1
|
Udompatanakorn C, Sriphongphankul W, Taebunpakul P. Expression of ALKBH5 in Odontogenic Lesions. Appl Immunohistochem Mol Morphol 2025; 33:49-57. [PMID: 39523879 DOI: 10.1097/pai.0000000000001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes and plays a role in various cancers in humans. This m6A modification is regulated by m6A writers, erasers, and readers. One of the m6A erasers is α-ketoglutarate-dependent dioxygenase homolog 5 (ALKBH5). Previous studies have suggested that ALKBH5 is involved in the pathogenesis of head and neck squamous cell carcinoma. However, the role of ALKBH5 in odontogenic lesions has never been investigated. This study aimed to examine ALKBH5 expression in dental follicles (DFs), dentigerous cysts (DCs), odontogenic keratocyst (OKC), and ameloblastoma (AM) using immunohistochemistry. Six cases of DF, 20 cases of DC and OKC, respectively, and 30 cases of AM were included. The expression patterns, percentage of ALKBH5-positive cells, staining intensities, and immunoreactive scores were examined. ALKBH5 was mainly expressed in the nuclei of the epithelial cells in odontogenic lesions. The percentage of ALKBH5-positive cells was significantly higher in OKC and AM samples compared with DF samples ( P < 0.01). The percentage of ALKBH5-positive cells was also higher in OKC and AM samples than in DC samples; however, these results did not show statistical significance ( P > 0.05). ALKBH5 cell staining intensities and immunoreactive scores were significantly greater in OKC and AM samples than in DF and DC samples ( P < 0.01). Our results suggested that ALKBH5 might play a role in the pathogenesis of odontogenic lesions. Further investigation is needed to elucidate the precise molecular mechanism of the role of ALKBH5 in these diseases.
Collapse
Affiliation(s)
- Chatchaphan Udompatanakorn
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Wattana, Bangkok, Thailand
| | | | | |
Collapse
|
2
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
3
|
Xiao MZ, Fu JY, Bo LT, Li YD, Lin ZW, Chen ZS. ALKBH1: emerging biomarker and therapeutic target for cancer treatment. Discov Oncol 2024; 15:816. [PMID: 39704856 DOI: 10.1007/s12672-024-01696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
As neoplastic cells proliferate, disseminate, and infiltrate, they undergo substantial alterations in their epigenetic configuration. Among the pivotal enzymes implicated in this phenomenon is the AlkB family of demethylases, notably AlkB homolog 1 (ALKBH1), which demonstrates conspicuous upregulation across various malignancies. The heightened expression of ALKBH1 renders it a compelling candidate for the development of multifaceted anticancer modalities. Despite the commendable progress achieved by investigators in elucidating the perturbations associated with ALKBH1 in malignant tissues, a comprehensive mechanism remains elusive. The present study endeavors to address this lacuna by synthesizing recent advancements pertaining to ALKBH1's involvement in oncogenesis over the preceding decade. Therefore, this research not only furnishes novel insights but also establishes a foundation for prospective initiatives aimed at cancer prophylaxis and therapeutics that exploit epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Ming Zhu Xiao
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin Yin Fu
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Le Tao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zhong Wei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhe Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
4
|
Xia R, Yin X, Huang J, Chen K, Ma J, Wei Z, Su J, Blake N, Rigden DJ, Meng J, Song B. Interpretable deep cross networks unveiled common signatures of dysregulated epitranscriptomes across 12 cancer types. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102376. [PMID: 39618823 PMCID: PMC11605186 DOI: 10.1016/j.omtn.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 01/12/2025]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by uncontrolled cell growth that leads to the formation of malignant tumors. Recent studies suggest that N6-methyladenosine (m6A) RNA methylation plays pivotal roles in cancer pathology by influencing various cellular processes. However, the degree to which these mechanisms are shared across different cancer types remains unclear. In this study, we analyze an expansive array of 167 m6A epitranscriptome profiles covering 12 distinct cancer types and their originating normal tissues. We trained 12 distinct, cancer type-specific interpretable deep cross network models, which successfully distinguish between specific pairs of normal and cancer m6A contexts using integrated information from both the sequences and curated genomic knowledge. Interestingly, cross-cancer type testing indicated the existence of shared genomic patterns across various cancers at the epitranscriptome level. A pan-cancer model was subsequently developed to identify these shared patterns that could not be observed in a single cancer type. Our analysis uncovered, for the first time, a common epitranscriptome signature shared across multiple cancer types, particularly associated with RNA hybridization process and aberrant splicing. This highlights the importance of a comprehensive understanding of the pan-cancer epitranscriptome and holding potential implications in the development of RNA methylation-based therapeutics for various cancers.
Collapse
Affiliation(s)
- Rong Xia
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiangyu Yin
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jiaming Huang
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Jiongming Ma
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhen Wei
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, L7 8TX Liverpool, UK
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Neil Blake
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jia Meng
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Solomou G, Young AMH, Bulstrode HJCJ. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol 2024; 18:2906-2926. [PMID: 38712663 PMCID: PMC11619806 DOI: 10.1002/1878-0261.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.
Collapse
Affiliation(s)
- Georgios Solomou
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Adam M. H. Young
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Harry J. C. J. Bulstrode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
6
|
Li H, Jin Y, Zhang Y, Xie X, Li N. Comprehensive Analysis of NADH:Ubiquinone Oxidoreductase Subunit B3 in Gynecological Tumors and Identification of Its Natural Inhibitor Wedelolactone. Chem Biol Drug Des 2024; 104:e70006. [PMID: 39469770 DOI: 10.1111/cbdd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
The aim of this study was to explore the role of NADH:ubiquinone oxidoreductase subunit B3 (NDUFB3) in human gynecological malignancies and to screen potential natural compounds targeting it. GEPIA and HPA databases were used to study the expression characteristics of NDUFB3. GO and KEGG enrichment analyses were performed using the R software clusterProfiler package. GSEA for NDUFB3 was performed using the LinkedOmics database. Natural compounds targeting NDUFB3 were screened by virtual screening and molecular docking. After NDUFB3 was depleted or wedelolactone treatment, cell proliferation was detected by CCK-8 assay. The production of reactive oxide species (ROS) in tumor cells was detected by dihydroethidium fluorescent probe. The cell cycle and apoptosis were evaluated by flow cytometry. It was revealed that NDUFB3 was highly expressed in ovarian cancer (OV), uterine corpus endometrial carcinoma (UCEC), and cervical squamous cell carcinoma (CESC). NDUFB3 expression was associated with multiple immunomodulators in CESC, OV, and UCEC. NDUFB3 was predicted to modulate MAPK signaling pathways in CESC, OV, and UCEC. Knocking down NDUFB3 inhibited the proliferation of CESC, OV, and UCEC cells, increased intracellular ROS production, and induced cell cycle arrest and apoptosis. Wedelolactone was a potential small molecule with a strong ability to bind with the active pocket of NDUFB3, and wedelolactone could kill CESC, OV, and UCEC cells partly via NDUFB3. In conclusion, NDUFB3 may be a potential biomarker and a new target for gynecological tumors, and wedelolactone may exert antitumor activity via targeting NDUFB3.
