang, China
| | - Wei Wang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Qing X, Yuan C, Wang K. Characterization of protein-based risk signature to predict prognosis and evaluate the tumor immune environment in breast cancer. Breast Cancer 2023; 30:424-435. [PMID: 36732487 DOI: 10.1007/s12282-023-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Proteomics profiles have enabled a systematic insight into the prognosis of cancer. This study aimed to establish a valuable protein-based risk signature to assess the prognosis and immune status in patients with breast cancer (BC). METHODS Protein expression profile, RNA expression data, and clinical information were acquired from The Cancer Genome Atlas (TCGA). The whole cohort was randomly split into two cohorts, one for establishing the risk signature and the other for testing. Univariate Cox analysis and Least absolute shrinkage and selection operator (LASSO) Cox regression were utilized to construct the protein-based risk signature. All cohorts were divided into high- and low-risk groups, which were applied to investigate the clinical relevance, tumor microenvironment, and therapeutic response. RESULTS The prognostic proteomics signature was established based on prognostic proteins, thus categorizing patients into low-risk and high-risk groups with different prognoses. A predictive nomogram was also developed to predict 1, 3, and 5-year survival possibility for BC patients, and the calibration curves confirmed the predictive significance of this signature. Afterward, the low-risk group displayed higher immune activities, immune checkpoint expression, and immunotherapeutic response. Moreover, GSEA analysis indicated that immune-associated pathways were rich in the low-risk group. Additionally, this prognostic signature demonstrated potential predict significance for chemotherapeutic agents. CONCLUSION This study established an effective prognostic proteomics signature with reliable predictive performance for survival, immune activity, and drug sensitivity. It might provide a novel perspective into the protein function in BC, and guide the individual treatment strategies for BC patients.
Collapse
Affiliation(s)
- Xin Qing
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chunlei Yuan
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China.
| | - Ke Wang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China.
| |
Collapse
|
32
|
Kubo A, Masugi Y, Hase T, Nagashima K, Kawai Y, Takizawa M, Hishiki T, Shiota M, Wakui M, Kitagawa Y, Kabe Y, Sakamoto M, Yachie A, Hayashida T, Suematsu M. Polysulfide Serves as a Hallmark of Desmoplastic Reaction to Differentially Diagnose Ductal Carcinoma In Situ and Invasive Breast Cancer by SERS Imaging. Antioxidants (Basel) 2023; 12:antiox12020240. [PMID: 36829799 PMCID: PMC9952617 DOI: 10.3390/antiox12020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Pathological examination of formalin-fixed paraffin-embedded (FFPE) needle-biopsied samples by certified pathologists represents the gold standard for differential diagnosis between ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC), while information of marker metabolites in the samples is lost in the samples. Infrared laser-scanning large-area surface-enhanced Raman spectroscopy (SERS) equipped with gold-nanoparticle-based SERS substrate enables us to visualize metabolites in fresh-frozen needle-biopsied samples with spatial matching between SERS and HE staining images with pathological annotations. DCIS (n = 14) and IBC (n = 32) samples generated many different SERS peaks in finger-print regions of SERS spectra among pathologically annotated lesions including cancer cell nests and the surrounding stroma. The results showed that SERS peaks in IBC stroma exhibit significantly increased polysulfide that coincides with decreased hypotaurine as compared with DCIS, suggesting that alterations of these redox metabolites account for fingerprints of desmoplastic reactions to distinguish IBC from DCIS. Furthermore, the application of supervised machine learning to the stroma-specific multiple SERS signals enables us to support automated differential diagnosis with high accuracy. The results suggest that SERS-derived biochemical fingerprints derived from redox metabolites account for a hallmark of desmoplastic reaction of IBC that is absent in DCIS, and thus, they serve as a useful method for precision diagnosis in breast cancer.