Collapse
Affiliation(s)
- Huiping Li
- Department of Gynecology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasound, Ningbo Yinzhou No 2 Hospital, Ningbo, Zhejiang, China
| | - Yanyan Zhang
- Department of Gynecology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Xiaohua Xie
- Department of Gynecology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Nan Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
8
|
Lou X, Wang Y, Deng Y, Yang J, Xu D, Wang M, Lin Y. Prognostic and immunological roles of RSPO1 in pan-cancer and its correlation with LUAD proliferation and metastasis. Am J Cancer Res 2024; 14:3800-3815. [PMID: 39267661 PMCID: PMC11387876 DOI: 10.62347/dlvs6991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aberrant RSPO1 expression is implicated in tumor progression across various cancers and correlates with anti-cancer immune cell characteristics. However, the specific role of R-spondin 1 (RSPO1) in lung adenocarcinoma (LUAD) remains unclear. In this study, we utilized data from The Cancer Genome Atlas (TCGA) to assess RSPO1 expression across 33 tumor types. Kaplan-Meier (K-M) analysis revealed the prognostic significance of RSPO1 in various cancers. Using statistical software R, we examined RSPO1's associations with immune cell infiltration, methylation, mutation, and competing endogenous RNA (ceRNA) networks. Exploration via the Tumor Immune Single Cell Hub (TISCH) database uncovered RSPO1's link to the tumor microenvironment (TME) and identified potential small molecule drug targets. We further investigated RSPO1's impact on LUAD cell proliferation, metastasis, and the Wnt pathway in vitro. Our findings highlight RSPO1's role in cancer progression and suggest its potential as both a prognostic marker and therapeutic target in LUAD, implicating the modulation of the Wnt pathway.
Collapse
Affiliation(s)
- Xinqi Lou
- Institute of Clinical Medicine Research, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Yuanyuan Wang
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Yanjun Deng
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Duo Xu
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Mingdeng Wang
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| | - Yuansheng Lin
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University Suzhou 215000, Jiangsu, China
| |
Collapse
|
9
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Zhao L, Li Q, Zhou T, Liu X, Guo J, Fang Q, Cao X, Geng Q, Yu Y, Zhang S, Deng T, Wang X, Jiao Y, Zhang M, Liu H, Tan H, Xiao C. Role of N6-methyladenosine in tumor neovascularization. Cell Death Dis 2024; 15:563. [PMID: 39098905 PMCID: PMC11298539 DOI: 10.1038/s41419-024-06931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor neovascularization is essential for the growth, invasion, and metastasis of tumors. Recent studies have highlighted the significant role of N6-methyladenosine (m6A) modification in regulating these processes. This review explores the mechanisms by which m6A influences tumor neovascularization, focusing on its impact on angiogenesis and vasculogenic mimicry (VM). We discuss the roles of m6A writers, erasers, and readers in modulating the stability and translation of angiogenic factors like vascular endothelial growth factor (VEGF), and their involvement in key signaling pathways such as PI3K/AKT, MAPK, and Hippo. Additionally, we outline the role of m6A in vascular-immune crosstalk. Finally, we discuss the current development of m6A inhibitors and their potential applications, along with the contribution of m6A to anti-angiogenic therapy resistance. Highlighting the therapeutic potential of targeting m6A regulators, this review provides novel insights into anti-angiogenic strategies and underscores the need for further research to fully exploit m6A modulation in cancer treatment. By understanding the intricate role of m6A in tumor neovascularization, we can develop more effective therapeutic approaches to inhibit tumor growth and overcome treatment resistance. Targeting m6A offers a novel approach to interfere with the tumor's ability to manipulate its microenvironment, enhancing the efficacy of existing treatments and providing new avenues for combating cancer progression.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinshan Li
- Institute of Precision Medicine of Guizhou Province, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tongliang Zhou
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Songjie Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Zúñiga-Hernández SR, García-Iglesias T, Macías-Carballo M, Pérez-Larios A, Gutiérrez-Mercado YK, Camargo-Hernández G, Rodríguez-Razón CM. A Bioinformatic Assay of Quercetin in Gastric Cancer. Int J Mol Sci 2024; 25:7934. [PMID: 39063176 PMCID: PMC11277512 DOI: 10.3390/ijms25147934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy.
Collapse
Affiliation(s)
- Sergio Raúl Zúñiga-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Trinidad García-Iglesias
- Instituto de Investigación de Cáncer en la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico;
| | - Monserrat Macías-Carballo
- Laboratorio de Biociencias, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Alejandro Pérez-Larios
- Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Yanet Karina Gutiérrez-Mercado
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Gabriela Camargo-Hernández
- Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Christian Martín Rodríguez-Razón
- Laboratorio de Experimentación Animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico
| |
Collapse
|
12
|
Liu Y, Yuan H, Fan J, Wang H, Xie H, Wan J, Hu X, Zhou J, Liu L. The pathogenesis mechanism and potential clinical value of lncRNA in gliomas. Discov Oncol 2024; 15:266. [PMID: 38967893 PMCID: PMC11226588 DOI: 10.1007/s12672-024-01144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hui Yuan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - JingJia Fan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Han Wang
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - HuiYu Xie
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - JunFeng Wan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - XueYing Hu
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Zhou
- Dept Neurosurg, Affiliated Hosp, Southwest Med Univ, Luzhou, 646000, People's Republic of China.
| | - Liang Liu
- Dept Neurosurg, Affiliated Hosp, Southwest Med Univ, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
13
|
Liu X, Chen Q, Jiang S, Shan H, Yu T. MicroRNA-26a in respiratory diseases: mechanisms and therapeutic potential. Mol Biol Rep 2024; 51:627. [PMID: 38717532 DOI: 10.1007/s11033-024-09576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/30/2024]
Abstract
MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.
Collapse
Affiliation(s)
- Xiaoshan Liu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Qian Chen
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
14
|
Hu J, Wang S, Li X. A comprehensive review of m 6A research in cervical cancer. Epigenomics 2024; 16:753-773. [PMID: 38639713 PMCID: PMC11318741 DOI: 10.2217/epi-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Cervical cancer (CC) remains one of the most common malignancies among women worldwide, posing a serious threat to women's health. N6-methyladenosine (m6A) modification, as the most abundant type of RNA methylation modification, and has been found to play a crucial role in various cancers. Current research suggests a close association between RNA m6A modification and the occurrence and progression of CC, encompassing disruptions in m6A levels and its regulatory machinery. This review summarizes the current status of m6A modification research in CC, explores the mechanisms underlying m6A levels and regulators (methyltransferases, demethylases, reader proteins) in CC and examines the application of small-molecule inhibitors of m6A regulators in disease treatment. The findings provide new insights into the future treatment of CC.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiuting Li
- Department of Public Health, Jiangsu Health Vocational College, Nanjing, 210000, China
| |
Collapse
|
15
|
Jin MH, Feng L, Xiang HY, Sun HN, Han YH, Kwon T. Exploring the role of Prx II in mitigating endoplasmic reticulum stress and mitochondrial dysfunction in neurodegeneration. Cell Commun Signal 2024; 22:231. [PMID: 38637880 PMCID: PMC11025193 DOI: 10.1186/s12964-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.
Collapse
Affiliation(s)
- Mei-Hua Jin
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Lin Feng
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Hong-Yi Xiang
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Ying-Hao Han
- College of Life Science & Biotechnology Technology, Heilongjiang Bayi Agricultural University, 163319, Daqing, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33 Neongme-gil, Ibam-myeon, 56216, Jeongeup-si, Jeonbuk, Republic of Korea.
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, National University of Science and Technology (UST), 34113, Daejeon, Republic of Korea.
| |
Collapse
|
16
|
Shi HH, Mugaanyi J, Lu C, Li Y, Huang J, Dai L. A paradigm shift in cancer research based on integrative multi-omics approaches: glutaminase serves as a pioneering cuproptosis-related gene in pan-cancer. BMC Womens Health 2024; 24:213. [PMID: 38566121 PMCID: PMC10988933 DOI: 10.1186/s12905-024-03061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.
Collapse
Affiliation(s)
- Hai-Hong Shi
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China
| | - Joseph Mugaanyi
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China
| | - Yang Li
- Department of Emergency, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China.
| | - Lei Dai
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, 315040, China.
| |
Collapse
|
17
|
Jalali P, Samii A, Rezaee M, Shahmoradi A, Pashizeh F, Salehi Z. UBE2C: A pan-cancer diagnostic and prognostic biomarker revealed through bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2032. [PMID: 38577722 PMCID: PMC10995712 DOI: 10.1002/cnr2.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Amir Samii
- Department of Hematology and Blood TransfusionSchool of Allied Medical Sciences, Iran University of Medical SciencesTehranIran
| | - Malihe Rezaee
- Department of PharmacologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Arvin Shahmoradi
- Department of Laboratory MedicineFaculty of Paramedical, Kurdistan University of Medical SciencesSanandajIran
| | - Fatemeh Pashizeh
- Department of Clinical ImmunologyShahid Sadoughi University of Medical SciencesYazdIran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical SciencesTehranIran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Yang Y, Yuan L, Liu W, Lu D, Meng F, Yang Y, Zhou Z, Ma P, Nan Y. Banxia-Shengjiang drug pair inhibits gastric cancer development and progression by improving body immunity. Medicine (Baltimore) 2024; 103:e36303. [PMID: 38457601 PMCID: PMC10919495 DOI: 10.1097/md.0000000000036303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 03/10/2024] Open
Abstract
To investigate the mechanism of action of Banxia-Shengjiang drug pair on the inhibition of gastric cancer (GC) using network pharmacology and bioinformatics techniques. The action targets of the Banxia (Pinellia ternata (Thunb.) Makino) -Shengjiang (Zingiber officinale Roscoe) drug pair obtained from the TCMSP database were intersected with differentially expressed genes (DEGs) and GC-related genes, and the intersected genes were analyzed for pathway enrichment to identify the signaling pathways and core target genes. Subsequently, the core target genes were analyzed for clinical relevance gene mutation analysis, methylation analysis, immune infiltration analysis and immune cell analysis. Finally, by constructing the PPI network of hub genes and corresponding active ingredients, the key active ingredients of the Banxia-Shengjiang drug pair were screened for molecular docking with the hub genes. In this study, a total of 557 target genes of Banxia-Shengjiang pairs, 7754 GC-related genes and 1799 DEGs in GC were screened. Five hub genes were screened, which were PTGS2, MMP9, PPARG, MMP2, and CXCR4. The pathway enrichment analyses showed that the intersecting genes were associated with RAS/MAPK signaling pathway. In addition, the clinical correlation analysis showed that hub genes were differentially expressed in GC and was closely associated with immune infiltration and immunotherapy. The results of single nucleotide variation (SNV) and copy number variation (CNV) indicated that mutations in the hub genes were associated with the survival of gastric cancer patients. Finally, the PPI network and molecular docking results showed that PTGS2 and MMP9 were potentially important targets for the inhibition of GC by Banxia-Shengjiang drug pair, while cavidine was an important active ingredient for the inhibition of GC by Banxia-Shengjiang drug pair. Banxia-Shengjiang drug pair may regulate the immune function and inhibit GC by modulating the expression of core target genes such as RAS/MAPK signaling pathway, PTGS2 and MMP9.
Collapse
Affiliation(s)
- Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
19
|
Xie Z, Li Y, Xiao P, Ke S. GATA3 promotes the autophagy and activation of hepatic stellate cell in hepatic fibrosis via regulating miR-370/HMGB1 pathway. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:219-229. [PMID: 37207965 DOI: 10.1016/j.gastrohep.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hepatic fibrosis (HF) is a common result of the repair process of various chronic liver diseases. Hepatic stellate cells (HSCs) activation is the central link in the occurrence of HF. METHODS ELISA and histological analysis were performed to detect the pathological changes of liver tissues. In vitro, HSCs were treated with TGF-β1 as HF cell model. Combination of GATA-binding protein 3 (GATA3) and miR-370 gene promoter was ensured by ChIP and luciferase reporter assay. Autophagy was monitored by observing the GFP-LC3 puncta formation. The interaction between miR-370 and high mobility group box 1 protein (HMGB1) was verified by luciferase reporter assay. RESULTS CCl4-induced HF mice exhibited an increase of ALT and AST, and severe damage and fibrosis of liver tissues. GATA3 and HMGB1 were up-regulated, and miR-370 was down-regulated in CCl4-induced HF mice and activated HSCs. GATA3 enhanced expression of the autophagy-related proteins and activation markers in the activated HSCs. Inhibition of autophagy partly reversed GATA3-induced activation of HSCs and the promotion of GATA3 to hepatic fibrosis. Moreover, GATA3 suppressed miR-370 expression via binding with its promotor, and enhanced HMGB1 expression in HSCs. Increasing of miR-370 inhibited HMGB1 expression by directly targeting its mRNA 3'-UTR. The promotion of GATA3 to TGF-β1-induced HSCs autophagy and activation was abrogated by miR-370 up-regulation or HMGB1 knockdown. CONCLUSIONS This work demonstrates that GATA3 promotes autophagy and activation of HSCs by regulating miR-370/HMGB1 signaling pathway, which contributes to accelerate HF. Thus, this work suggests that GATA3 may be a potential target for prevention and treatment of HF.
Collapse
Affiliation(s)
- Zhengyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Yangyang Li
- Medical College of Nanchang University, Nanchang 330006, China
| | - Peiguang Xiao
- Medical College of Nanchang University, Nanchang 330006, China
| | - Shanmiao Ke
- Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
20
|
Xie GS, Richard HT. m 6A mRNA Modifications in Glioblastoma: Emerging Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:727. [PMID: 38398118 PMCID: PMC10886660 DOI: 10.3390/cancers16040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor, is highly invasive and neurologically destructive. The mean survival for glioblastoma patients is approximately 15 months and there is no effective therapy to significantly increase survival times to date. The development of effective therapy including mechanism-based therapies is urgently needed. At a molecular biology level, N6-methyladenine (m6A) mRNA modification is the most abundant posttranscriptional RNA modification in mammals. Recent studies have shown that m6A mRNA modifications affect cell survival, cell proliferation, invasion, and immune evasion of glioblastoma. In addition, m6A mRNA modifications are critical for glioblastoma stem cells, which could initiate the tumor and lead to therapy resistance. These findings implicate the function of m6A mRNA modification in tumorigenesis and progression, implicating its value in prognosis and therapies of human glioblastoma. This review focuses on the potential clinical significance of m6A mRNA modifications in prognostic and therapeutics of glioblastoma. With the identification of small-molecule compounds that activate or inhibit components of m6A mRNA modifications, a promising novel approach for glioblastoma therapy is emerging.
Collapse
Affiliation(s)
- Gloria S. Xie
- Martel College, Rice University, Houston, TX 77005, USA;
| | - Hope T. Richard
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23219, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
21
|
Wang YP, Ma C, Yang XK, Zhang N, Sun ZG. Pan-cancer and single-cell analysis reveal THRAP3 as a prognostic and immunological biomarker for multiple cancer types. Front Genet 2024; 15:1277541. [PMID: 38333620 PMCID: PMC10850301 DOI: 10.3389/fgene.2024.1277541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Background: Thyroid hormone receptor-associated protein 3 (THRAP3) is of great significance in DNA damage response, pre-mRNA processing, and nuclear export. However, the biological activities of THRAP3 in pan-cancer remain unexplored. We aimed to conduct a comprehensive analysis of THRAP3 and validate its expression levels in lung cancer. Methods: A pan-cancer analysis was conducted to study the correlation of THRAP3 expression with clinical outcome and the tumor microenvironment based on the available bioinformatics databases. The protein levels of THRAP3 were explored in lung cancer by immunohistochemistry (IHC) analysis. Single-cell sequencing (ScRNA-seq) analysis was employed to investigate the proportions of each cell type in lung adenocarcinoma (LUAD) and adjacent normal tissues, along with the expression levels of THRAP3 within each cell type. Results: THRAP3 is upregulated in multiple cancer types but exhibits low expression in lung squamous cell carcinoma (LUSC). immunohistochemistry results showed that THRAP3 is a lowly expression in LUAD and LUSC. THRAP3 elevation had a poor prognosis in kidney renal clear cell carcinoma and a prolonged survival time in kidney chromophobe, brain lower-grade glioma and skin cutaneous melanoma, as indicated by the KM curve. Single-cell analysis confirmed that the proportions of T/B cells, macrophages, and fibroblasts were significantly elevated in LUAD tissues, and THRAP3 is specifically overexpressed in mast cells. Conclusion: Our findings uncover that THRAP3 is a promising prognostic biomarker and immunotherapeutic target in multiple cancers, but in LUAD and LUSC, it may be a protective gene.