Collapse
Affiliation(s)
- Akiko Kubo
- Departments of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takeshi Hase
- The Systems Biology Institute, Tokyo 141-0022, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo 160-8582, Japan
| | - Yuko Kawai
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Minako Takizawa
- Departments of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takako Hishiki
- Departments of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Megumi Shiota
- Analysis Technology Center, CTO Office, FUJIFILM Corporation, Minamiashigara-shi 250-0193, Kanagawa, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuaki Kabe
- Departments of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Tokyo 141-0022, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- Departments of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki-shi 210-0821, Kanagawa, Japan
- Correspondence:
| |
Collapse
|
33
|
Liu X, Fang X, Lu L, Liu G. Prognostic significance and immune landscape of a fatty acid metabolism-related gene signature in colon adenocarcinoma. Front Genet 2022; 13:996625. [PMID: 36568396 PMCID: PMC9780302 DOI: 10.3389/fgene.2022.996625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM), as a hallmark of caner, plays important roles in tumor initiation and carcinogenesis. However, the significance of fatty acid metabolism-related genes in colon adenocarcinoma (COAD) are largely unknown. Methods: RNA sequencing data and clinical information were downloaded from the Cancer Genome Atlas (TCGA) cohort. Univariate and multivariate Cox regression analyses were utilized to construct a fatty acid metabolism-related gene signature. Kaplan-Meier survival and receiver operating characteristic (ROC) analyses were used to verify the performance of this signature. GEO datasets were applied to validate the signature. Maftools package was utilized to analyze the mutation profiles of this signature. Correlation between the risk signature and stemness scores was compared by RNA stemness score (RNAss). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set variation analysis (GSVA) were performed to explore the potential functions and signaling pathways. Immune landscape of the signature was explored by analyzing different immune cells infiltration, immune functions and microsatellite instability. A nomogram was constructed by combining the risk signature and multiple clinical factors. Expression levels and prognostic values of the risk genes were revealed in the cancer genome atlas and GEO databases. Moreover, the expression the risk genes were measured in cell lines using real time quantitative PCR (qRT-PCR). Results: Eight fatty acid metabolism-related genes (CD36, ENO3, MORC2, PTGR1, SUCLG2, ELOVL3, ELOVL6 and CPT2) were used to construct a risk signature. This signature demonstrated better prognostic value than other clinicopathological parameters, with AUC value was 0.734 according to the cancer genome atlas database. There was negative correlation between the riskscore and RNA stemness score. The patients in the high-risk group demonstrated higher infiltration of M0 macrophages, and less infiltration of activated CD4 memory T cells and Eosinophils. There were more MSI patients in the high-risk group than those in the low-risk group (38% vs. 30%). The risk scores of patients in the MSI group were slightly higher than those in the microsatellite stability group. Gene ontology, kyoto encyclopedia of genes and genomes and gene set variation analysis enrichment analyses showed that several metabolism-related functions and signaling pathways were enriched. A nomogram showed good predictive capability of the signature. Moreover, qRT-PCR revealed upregulated expression of ENO3, MORC2, SUCLG2 and ELOVL6, and downregulated expression of CPT2 in all examined colon adenocarcinoma cell lines. Conclusion: This study provided novel insights into a fatty acid metabolism-related signature in the prognosis an immune landscape of colon adenocarcinoma patients.
Collapse
Affiliation(s)
| | | | - Lin Lu
- *Correspondence: Guolong Liu, ; Lin Lu,
| | | |
Collapse
|
34
|
Xie J, Zhang J, Tian W, Zou Y, Tang Y, Zheng S, Wong CW, Deng X, Wu S, Chen J, Mo Y, Xie X. The Pan-Cancer Multi-Omics Landscape of FOXO Family Relevant to Clinical Outcome and Drug Resistance. Int J Mol Sci 2022; 23:ijms232415647. [PMID: 36555288 PMCID: PMC9778770 DOI: 10.3390/ijms232415647] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The forkhead box O (FOXO) transcription factors (TFs) family are frequently mutated, deleted, or amplified in various human cancers, making them attractive candidates for therapy. However, their roles in pan-cancer remain unclear. Here, we evaluated the expression, prognostic value, mutation, methylation, and clinical features of four FOXO family genes (FOXO1, FOXO3, FOXO4, and FOXO6) in 33 types of cancers based on the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases. We used a single sample gene set enrichment analysis (ssGSEA) algorithm to establish a novel index called "FOXOs score". Moreover, we investigated the association between the FOXOs score and tumor microenvironment (TME), the responses to multiple treatments, along with drug resistance. We found that the FOXO family genes participated in tumor progression and were related to the prognosis in various types of cancer. We calculated the FOXOs score and found that it was significantly correlated with multiple malignant pathways in pan-cancer, including Wnt/beta-catenin signaling, TGF-beta signaling, and hedgehog signaling. In addition, the FOXOs score was also associated with multiple immune-related characteristics. Furthermore, the FOXOs score was sensitive for predicting the efficacy of diverse treatments in multiple cancers, especially immunotherapy. In conclusion, FOXO family genes were vital in pan-cancer and were strongly correlated with the TME. A high FOXOs score indicated an excellent immune-activated TME and sensitivity to multiple treatments. Hence, the FOXOs score might potentially be used as a biomarker in patients with a tumor.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenwen Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510060, China
| | - Chau-Wei Wong
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510060, China
| | - Yunxian Mo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence: (Y.M.); (X.X.); Tel.: +86-13924277788 (X.X.); Fax: +86-20-87343805 (X.X.)