Collapse
Affiliation(s)
- Ye-Peng Wang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue-Kun Yang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
22
|
Shao D, Zhou H, Yu H, Zhu X. CX3CR1 is a potential biomarker of immune microenvironment and prognosis in epithelial ovarian cancer. Medicine (Baltimore) 2024; 103:e36891. [PMID: 38241595 PMCID: PMC10798769 DOI: 10.1097/md.0000000000036891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Immunotherapy is less efficient for epithelial ovarian cancer and lacks ideal biomarkers to select the best beneficiaries for immunotherapy. CX3CR1 as chemokine receptor mainly expressed on immune cell membranes, and combined with its unique ligand CX3CL1, mediates tissue chemotaxis and adhesion of immune cells. However, the immune functional and prognostic value of CX3CR1 in epithelial ovarian cancer has not been clarified. A comprehensive retrospective analysis was performed by using the online database to identify the underlying immunological mechanisms and prognostic value of CX3CR1. The Human Protein Atlas, gene expression profiling interactive analysis, and TISIDB (an integrated repository portal for tumor-immune system interactions) database showed that CX3CR1 expressed higher in epithelial ovarian cancer than that in normal ovarian tissue. Four hundred twenty-two cases from Gene Expression Profiling Interactive Analysis and 1656 cases from Kaplan-Meier plotter database showed higher expression of CX3CR1 (above median) was associated with unfavorable overall survival. TIMER, UALCAN, and TISIDB database were applied to validate CX3CR1 negative impact on overall survival. In addition, correlation analysis showed that the expression level of CX3CR1 was positive association with infiltrating levels of B cells (R = 0.31, P = 3.10e-12), CD8+ T cells (R = 0.26, P = 7.93e-09), CD4+ T cells (R = 0.11, P = 1.41e-02), macrophages (R = 0.32, P = 4.29e-13), dendritic cells (R = 0.27, P = 2.98e-09), and neutrophil (R = 0.25, P = 3.25e-08) in epithelial ovarian cancer. Therefore, CX3CR1 involved in reshaping the immune microenvironment for epithelial ovarian cancer and maybe a potential immunotherapy target and prognostic marker for ovarian cancer.
Collapse
Affiliation(s)
- Danfeng Shao
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Honger Zhou
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Huaiying Yu
- Department of Gynecology, Hangzhou Fuyang First People’s Hospital, Hangzhou, China
| | - Xiaoqing Zhu
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Xu Q, Ren N, Ren L, Yang Y, Pan J, Shang H. RNA m6A methylation regulators in liver cancer. Cancer Cell Int 2024; 24:1. [PMID: 38166832 PMCID: PMC10763310 DOI: 10.1186/s12935-023-03197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Liver cancer is one of the most common cancers in the world and a primary cause of cancer-related death. In recent years, despite the great development of diagnostic methods and targeted therapies for liver cancer, the incidence and mortality of liver cancer are still on the rise. As a universal post-transcriptional modification, N6-methyladenosine (m6A) modification accomplishes a dynamic and reversible m6A modification process, which is executed by three types of regulators, methyltransferases (called writers), demethylases (called erasers) and m6A-binding proteins (called readers). Many studies have shown that m6A RNA methylation has an important impact on RNA metabolism, whereas its regulation exception is bound up with the occurrence of human malignant tumors. Aberrant methylation of m6A RNA and the expression of related regulatory factors may be of the essence in the pathogenesis and progression of liver cancer, yet the precise molecular mechanism remains unclear. In this paper, we review the current research situations of m6A methylation in liver cancer. Among the rest, we detail the mechanism by which methyltransferases, demethylases and m6A binding proteins regulate the occurrence and development of liver cancer by modifying mRNA. As well as the potential effect of m6A regulators in hepatocarcinogenesis and progression. New ideas and approaches will be given to the prevention and treatment of liver cancer through the following relevant research results.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Hongkai Shang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.
- Department of Gynecology, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Yu Y, Dong L, Dong C, Zhang X. Validation of a Proteomic-Based Prognostic Model for Breast Cancer and Immunological Analysis. Int J Genomics 2023; 2023:1738750. [PMID: 38145160 PMCID: PMC10748720 DOI: 10.1155/2023/1738750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Breast cancer (BC) has emerged as an extremely destructive malignancy, causing significant harm to female patients and society at large. Proteomic research holds great promise for early diagnosis and treatment of diseases, and the integration of proteomics with genomics can offer valuable assistance in the early diagnosis, treatment, and improved prognosis of BC patients. In this study, we downloaded breast cancer protein expression data from The Cancer Genome Atlas (TCGA) and combined proteomics with genomics to construct a proteomic-based prognostic model for BC. This model consists of nine proteins (HEREGULIN, IDO, PEA15, MERIT40_pS29, CIITA, AKT2, CD171 DVL3, and CABL9). The accuracy of the model in predicting the survival prognosis of BC patients was further validated through risk curve analysis, survival curve analysis, and independent prognostic analysis. We further confirmed the impact of differential expression of these nine key proteins on overall survival in BC patients, and the differential expression of the key proteins and their encoding genes was validated using immunohistochemical staining. Enrichment analysis revealed functional associations primarily related to PPAR signaling pathway, steroid hormone metabolism, chemokine signaling pathway, DNA conformation changes, immunoglobulin production, and immunoglobulin complex in the high- and low-risk groups. Immune infiltration analysis revealed differential expression of immune cells between the high- and low-risk groups, providing a theoretical basis for subsequent immunotherapy. The model constructed in this study can predict the survival of BC patients, and the identified key proteins may serve as biomarkers to aid in the early diagnosis of BC. Enrichment analysis and immune infiltration analysis provide a necessary theoretical basis for further exploration of the molecular mechanisms and subsequent immunotherapy.
Collapse
Affiliation(s)
- Yunlin Yu
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Linhuan Dong
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Changjun Dong
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| |
Collapse
|
25
|
Dong P, Du X, Yang T, Li D, Du Y, Wei Y, Sun J. PEX13 is a potential immunotherapeutic indicator and prognostic biomarker for various tumors including PAAD. Oncol Lett 2023; 26:512. [PMID: 37920431 PMCID: PMC10618920 DOI: 10.3892/ol.2023.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023] Open
Abstract
The peroxisome serves a significant role in the occurrence and development of cancers. Specifically, the peroxisomal biogenesis factor 13 (PEX13) is crucial to the occurrence of peroxisomes. However, the biological function of PEX13 in cancers remains unclear. To address this, various portals and databases such as The Cancer Genome Atlas Program, The Genotype-Tissue Expression project, the Gene Expression Profiling Interactive Analysis 2, cBioPortal, the Genomic Identification of Significant Targets In Cancer 2.0, Tumor Immune Estimation Resource 2, SangerBox, LinkedOmics, DAVID and STRING were applied to extract and analyze PEX13 data in tumors. The correlations between PEX13 and prognosis, genetic alterations, PEX13-related gene enrichment analysis, weighted gene co-expression network analysis (WGCNA), protein interaction, long non-coding (lnc)RNA/circular (circ)RNA-micro (mi)RNA network and tumor immunity were explored in various tumors. The lncRNA-miRNA-PEX13 and circRNA-miRNA-PEX13 regulatory networks were identified via miRabel, miRDB, TargetScan and ENCORI portals and Cytoscape tool. In vitro assays were applied to verify the biological functions of PEX13 in pancreatic adenocarcinoma (PAAD) cells. The findings revealed that PEX13 is upregulated in various tumors and high PEX13 mRNA expression is associated with poor prognosis in patients with multiple cancers. Genetic alterations in PEX13 such as amplification, mutation and deep deletion have been found in multiple cancers. PEX13-related genes were associated with T cell receptor, signaling pathway and hippo signaling pathway through 'biological process' subontology of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Through WGCNA analysis, it was discovered that PEX13 hub genes were mainly enriched in the Rap1, ErbB and AMPK signaling pathways in PAAD. Immune analysis showed that PEX13 was significantly related to tumor infiltration immune cells, immune checkpoint genes, microsatellite instability, TMB and tumor purity in a variety of tumors. Cell Counting Kit-8, wound healing, Transwell and colony formation assays displayed that PEX13 knockdown could suppress PAAD cell proliferation, migration, invasion, and colony formation in vitro, respectively. Overall, PEX13 is a potential predictor of immunotherapeutic and prognostic biomarkers in various malignant tumors, including ACC, KICH, LGG, LIHC and PAAD.
Collapse
Affiliation(s)
- Penggang Dong
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
- Department of Hepatobiliary Surgery, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xuezhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ting Yang
- Central Laboratory, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Dandan Li
- Central Laboratory, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yunyi Du
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
26
|
Qin Q, Peng B. Prognostic significance of the rho GTPase RHOV and its role in tumor immune cell infiltration: a comprehensive pan-cancer analysis. FEBS Open Bio 2023; 13:2124-2146. [PMID: 37596964 PMCID: PMC10626275 DOI: 10.1002/2211-5463.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023] Open
Abstract
Ras homolog gene family member V (RHOV) is an atypical Rho GTPase that participates in various important cellular processes. Although RHOV has been identified to play an oncogenic role in lung cancer and triple-negative breast cancer, its role in other types of tumors remains unknown. In this study, we investigated the expression of RHOV in pan-cancer analysis using The Cancer Genome Atlas (TCGA) and Gene-Tissue Expression datasets. RHOV mRNA levels were dysregulated in several types of tumors. RHOV expression was identified as an independent prognostic factor in 7 of 33 types of tumors; however, the relationship varied according to tumor type. Higher RHOV expression was associated with a favorable prognosis in kidney renal cell carcinoma and prostate adenocarcinoma, for which RHOV expression was downregulated, whereas RHOV expression was associated with a poor prognosis for patients with adenoid cystic carcinoma, lung adenocarcinoma, pancreatic ductal adenocarcinoma, skin cutaneous melanoma, and uveal melanoma with upregulated RHOV expression. Furthermore, RHOV expression was associated with various clinicopathological parameters in these tumors. RHOV expression showed varied associations with different types of tumor-infiltrating immune cells and demonstrated a potential impact on the response to immunotherapy depending on the cancer type. Additionally, functional enrichment analysis of RHOV-related genes demonstrated a role in a wide range of developmental and immune-related processes. This study provides valuable insights into the role of RHOV in pan-cancer development, indicating its role as a tumor suppressor or oncogene according to the cancer type and tumor microenvironment.
Collapse
Affiliation(s)
- Qin Qin
- Department of OncologyJingzhou Hospital Affiliated to Yangtze UniversityChina
| | - Bing Peng
- Department of OncologyThe Second People's Hospital of JingmenChina
| |
Collapse
|
27
|
Ma P, Sun W. Integrated single-cell and bulk sequencing analyses with experimental validation identify the prognostic and immunological implications of CD226 in pan-cancer. J Cancer Res Clin Oncol 2023; 149:14597-14617. [PMID: 37580402 DOI: 10.1007/s00432-023-05268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE CD226 (DNAM-1) is an activating receptor mainly expressed in CD8 + and NK cells. CD226 deficiency and blockade have been shown to impair tumor suppression, while enhanced CD226 expression positively correlated with the increased efficacy of immune checkpoint blockade (ICB) therapies. However, the detailed function and role of CD226 in pan-cancer are largely unknown and require further in-depth investigation. Therefore, this study aims to investigate the biological functions of CD226, its role in tumor immunity, and its potential to predict prognosis and immunotherapy response in pan-cancer. METHODS By taking advantage of single-cell and bulk sequencing analyses, we analyzed the expression profile of CD226, its correlation with patient prognosis, immune infiltration level, immune-related genes, tumor heterogeneity, and stemness in pan-cancer. We also investigated the biological functions of CD226 using gene set enrichment analysis (GSEA) and evaluated its predictive value in response to immunotherapy and small-molecule targeted drugs. In addition, we validated the expression of CD226 in tumor-infiltrating CD8 + and NK cells and studied its association with their functions using a murine B16F10 melanoma model. RESULTS CD226 exhibited differential expression across most tumor types, and its elevated expression was associated with improved clinical outcomes in multiple cancer types. CD226 is closely correlated with numerous tumor-infiltrating immune cells, tumor stemness, and heterogeneity in most cancers. Furthermore, based on single-cell sequencing analysis, CD226 expression was found to be higher on effector CD4 + T cells than naïve CD4 + T cells, and its expression level was decreased in exhausted CD8 + T cells relative to effector CD8 + T cells in multiple cancer types. Additionally, flow cytometric analysis demonstrated that CD226 was highly correlated with the function of tumor-infiltrating NK and CD8 + T cells in murine B16F10 melanoma. Moreover, GSEA analysis revealed that CD226 was closely associated with T cell activation, natural killer cell mediated immunity, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. Finally, CD226 showed promising predictive potential for responsiveness to both ICB therapies and various small-molecule targeted drugs. CONCLUSION CD226 has shown great potential as an innovative biomarker for predicting patient prognosis, immune infiltration levels, and the function of tumor-infiltrating CD8 + T cells, as well as immunotherapy response. Additionally, our findings suggest that the optimal modification of CD226 expression and function, combined with current ICBs, could be a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Ma
- Department of Gastroenterology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Weili Sun
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
28
|
Hou Y, Qiu W, Ling Y, Qi X, Liu J, Yang H, Chu L. The role of tumor-associated macrophages in glioma cohort: through both traditional RNA sequencing and single cell RNA sequencing. Front Oncol 2023; 13:1249448. [PMID: 37781198 PMCID: PMC10539593 DOI: 10.3389/fonc.2023.1249448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the leading cause in more than 50% of malignant brain tumor cases. Prognoses, recurrences, and mortality are usually poor for gliomas that have malignant features. In gliomas, there are four grades, with grade IV gliomas known as glioblastomas (GBM). Currently, the primary methods employed for glioma treatment include surgical removal, followed by chemotherapy after the operation, and targeted therapy. However, the outcomes of these treatments are unsatisfactory. Gliomas have a high number of tumor-associated macrophages (TAM), which consist of brain microglia and macrophages, making them the predominant cell group in the tumor microenvironment (TME). The glioma cohort was analyzed using single-cell RNA sequencing to quantify the genes related to TAMs in this study. Furthermore, the ssGSEA analysis was utilized to assess the TAM-associated score in the glioma group. In the glioma cohort, we have successfully developed a prognostic model consisting of 12 genes, which is derived from the TAM-associated genes. The glioma cohort demonstrated the predictive significance of the TAM-based risk model through survival analysis and time-dependent ROC curve. Furthermore, the correlation analysis revealed the significance of the TAM-based risk model in the application of immunotherapy for individuals diagnosed with GBM. Ultimately, the additional examination unveiled the prognostic significance of PTX3 in the glioma group, establishing it as the utmost valuable prognostic indicator in patients with GBM. The PCR assay revealed the PTX3 is significantly up-regulated in GBM cohort. Additionally, the assessment of cell growth further confirms the involvement of PTX3 in the GBM group. The analysis of cell proliferation showed that the increased expression of PTX3 enhanced the ability of glioma cells to proliferate. The prognosis of glioblastomas and glioma is influenced by the proliferation of tumor-associated macrophages.