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Correspondence: (Y.M.); (X.X.); Tel.: +86-13924277788 (X.X.); Fax: +86-20-87343805 (X.X.)
| |
Collapse
|
35
|
Luo Y, Tian W, Lu X, Zhang C, Xie J, Deng X, Xie Y, Yang S, Du W, He R, Wei W. Prognosis stratification in breast cancer and characterization of immunosuppressive microenvironment through a pyrimidine metabolism-related signature. Front Immunol 2022; 13:1056680. [PMID: 36524129 PMCID: PMC9745154 DOI: 10.3389/fimmu.2022.1056680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Pyrimidine metabolism is a hallmark of cancer and will soon become an essential part of cancer therapy. In the tumor microenvironment, cells reprogram pyrimidine metabolism intrinsically and extracellularly, thereby promoting tumorigenesis. Metabolites in pyrimidine metabolism have a significant impact on promoting cancer advancement and modulating immune system responses. In preclinical studies and practical clinical applications, critical targets in pyrimidine metabolism are acted upon by drugs to exert promising therapeutic effects on tumors. However, the pyrimidine metabolism in breast cancer (BC) is still largely underexplored. In this study, 163 credible pyrimidine metabolism-related genes (PMGs) were retrieved, and their somatic mutations and expression levels were determined. In addition, by using The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, 12 PMGs related to the overall survival (OS) were determined using the univariate Cox regression analysis. Subsequently, by performing the LASSO Cox hazards regression analysis in the 12 PMGs in TCGA-BRCA dataset, we developed a prognosis nomogram using eight OS-related PMGs and then verified the same in the METABRIC, GSE96058, GSE20685, GSE42568 and GSE86166 data. Moreover, we validated relationships between the pyrimidine metabolism index (PMI) and the survival probability of patients, essential clinical parameters, including the TNM stage and the PAM50 subtypes. Next, we verified the predictive capability of the optimum model, including the signature, the PAM50 subtype, and age, using ROC analysis and calibration curve, and compared it with other single clinical factors for the predictive power of benefit using decision curve analysis. Finally, we investigated the potential effects of pyrimidine metabolism on immune checkpoints, tumor-infiltrating immune cells, and cytokine levels and determined the potential implications of pyrimidine metabolism in BC immunotherapy. In conclusion, our findings suggest that pyrimidine metabolism has underlying prognostic significance in BC and can facilitate a new management approach for patients with different prognoses and more precise immunotherapy.