Collapse
Affiliation(s)
- Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
29
|
Tang F, Wang Y, Zeng Y, Xiao A, Tong A, Xu J. Tumor-associated macrophage-related strategies for glioma immunotherapy. NPJ Precis Oncol 2023; 7:78. [PMID: 37598273 PMCID: PMC10439959 DOI: 10.1038/s41698-023-00431-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
High-grade glioma is one of the deadliest primary tumors of the central nervous system. Despite the many novel immunotherapies currently in development, it has been difficult to achieve breakthrough results in clinical studies. The reason may be due to the suppressive tumor microenvironment of gliomas that limits the function of specific immune cells (e.g., T cells) which are currently the primary targets of immunotherapy. However, tumor-associated macrophage, which are enriched in tumors, plays an important role in the development of GBM and is becoming a research hotspot for immunotherapy. This review focuses on current research advances in the use of macrophages as therapeutic targets or therapeutic tools for gliomas, and provides some potential research directions.
Collapse
Affiliation(s)
- Fansong Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yunhui Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
30
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
31
|
Wan X, Ge Y, Xu S, Feng Y, Zhu Y, Yin L, Pu Y, Liang G. m 6A modification and its role in neural development and neurological diseases. Epigenomics 2023; 15:819-833. [PMID: 37718929 DOI: 10.2217/epi-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
N6-methyladenosine (m6A) methylation, the most prevalent post-transcriptional modification in eukaryotes, represents a highly dynamic and reversible process that is regulated by m6A methyltransferases, m6A demethylases and RNA-binding proteins during RNA metabolism, which affects RNA function. Notably, m6A modification is significantly enriched in the brain and exerts regulatory roles in neurogenesis and neurodevelopment through various mechanisms, further influencing the occurrence and progression of neurological disorders. This study systematically summarizes and discusses the latest findings on common m6A regulators, examining their expression, function and mechanisms in neurodevelopment and neurological diseases. Additionally, we explore the potential of m6A modification in diagnosing and treating neurological disorders, aiming to provide new insights into the molecular mechanisms and potential therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yanlu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
32
|
Gong L, Zhong M, Gong K, Wang Z, Zhong Y, Jin Y, Chen H, Tai P, Chen X, Chen A, Cao K. Multi-Omics Analysis and Verification of the Oncogenic Value of CCT8 in Pan-Cancers. J Inflamm Res 2023; 16:2297-2315. [PMID: 37273485 PMCID: PMC10238552 DOI: 10.2147/jir.s403499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 06/06/2023] Open
Abstract
Background Chaperonin-containing TCP1 subunit 8 (CCT8) has been proved to be involved in the occurrence and development of some cancers. However, no study has reported the potential role of CCT8 in a pan-cancer manner. Methods TIMER2.0, GEPIA2, UALCAN and Sangerbox were used to explore the expression, prognosis and methylation of CCT8. We used cBioPortal, TISIDB, SangerBox, TIMER2.0 and TISMO to investigate the genetic alteration of CCT8 and the relationship of CCT8 with molecular subtype, immune subtype, immune infiltration and immunotherapy response. CCT8-related genes were screened out through GEPIA and STRING for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. CCK-8, the colony formation assay, the wound healing assay and the Transwell assay were performed to explore the influence of CCT8 on proliferation and migration. Results CCT8 was highly expressed in most cancers with a poor prognosis. The expression level of CCT8, which was affected by the promoter region methylation and genetic alteration, was related to the molecular and immune subtype of cancers. Interestingly, CCT8 was positively associated with the activated CD4 T cells and type 2 T-helper cells. CCT8 played a vital role in the cell cycle and RNA transport of cancers, and it significantly inhibited the proliferation and migration of lung adenocarcinoma cells when it was knocked down. Conclusion CCT8 plays an indispensable role in promoting the proliferation and migration of many cancers. CCT8 might be a biomarker of T-helper type 2 (Th2) cell infiltration and a promising therapeutic target for T-helper type 1(Th1)/Th2 imbalance.
Collapse
Affiliation(s)
- Lian Gong
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Kai Gong
- Department of Clinical Medicine, Xiangnan University, Chenzhou, People’s Republic of China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Yong Zhong
- Department of Clinical Medicine, Hubei Enshi College, Enshi, People’s Republic of China
| | - Yi Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Haotian Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China
| |
Collapse
|
33
|
Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:210. [PMID: 37217462 DOI: 10.1038/s41392-023-01480-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Over decades, researchers have focused on the epigenetic control of DNA-templated processes. Histone modification, DNA methylation, chromatin remodeling, RNA modification, and noncoding RNAs modulate many biological processes that are crucial to the development of cancers. Dysregulation of the epigenome drives aberrant transcriptional programs. A growing body of evidence suggests that the mechanisms of epigenetic modification are dysregulated in human cancers and might be excellent targets for tumor treatment. Epigenetics has also been shown to influence tumor immunogenicity and immune cells involved in antitumor responses. Thus, the development and application of epigenetic therapy and cancer immunotherapy and their combinations may have important implications for cancer treatment. Here, we present an up-to-date and thorough description of how epigenetic modifications in tumor cells influence immune cell responses in the tumor microenvironment (TME) and how epigenetics influence immune cells internally to modify the TME. Additionally, we highlight the therapeutic potential of targeting epigenetic regulators for cancer immunotherapy. Harnessing the complex interplay between epigenetics and cancer immunology to develop therapeutics that combine thereof is challenging but could yield significant benefits. The purpose of this review is to assist researchers in understanding how epigenetics impact immune responses in the TME, so that better cancer immunotherapies can be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Zheng X, Chen L, Liu W, Zhao S, Yan Y, Zhao J, Tian W, Wang Y. CCNE1 is a predictive and immunotherapeutic indicator in various cancers including UCEC: a pan-cancer analysis. Hereditas 2023; 160:13. [PMID: 36964635 PMCID: PMC10037856 DOI: 10.1186/s41065-023-00273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND CCNE1 plays an important oncogenic role in several tumors, especially high-stage serous ovarian cancer and endometrial cancer. Nevertheless, the fundamental function of CCNE1 has not been explored in multiple cancers. Therefore, bioinformatics analyses of pan-cancer datasets were carried out to explore how CCNE1 regulates tumorigenesis. METHODS A variety of online tools and cancer databases, including GEPIA2, SangerBox, LinkedOmics and cBioPortal, were applied to investigate the expression of CCNE1 across cancers. The pan-cancer datasets were used to search for links between CCNE1 expression and prognosis, DNA methylation, m6A level, genetic alterations, CCNE1-related genes, and tumor immunity. We verified that CCNE1 has biological functions in UCEC cell lines using CCK-8, EdU, and Transwell assays. RESULTS In patients with different tumor types, a high mRNA expression level of CCNE1 was related to a poor prognosis. Genes related to CCNE1 were connected to the cell cycle, metabolism, and DNA damage repair, according to GO and KEGG enrichment analyses. Genetic alterations of CCNE1, including duplications and deep mutations, have been observed in various cancers. Immune analysis revealed that CCNE1 had a strong correlation with TMB, MSI, neoantigen, and ICP in a variety of tumor types, and this correlation may have an impact on the sensitivity of various cancers to immunotherapy. CCK-8, EdU and Transwell assays suggested that CCNE1 knockdown can suppress UCEC cell proliferation, migration and invasion. CONCLUSION Our study demonstrated that CCNE1 is upregulated in multiple cancers in the TCGA database and may be a promising predictive biomarker for the immunotherapy response in some types of cancers. Moreover, CCNE1 knockdown can suppress the proliferation, migration and invasion of UCEC cells.
Collapse
Affiliation(s)
- Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingli Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenlu Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianzhen Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
35
|
Liu Q, Gu L, Qiu J, Qian J. Elevated NDC1 expression predicts poor prognosis and correlates with immunity in hepatocellular carcinoma. J Gastrointest Oncol 2023; 14:245-264. [PMID: 36915467 PMCID: PMC10007937 DOI: 10.21037/jgo-22-1166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Background NDC1 was identified to be a tumor-promoting factor in non-small cell lung cancer and cervical cancer. However, no report had clarified the relationship between NDC1 and hepatocellular carcinoma (HCC). In this paper, we explored the expression and potential functions of NDC1 in HCC for the first time through the rational application of bioinformatics and relevant basic experiments. Methods NDC1-related expression profiles and clinical data of HCC patients were collected from The Cancer Genome Atlas (TCGA) database, which were verified via quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Univariate and multivariate Cox regression analyses were used to identify NDC1 as an independent factor for HCC prognosis, and NDC1-related signaling pathways were determined by gene set enrichment analysis (GSEA). Furthermore, we deeply probed the potential links of NDC1 to immunity and immune response. Finally, the bioeffects and underlying mechanisms of ectopic NDC1 overexpression and depletion were determined in HepG2 cells by immunoblotting, flow cytometry, Cell-Counting-Kit-8 (CCK-8), and EDU (5-Ethynyl-2'-deoxyuridine). Results Up-regulated expression of NDC1 was detected by means of the TCGA database, which was consistent with the results obtained from further qRT-PCR, immunohistochemistry and the CPTAC database. Kaplan-Meier (K-M) survival analysis revealed a worse prognosis in HCC patients with high NDC1 expression. Besides, NDC1 was certified to be closely linked to tumor histologic grade, clinical stage and T stage. Moreover, univariate and multivariate Cox regression analyses defined NDC1 as an independent element for HCC prognosis. NDC1-related signaling pathways, utilizing GSEA analysis, were subsequently found out. What's more, NDC1 expression was detected to be enormously associated with microsatellite instability (MSI), immune cell infiltration, immune checkpoint molecules and immune cell pathways. As for immunotherapy, we discovered that different risk groups tended to have different immune checkpoint inhibitor responses, which indicated crucial implication value of NDC1 for HCC immunotherapy. More interestingly, we observed that the overexpression of NDC1 could promote the migration and invasion of HCC cells. Conclusions Our article demonstrated that NDC1 might serve as a valuable predictor in the prognosis and immunotherapy of HCC. NDC1 played an oncogenic role in HCC.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Liugen Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Jianwei Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| | - Junbo Qian
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, China.,Department of Gastroenterology, The First People's Hospital of Nantong, Nantong, China
| |
Collapse
|
36
|
Zhou X, Li C, Chen T, Li W, Wang X, Yang Q. Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Mol Cancer 2023; 22:36. [PMID: 36810108 PMCID: PMC9942356 DOI: 10.1186/s12943-023-01746-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer immunotherapy, especially immune checkpoint therapy, has revolutionized therapeutic options by reactivating the host immune system. However, the efficacy varies, and only a small portion of patients develop sustained antitumor responses. Hence, illustrating novel strategies that improve the clinical outcome of immune checkpoint therapy is urgently needed. N6-methyladenosine (m6A) has been proved to be an efficient and dynamic posttranscriptional modification process. It is involved in numerous RNA processing, such as splicing, trafficking, translation and degradation. Compelling evidence emphasizes the paramount role of m6A modification in the regulation of immune response. These findings may provide a foundation for the rational combination of targeting m6A modification and immune checkpoints in cancer treatment. In the present review, we summarize the current landscape of m6A modification in RNA biology, and highlight the latest findings on the complex mechanisms by which m6A modification governs immune checkpoint molecules. Furthermore, given the critical role of m6A modification in antitumor immunity, we discuss the clinical significance of targeting m6A modification to improve the efficacy of immune checkpoint therapy for cancer control.
Collapse
Affiliation(s)
- Xianyong Zhou
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China ,grid.476866.dDepartment of Breast Surgery, Binzhou People’s Hospital, Binzhou, Shandong China
| | - Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, China. .,Department of Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Xi Road No. 107, Shandong, Jinan, China. .,Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
37
|
Tűzesi Á, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers (Basel) 2023; 15:cancers15041232. [PMID: 36831575 PMCID: PMC9954771 DOI: 10.3390/cancers15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of 'epitranscriptomics' is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar to many other RNA modifications, is strictly regulated by so-called 'writer', 'reader', and 'eraser' protein species. The abundance of genes coding for the expression of these regulator proteins and m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This review explores our current understanding of RNA modifications in glioma biology and the potential of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify these highly complex and heterogeneous brain tumours.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
38
|
Duan J, Zhang Z, Chen Y, Zhao Y, Sun Q, Wang W, Zheng H, Liang D, Cheng J, Yan J, Li ZC. Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study. Mol Oncol 2023; 17:629-646. [PMID: 36688633 PMCID: PMC10061289 DOI: 10.1002/1878-0261.13380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Tumor subtyping based on its immune landscape may guide precision immunotherapy. The aims of this study were to identify immune subtypes of adult diffuse gliomas with RNA sequencing data, and to noninvasively predict this subtype using a biologically interpretable radiomic signature from MRI. A subtype discovery dataset (n = 210) from a public database and two radiogenomic datasets (n = 130 and 55, respectively) from two local hospitals were included. Brain tumor microenvironment-specific signatures were constructed from RNA sequencing to identify the immune types. A radiomic signature was built from MRI to predict the identified immune subtypes. The pathways underlying the radiomic signature were identified to annotate their biological meanings. The reproducibility of the findings was verified externally in multicenter datasets. Three distinctive immune subtypes were identified, including an inflamed subtype marked by elevated hypoxia-induced immunosuppression, a "cold" subtype that exhibited scarce immune infiltration with downregulated antigen presentation, and an intermediate subtype that showed medium immune infiltration. A 10-feature radiomic signature was developed to predict immune subtypes, achieving an AUC of 0.924 in the validation dataset. The radiomic features correlated with biological functions underpinning immune suppression, which substantiated the hypothesis that molecular changes can be reflected by radiomic features. The immune subtypes, predictive radiomic signature, and radiomics-correlated biological pathways were validated externally. Our data suggest that adult-type diffuse gliomas harbor three distinctive immune subtypes that can be predicted by MRI radiomic features with clear biological significance. The immune subtypes, radiomic signature, and radiogenomic links can be replicated externally.
Collapse
Affiliation(s)
- Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,National Innovation Center for Advanced Medical Devices, Shenzhen, China.,Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| |
Collapse
|
39
|
Wen S, Li F, Tang Y, Dong L, He Y, Deng Y, Tao Z. MIR222HG attenuates macrophage M2 polarization and allergic inflammation in allergic rhinitis by targeting the miR146a-5p/TRAF6/NF-κB axis. Front Immunol 2023; 14:1168920. [PMID: 37205104 PMCID: PMC10185836 DOI: 10.3389/fimmu.2023.1168920] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Although M2 macrophages are involved in the orchestration of type 2 inflammation in allergic diseases, the mechanisms underlying non-coding RNA (ncRNA)-mediated macrophage polarization in allergic rhinitis (AR) have not been systematically understood. Here, we identified long non-coding RNA (lncRNA) MIR222HG as a key regulator of macrophage polarization and revealed its role in AR. Consistent with our bioinformatic analysis of GSE165934 dataset derived from the Gene Expression Omnibus (GEO) database, lncRNA-MIR222HG and murine mir222hg were downregulated in our clinical samples and animal models of AR, respectively. Mir222hg was upregulated in M1 macrophages and downregulated in M2 macrophages. The allergen-ovalbumin facilitated polarization of RAW264.7 cells to the M2 phenotype, accompanied by the downregulation of mir222hg expression in a dose-dependent manner. Mir222hg facilitates macrophage M1 polarization and reverses M2 polarization caused by ovalbumin. Furthermore, mir222hg attenuates macrophage M2 polarization and allergic inflammation in the AR mouse model. Mechanistically, a series of gain- and loss-of-function experiments and rescue experiments were performed to verify the role of mir222hg as a ceRNA sponge that adsorbed miR146a-5p, upregulated Traf6, and activated the IKK/IκB/P65 pathway. Collectively, the data highlight the remarkable role of MIR222HG in the modulation of macrophage polarization and allergic inflammation, as well as its potential role as a novel AR biomarker or therapeutic target.