Collapse
Affiliation(s)
- Yongzhou Luo
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenwen Tian
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiuqing Lu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chao Zhang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jindong Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinpei Deng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuhui Yang
- Surgical and Transplant Intensive Care Unit of The Third Affiliated Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Du
- Department of Pathology, The First People’s Hospital of Changde City, Changde, Hunan, China,*Correspondence: Weidong Wei, ; Rongfang He, ; Wei Du,
| | - Rongfang He
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,*Correspondence: Weidong Wei, ; Rongfang He, ; Wei Du,
| | - Weidong Wei
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,*Correspondence: Weidong Wei, ; Rongfang He, ; Wei Du,
| |
Collapse
|
36
|
Guo C, He Y, Chen L, Li Y, Wang Y, Bao Y, Zeng N, Jiang F, Zhou H, Zhang L. Integrated bioinformatics analysis and experimental validation reveals fatty acid metabolism-related prognostic signature and immune responses for uterine corpus endometrial carcinoma. Front Oncol 2022; 12:1030246. [DOI: 10.3389/fonc.2022.1030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
BackgroundUterine corpus endometrial carcinoma (UCEC) is the third most common gynecologic malignancy. Fatty acid metabolism (FAM) is an essential metabolic process in the immune microenvironment that occurs reprogramming in the presence of tumor signaling and nutrient competition. This study aimed to identify the fatty acid metabolism-related genes (FAMGs) to develop a risk signature for predicting UCEC.MethodsThe differentially expressed FAMGs between UCEC samples and controls from TCGA database were discovered. A prognostic signature was then constructed by univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses. Based on the median risk score, UCEC samples were categorized into high- and low-FAMGs groups. Kaplan-Meier (K-M) curve was applied to determine patients’ overall survival (OS). The independent prognostic value was assessed by uni- and multivariate analyses. The associations between the risk score and immune status, immune score, and drug resistance were evaluated. Quantitative Real-time PCR (qRT-PCR) was utilized to confirm FAMGs expression levels in UCEC cells.ResultsWe built a 10-FAMGs prognostic signature and examined the gene mutation and copy number variations (CNV). Patients with a high-FAMGs had a worse prognosis compared to low-FAMGs patients in TCGA train and test sets. We demonstrated that FAMGs-based risk signature was a significant independent prognostic predictor of UCEC. A nomogram was also created incorporating this risk model and clinicopathological features, with high prognostic performance for UCEC. The immune status of each group was varied, and immune score was higher in a low-FAMGs group. HLA-related genes such as DRB1, DMA, DMB, and DQB2 had higher expression levels in the low-FAMGs group. Meanwhile, high-FAMGs patients were likely to response more strongly to the targeted drugs Bortezomib, Foretinib and Gefitinib. The qRT-PCR evidence further verified the significant expression of FAMGs in this signature.ConclusionsA FAMGs-based risk signature might be considered as an independent prognostic indicator to predict UCEC prognosis, evaluate immune status and provide a new direction for therapeutic strategies.
Collapse
|
37
|
Li W, Zou Z, An N, Wang M, Liu X, Mei Z. A multifaceted and feasible prognostic model of amino acid metabolism-related genes in the immune response and tumor microenvironment of head and neck squamous cell carcinomas. Front Oncol 2022; 12:996222. [DOI: 10.3389/fonc.2022.996222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the role of amino acid metabolism (AAM) in head and neck squamous cell carcinoma (HNSCC) tissues to explore its prognostic value and potential therapeutic strategies. A risk score based on four AAM-related genes (AMG) was constructed that could predict the prognosis of HNSCC. These four genes were up-regulated in HNSCC tissues and might act as oncogenes. Internal validation in The Cancer Genome Atlas (TCGA) by bootstrapping showed that patients with high-risk scores had a poorer prognosis than patients with low-risk scores, and this was confirmed in the Gene Expression Omnibus (GEO) cohort. There were also differences between the high-risk and low-risk groups in clinical information and different anatomical sites such as age, sex, TNM stage, grade stage, surgery or no surgery, chemotherapy, radiotherapy, no radiotherapy, neck lymph node dissection or not, and neck lymphovascular invasion, larynx, overlapping lesion of lip, and oral cavity and pharynx tonsil of overall survival (OS). Immune-related characteristics, tumor microenvironment (TME) characteristics, and immunotherapy response were significantly different between high- and low-risk groups. The four AMGs were also found to be associated with the expression of markers of various immune cell subpopulations. Therefore, our comprehensive approach revealed the characterization of AAM in HNSCC to predict prognosis and guide clinical therapy.
Collapse
|
38
|
Fu Y, Guo Z, Wang Y, Zhang H, Zhang F, Xu Z, Shen X, Roppongi RT, Mo S, Gu W, Nakajima T, Tsushima Y. Single-nucleus RNA sequencing reveals the shared mechanisms inducing cognitive impairment between COVID-19 and Alzheimer’s disease. Front Immunol 2022; 13:967356. [PMID: 36211330 PMCID: PMC9538863 DOI: 10.3389/fimmu.2022.967356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD)-like cognitive impairment, a kind of Neuro-COVID syndrome, is a reported complication of SARS-CoV-2 infection. However, the specific mechanisms remain largely unknown. Here, we integrated single-nucleus RNA-sequencing data to explore the potential shared genes and pathways that may lead to cognitive dysfunction in AD and COVID-19. We also constructed ingenuity AD-high-risk scores based on AD-high-risk genes from transcriptomic, proteomic, and Genome-Wide Association Studies (GWAS) data to identify disease-associated cell subtypes and potential targets in COVID-19 patients. We demonstrated that the primary disturbed cell populations were astrocytes and neurons between the above two dis-eases that exhibit cognitive impairment. We identified significant relationships between COVID-19 and AD involving synaptic dysfunction, neuronal damage, and neuroinflammation. Our findings may provide new insight for future studies to identify novel targets for preventive and therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Yifan Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- College of Clinical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhirong Guo
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haonan Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Feifan Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zihao Xu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Shaocong Mo, ; Wenchao Gu, ;
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
- *Correspondence: Shaocong Mo, ; Wenchao Gu, ;
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
39
|
Hong T, Su W, Pan Y, Tian C, Lei G. Aging-related features predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Front Immunol 2022; 13:951459. [PMID: 36189258 PMCID: PMC9521435 DOI: 10.3389/fimmu.2022.951459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The aging microenvironment serves important roles in cancers. However, most studies focus on circumscribed hot spots such as immunity and metabolism. Thus, it is well ignored that the aging microenvironment contributes to the proliferation of tumor. Herein, we established three prognosis-distinctive aging microenvironment subtypes, including AME1, AME2, and AME3, based on aging-related genes and characterized them with "Immune Exclusion," "Immune Infiltration," and "Immune Intermediate" features separately. AME2-subtype tumors were characterized by specific activation of immune cells and were most likely to be sensitive to immunotherapy. AME1-subtype tumors were characterized by inhibition of immune cells with high proportion of Catenin Beta 1 (CTNNB1) mutation, which was more likely to be insensitive to immunotherapy. Furthermore, we found that CTNNB1 may inhibit the expression of C-C Motif Chemokine Ligand 19 (CCL19), thus restraining immune cells and attenuating the sensitivity to immunotherapy. Finally, we also established a robust aging prognostic model to predict the prognosis of patients with hepatocellular carcinoma. Overall, this research promotes a comprehensive understanding about the aging microenvironment and immunity in hepatocellular carcinoma and may provide potential therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Ting Hong
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Gynecology Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Su
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yitong Pan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chenxi Tian
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
40
|
Lv W, Tan Y, Zhou X, Zhang Q, Zhang J, Wu Y. Landscape of prognosis and immunotherapy responsiveness under tumor glycosylation-related lncRNA patterns in breast cancer. Front Immunol 2022; 13:989928. [PMID: 36189319 PMCID: PMC9520571 DOI: 10.3389/fimmu.2022.989928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant glycosylation, a post-translational modification of proteins, is regarded to engage in tumorigenesis and malignant progression of breast cancer (BC). The altered expression of glycosyltransferases causes abnormal glycan biosynthesis changes, which can serve as diagnostic hallmarks in BC. This study attempts to establish a predictive signature based on glycosyltransferase-related lncRNAs (GT-lncRNAs) in BC prognosis and response to immune checkpoint inhibitors (ICIs) treatment. We firstly screened out characterized glycosyltransferase-related genes (GTGs) through NMF and WGCNA analysis and identified GT-lncRNAs through co-expression analysis. By using the coefficients of 8 GT-lncRNAs, a risk score was calculated and its median value divided BC patients into high- and low-risk groups. The analyses unraveled that patients in the high-risk group had shorter survival and the risk score was an independent predictor of BC prognosis. Besides, the predictive efficacy of our risk score was higher than other published models. Moreover, ESTIMATE analysis, immunophenoscore (IPS), and SubMAP analysis showed that the risk score could stratify patients with distinct immune infiltration, and patients in the high-risk group might benefit more from ICIs treatment. Finally, the vitro assay showed that MIR4435-2HG might promote the proliferation and migration of BC cells, facilitate the polarization of M1 into M2 macrophages, enhance the migration of macrophages and increase the PD-1/PD-L1/CTLA4 expression. Collectively, our well-constructed prognostic signature with GT-lncRNAs had the ability to identify two subtypes with different survival state and responses to immune therapy, which will provide reliable tools for predicting BC outcomes and making rational follow-up strategies.