Collapse
Affiliation(s)
- Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| |
Collapse
|
40
|
Liang J, Sun J, Zhang W, Wang X, Xu Y, Peng Y, Zhang L, Xiong W, Liu Y, Liu H. Novel Insights into The Roles of N 6-methyladenosine (m 6A) Modification and Autophagy in Human Diseases. Int J Biol Sci 2023; 19:705-720. [PMID: 36632456 PMCID: PMC9830520 DOI: 10.7150/ijbs.75466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular degradation and recycling process. It is important for maintaining vital cellular function and metabolism. Abnormal autophagy activity can cause the development of various diseases. N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification in eukaryotes, affecting almost all aspects of RNA metabolism. The process of m6A modification is dynamic and adjustable. Its regulation depends on the regulation of m6A methyltransferases, m6A demethylases, and m6A binding proteins. m6A methylation and autophagy are two crucial and independent cellular events. Recent studies have shown that m6A modification mediates the transcriptional and post-transcriptional regulation of autophagy-related genes, affecting autophagy regulatory networks in multiple diseases. However, the regulatory effects of m6A regulators on autophagy in human diseases are not adequately acknowledged. In the present review, we summarized the latest knowledge of m6A modification in autophagy and elucidated the molecular regulatory mechanisms underlying m6A modification in autophagy regulatory networks. Moreover, we discuss the potentiality of m6A regulators serving as promising predictive biomarkers for human disease diagnosis and targets for therapy. This review will increase our understanding of the relationship between m6A methylation and autophagy, and provide novel insights to specifically target m6A modification in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,✉ Corresponding authors: Hengwei Liu, Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China. E-mail: and Yi Liu, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. E-mail:
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.,✉ Corresponding authors: Hengwei Liu, Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China. E-mail: and Yi Liu, Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. E-mail:
| |
Collapse
|
41
|
Wang C, Yin Y, Sun Z, Wang Y, Li F, Wang Y, Zhang Z, Chen X. ATAD2 Upregulation Promotes Tumor Growth and Angiogenesis in Endometrial Cancer and Is Associated with Its Immune Infiltration. DISEASE MARKERS 2022; 2022:2334338. [PMID: 36479043 PMCID: PMC9722300 DOI: 10.1155/2022/2334338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 12/03/2022]
Abstract
Background Endometrial cancer is one of the three major gynecologic malignancies, and its incidence continues to rise. ATPase family AAA structural domain-containing protein 2 (ATAD2) is an ATPase protein, which is an independent factor for poor prognosis in endometrial cancer. However, its role in the disease is yet to be determined. Methods The Tumor IMmune Estimation Resource (TIMER) database was used to assess ATAD2 expression in pan-cancer, and the relevance of ATAD2 expression in Uterine Corpus Endometrial Carcinoma (UCEC) in clinical settings was obtained using Gene Expression Profiling Interactive Analysis (GEPIA) and UALCAN analysis. In addition, the Human Protein Atlas database was used to assess ATAD2 protein expression in UCEC. Furthermore, in vitro molecular biology and in vivo functional experiments were employed to ascertain the effect of ATAD2 expression on tumor angiogenesis and tumor growth. UALCAN was used to screen for ATAD2 coexpressed genes, and Sangerbox was utilized to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of these coexpressed genes. Finally, the TIMER, Tumor Immune System Interaction and Drug Bank (TISIDB), and GEPIA databases were used to analyze the relationship between ATAD2 and immune infiltration. Results ATAD2 is highly expressed in a variety of tumors, and in UCEC, it plays the role of a protooncogene. Basic experiments revealed that ATAD2 promotes vascular endothelial growth factor expression in endometrial cancer and affects tumor growth and angiogenesis. In addition, GO and KEGG enrichment analyses showed that ATAD2-associated genes were chiefly enriched in certain signaling pathways, such as herpes simplex virus 1 infection and that ATAD2 was associated with immune infiltration in UCEC. Conclusion Our findings suggest that ATAD2 promotes tumor growth and angiogenesis in endometrial cancer. Furthermore, ATAD2 is associated with immune infiltration and is a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Can Wang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Yue Yin
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Zhenxing Sun
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Yiru Wang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Fei Li
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Yan Wang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Zexue Zhang
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| | - Xiuwei Chen
- Department of Gynecologic Oncology, Third Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province 150000, China
| |
Collapse
|
42
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
43
|
Shen M, Duan C, Xie C, Wang H, Li Z, Li B, Wang T. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front Immunol 2022; 13:962393. [PMID: 35967341 PMCID: PMC9365928 DOI: 10.3389/fimmu.2022.962393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous clinical symptoms and severity. There is complex pathogenesis of SLE, one of which is IFNs overproduction and downstream IFN-stimulated genes (ISGs) upregulation. Identifying the key ISGs differentially expressed in peripheral blood mononuclear cells (PBMCs) of patients with SLE and healthy people could help to further understand the role of the IFN pathway in SLE and discover potential diagnostic biomarkers.The differentially expressed ISGs (DEISG) in PBMCs of SLE patients and healthy persons were screened from two datasets of the Gene Expression Omnibus (GEO) database. A total of 67 DEISGs, including 6 long noncoding RNAs (lncRNAs) and 61 messenger RNAs (mRNAs) were identified by the “DESeq2” R package. According to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, those DEISGs were mainly concentrated in the response to virus and immune system processes. Protein-protein interaction (PPI) network showed that most of these DEISGs could interact strongly with each other. Then, IFIT1, RSAD2, IFIT3, USP18, ISG15, OASL, MX1, OAS2, OAS3, and IFI44 were considered to be hub ISGs in SLE by “MCODE” and “Cytohubba” plugins of Cytoscape, Moreover, the results of expression correlation suggested that 3 lncRNAs (NRIR, FAM225A, and LY6E-DT) were closely related to the IFN pathway.The lncRNA NRIR and mRNAs (RSAD2, USP18, IFI44, and ISG15) were selected as candidate ISGs for verification. RT-qPCR results showed that PBMCs from SLE patients had substantially higher expression levels of 5 ISGs compared to healthy controls (HCs). Additionally, statistical analyses revealed that the expression levels of these ISGs were strongly associated to various clinical symptoms, including thrombocytopenia and facial erythema, as well as laboratory indications, including the white blood cell (WBC) count and levels of autoantibodies. The Receiver Operating Characteristic (ROC) curve demonstrated that the IFI44, USP18, RSAD2, and IFN score had good diagnostic capabilities of SLE.According to our study, SLE was associated with ISGs including NRIR, RSAD2, USP18, IFI44, and ISG15, which may contribute to the future diagnosis and new personalized targeted therapies.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Congcong Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Changhao Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Tao Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- *Correspondence: Tao Wang,
| |
Collapse
|
44
|
Ryzhova MV, Galstyan SA, Telysheva EN, Petrova EI, Kobyakov GL, Khodzhaev AI, Maryashev SA. [Multiple gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:66-75. [PMID: 36534626 DOI: 10.17116/neiro20228606166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The authors present 2 patients. One of them had typical multifocal primary multiple synchronous wild-type IDH1/2 glioblastoma subtype RTK1, chromosome 7 duplication, homozygous CDKN2A deletion and chromosome 10 deletion. In another patient, the nature of tumors remains debatable. We can talk about either a rare atypical case of metachronous multicentric various glial tumors (oligodendroglioma, IDH1-mutant and 1p/19q-codeleted, WHO grade 2 and RTK2-glioblastoma) or secondary glioblastoma after previous oligodendroglioma arose a year after radiotherapy.
Collapse
Affiliation(s)
- M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - E I Petrova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | |
Collapse
|