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Zhou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Zhang, ; Jun Zhang, ; Yiping Wu,
| |
Collapse
|
41
|
Zou Z, Chai Y, Li Q, Lin X, He Q, Xiong Q. Establishment of lactate-metabolism-related signature to predict prognosis and immunotherapy response in patients with colon adenocarcinoma. Front Oncol 2022; 12:958221. [PMID: 36185199 PMCID: PMC9515658 DOI: 10.3389/fonc.2022.958221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The outcome of colon adenocarcinoma (COAD) patients remains dismal, and lactate metabolism has been characterized to promote tumor development and immune evasion. Based on the above background, it is worthwhile to explore novel prognostic and therapeutic biomarkers for COAD patients from the aspect of lactate metabolism. Above all, 228 available lactate-metabolism-related genes (LMRGs) were acquired, and the landscape of copy number variation and the expression difference of mRNA levels between colon normal and tumor samples were investigated among these LMRGs. Importantly, eight overall survival (OS)-involved LMRGs were then distinguished by means of univariate Cox regression analysis in both GSE40967 and TCGA-COAD data sets. Subsequently, prognostic risk scores were established, integrating seven OS-related LMRGs by LASSO Cox regression analysis in the GSE40967 set, and then verified in the TCGA-COAD cohort. From the comprehensive analyses, COAD patients with high risk had comparatively more inferior survival probability in all populations of the study, and they tended to have more severe clinicopathological features with the risk score increasing. Moreover, by integrating age, AJCC T and pathological stage, and risk score, we constructed a prognostic nomogram that demonstrated great prediction effectiveness for OS of COAD patients. Furthermore, the potential effect of various risk score on tumor immune was assessed from enrichment of immune-related pathways, tumor-infiltrating immune cells, and expression levels of immune checkpoints separately. We could draw a conclusion that COAD patients with higher lactate-metabolism-related risk scores may acquire an immunosuppressive tumor microenvironment, which subsequently led to immune escapes and poor prognoses. Conclusively, all findings in the present study illustrate a great prognostic value of the lactate-metabolism-related risk signature, providing more in-depth insights into the indispensable function of lactate metabolism in prognosis and tumor immunity of COAD.
Collapse
Affiliation(s)
- Zhengrong Zou
- Department of Emergency Trauma Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongjie Chai
- Department of Anorectal Surgery, Zhucheng People’s Hospital, Zhucheng, China
| | - Qi Li
- Basic Medicine Department of Chuxiong Medical and Pharmaceutical College, Chuxiong, China
| | - Xuan Lin
- Department of Emergency Trauma Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingfang He
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiusheng Xiong
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Qiusheng Xiong,
| |
Collapse
|
42
|
Han X, Ye J, Huang R, Li Y, Liu J, Meng T, Song D. Pan-cancer analysis reveals interleukin-17 family members as biomarkers in the prediction for immune checkpoint inhibitor curative effect. Front Immunol 2022; 13:900273. [PMID: 36159856 PMCID: PMC9493092 DOI: 10.3389/fimmu.2022.900273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The interleukin-17 (IL-17) family contains six homologous genes, IL-17A to IL-17F. Growing evidence indicates that dysregulated IL-17 family members act as major pathogenic factors in the early and late stages of cancer development and progression. However, the prevalence and predictive value of IL-17 for immune checkpoint inhibitor (ICI) therapeutic effectiveness in multiple tumor types remain largely unknown, and the associations between its expression levels and immunotherapy-associated signatures also need to be explored. Methods The pan-cancer dataset in The Cancer Genome Atlas (TCGA) was downloaded from UCSC Xena (http://xena.ucsc.edu/). The immunotherapeutic cohorts included IMvigor210, which were obtained from the Gene Expression Omnibus database and included in a previously published study. Other datasets, namely, the GEO dataset and PRECOG, GEO, and METABRIC databases, were also included. In 33 TCGA tumor types, a pan-cancer analysis was carried out including their expression map, clinical risk assessment, and immune subtype analysis, along with their association with the stemness indices, tumor microenvironment (TME) in pan-cancer, immune infiltration analysis, ICI-related immune indicators, and drug sensitivity. RT-PCR was also carried out to verify the gene expression levels among MCF-10A and MCF-7 cell lines. Results The expression of the IL-17 family is different between tumor and normal tissue in most cancers, and consistency has been observed between gene activity and gene expression. RT-PCR results show that the expression differences in the IL-17 family of human cell (MCF-10A and MCF-7) are consistent with the bioinformatics differential expression analysis. Moreover, the expression of the IL-17 family can be a sign of patients’ survival prognosis in some tumors and varies in different immune subtypes. Moreover, the expression of the IL-17 family presents a robust correlation with immune cell infiltration, ICI-related immune indicators, and drug sensitivity. High expression of the IL-17 family is significantly related to immune-relevant pathways, and the low expression of IL-17B means a better immunotherapeutic response in BLCA. Conclusion Collectively, IL-17 family members may act as biomarkers in predicting the prognosis of the tumor and the therapeutic effects of ICIs, which provides new guidance for cancer treatment.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianxin Ye
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yongai Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dianwen Song, ; Tong Meng, ; Jianpeng Liu,
| |
Collapse
|
43
|
Circular RNA KIF4A Promotes Liver Metastasis of Breast Cancer by Reprogramming Glucose Metabolism. JOURNAL OF ONCOLOGY 2022; 2022:8035083. [PMID: 36052282 PMCID: PMC9427241 DOI: 10.1155/2022/8035083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Background Circular RNAs (circRNAs) regulate complex functional processes and play crucial roles in cancer development and progression. It was reported that circKIF4 regulates the progression of triple-negative breast cancer (TNBC). This study evaluates the role of circKIF4 in breast cancer distant metastasis and metabolic reprogramming. Methods RT-qPCR was performed to verify the expression of circKIF4A in breast cancer, liver metastatic tissues, and cell lines. The function of circKIF4A in metastasis was evaluated both in vitro and in vivo through a series of experiments, including cell migration and glucose intake experiments. Additionally, we conducted molecular experiments to clarify the regulatory role of circKIF4A. We then conducted a Luciferase reporter assay and an RNA immunoprecipitation assay to identify the molecular interactions between circKIF4A and miRNA. Results circKIF4A was overexpressed in breast cancer cell lines and tissues, inhibiting its expression and suppressing breast cancer growth and metastasis. Interestingly, we observed that circKIF4A reprogrammed the glucose metabolism of breast cancer, and silencing circKIF4A greatly affected glucose uptake and lactate production in breast cancer cells. miR-335 can be sponged by circKIF4A, which affected the expression of ALDOA/OCT4 protein and regulated HK2/PKM2 expression. Conclusions This study demonstrated that the circKIF4A-miR-335-OCT4/ALDOA-HK2/PKM2 axis is critical to breast cancer metabolic reprogramming, indicating that this axis could be a novel therapeutic target for the treatment of liver metastasis of breast cancer.
Collapse
|
44
|
Li Z, Zhang H, Wang X, Wang Q, Xue J, Shi Y, Wang M, Wang G, Zhang J. Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol 2022; 13:996836. [PMID: 36059516 PMCID: PMC9437337 DOI: 10.3389/fimmu.2022.996836] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is now the most frequent and lethal cancer among women. Cuproptosis is a newly identified programmed cell death process that has been connected to tumor therapeutic sensitivity, patient outcomes, and the genesis of cancer. Cuproptosis-related genes (CRGs) are involved in breast cancer, although their roles and potential mechanisms are still unclear. First, we examined the effect of gene mutations and copy number changes on overall survival in 1168 breast cancer samples. Breast cancer patients were split into two molecular categories as determined by the variation in CRG based on clinicopathological traits, overall survival, and cell-infiltrating traits in tumor microenvironments. In addition, we created and validated a CRG score to calculate breast cancer patients' OS. Finally, we created a comprehensive nomogram for the clinical use of the CRG score. Patients whose CRG scores were low showed increased odds of developing OS, a larger mutation load, and immunological activation than those with high CRG scores. The CRG score, the cancer stem cell index, and the responsiveness to chemotherapy or targeted therapies were also shown to be statistically significantly correlated. Our thorough examination of CRGs in breast cancer patients demonstrated that they may be useful predictors of prognosis, clinical characteristics, and tumor microenvironment. These findings provide fresh insight into CRGs in breast cancer and might inspire brand-new approaches to both diagnosing and treating patients there.
Collapse
Affiliation(s)
- Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China,*Correspondence: Jianquan Zhang, ; Zhi Li,
| | - Hua Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiapeng Xue
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun Shi
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jianquan Zhang
- Department of General Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South Univesity, Haikou, China,*Correspondence: Jianquan Zhang, ; Zhi Li,
| |
Collapse
|
45
|
Wu Z, Wang Y, Yan M, Liang Q, Li B, Hou G, Xia T, Lin Z, Xu W. Comprehensive analysis of the endoplasmic reticulum stress-related long non-coding RNA in bladder cancer. Front Oncol 2022; 12:951631. [PMID: 35992824 PMCID: PMC9386564 DOI: 10.3389/fonc.2022.951631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bladder cancer is ranked the second most frequent tumor among urological malignancies. The research strived to establish a prognostic model based on endoplasmic reticulum stress (ERS)-related long non-coding RNA (lncRNA) in bladder cancer. Methods We extracted the ERS-related genes from the published research and bladder cancer data from the Cancer Genome Atlas database. ERS-related lncRNAs with prognostic significance were screened by univariate Cox regression, least absolute shrinkage and selection operator regression analysis and Kaplan-Meier method. Multivariate Cox analysis was leveraged to establish the risk score model. Moreover, an independent dataset, GSE31684, was used to validate the model’s efficacy. The nomogram was constructed based on the risk score and clinical variables. Furthermore, the biological functions, gene mutations, and immune landscape were investigated to uncover the underlying mechanisms of the ERS-related signature. Finally, we employed external datasets (GSE55433 and GSE89006) and qRT-PCR to investigate the expression profile of these lncRNAs in bladder cancer tissues and cells. Results Six ERS-related lncRNAs were identified to be closely coupled with patients’ prognosis. On this foundation, a risk score model was created to generate the risk score for each patient. The ERS-related risk score was shown to be an independent prognostic factor. And the results of GSE31684 dataset also supported this conclusion. Then, a nomogram was constructed based on risk scores and clinical characteristics, and proven to have excellent predictive value. Moreover, the gene function analysis demonstrated that ERS-related lncRNAs were closely linked to fatty extracellular matrix, cytokines, cell adhesion, and tumor pathways. Further analysis revealed the association of the 6-lncRNAs signature with gene mutations and immunity in bladder cancer. Finally, the external datasets and qRT-PCR verified high expressions of the ERS-related lncRNAs in bladder cancer tissues and cells. Conclusions Overall, our findings indicated that ERS-related lncRNAs, which may affect tumor pathogenesis in a number of ways, might be exploited to assess the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Yue Wang
- The First Clinical Medical College, GuangDong Medical University, ZhanJiang, China
| | - Mengxin Yan
- The First Clinical Medical College, GuangDong Medical University, ZhanJiang, China
| | - Quan Liang
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Bin Li
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Guoliang Hou
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Taolin Xia
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Zhe Lin
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenfeng Xu, ; Zhe Lin,
| | - Wenfeng Xu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenfeng Xu, ; Zhe Lin,
| |
Collapse
|
46
|
Liu Z, Kong Y, Dang Q, Weng S, Zheng Y, Ren Y, Lv J, Li N, Han Y, Han X. Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Front Immunol 2022; 13:958360. [PMID: 35911705 PMCID: PMC9334814 DOI: 10.3389/fimmu.2022.958360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic dissemination represents a hallmark of cancer that is responsible for the high mortality rate. Recently, emerging evidence demonstrates a time-series event—pre-metastatic niche (PMN) has a profound impact on cancer metastasis. Exosomes, cell-free DNA (cfDNA), circulating tumor cells (CTC), and tumor microenvironment components, as critical components in PMN establishment, could be monitored by liquid biopsy. Intensive studies based on the molecular profile of liquid biopsy have made it a viable alternative to tissue biopsy. Meanwhile, the complex molecular mechanism and intercellular interaction are great challenges for applying liquid biopsy in clinical practice. This article reviews the cellular and molecular components involved in the establishment of the PMN and the promotion of metastasis, as well as the mechanisms of their interactions. Better knowledge of the characteristics of the PMN may facilitate the application of liquid biopsy for clinical diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiang Lv
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han,
| |
Collapse
|