1
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
2
|
Hu H, Sun Y, Yang Z, Che L, Cai M, Li X, Huang X, Bagen H, Qiqige W, Guleng W, Ma L, Tong H. Zhachong Shisanwei pill drug-containing serum protects H 2O 2-Induced PC12 cells injury by suppressing apoptosis, oxidative stress via regulating the MAPK signaling pathway. Front Pharmacol 2024; 15:1445597. [PMID: 39449968 PMCID: PMC11500078 DOI: 10.3389/fphar.2024.1445597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Zhachong Shisanwei Pill (ZSP) is a classical Mongolian formula that combines 13 types of Chinese medicinal materials and has been used for treating ischemic stroke (IS) for centuries. However, the underlying molecular mechanisms have yet to be fully elucidated. The aim of this study is to explore potential mechanism of ZSP on nerve cells in cerebral ischemic injury. Methods To simulate the pathological process of oxidative stress following IS, an injury model using PC12 cells was induced with hydrogen peroxide (H2O2). Afterward, PC12 cells were treated with ZSP medicated serum at low, medium, and high doses. Various assays were conducted to assess cell viability and oxidative stress indicators, including lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Cell apoptosis was evaluated through morphological assessment and flow cytometry. Additionally, the expression levels of apoptosis-related proteins (Bcl-2, Bax, Caspase-9, Caspase-3, PARP) and signaling pathway proteins (JNK, phosphorylated JNK, ERK, phosphorylated ERK, p38, and phosphorylated p38) were measured using automated Western blotting. Results Our findings indicate that ZSP medicated serum preconditioning improves the condition of PC12 cells injured by H2O2. Specifically, it increased cell survival rates and reduced LDH release. Additionally, ZSP treatment decreased ROS levels and MDA content, while enhancing the activity of SOD and CAT in the injured PC12 cells. ZSP also reversed the depolarization of mitochondrial membrane potential and protected cells from apoptosis by modulating the expression of apoptosis-related proteins, including Bcl-2, Bax, Caspase-9, Caspase-3, and PARP. Furthermore, the overactivation of the MAPK signaling pathway due to H2O2-induced injury was inhibited, as evidenced by the downregulation of phosphorylated JNK, ERK, and p38 levels. Discussion Mongolian medicine ZSP demonstrates protective effects against H2O2-induced oxidative stress and apoptosis in PC12 cells. The underlying mechanism may involve the inhibition of the MAPK signaling pathway, enhancement of antioxidant enzyme activity, reduction of intracellular peroxidation levels, and suppression of intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Hanqiong Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Limuge Che
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, China
| | - Mingyang Cai
- Hospital of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaoxuan Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianju Huang
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, China
| | - Hurile Bagen
- Mongolian Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Wulan Qiqige
- Mongolian Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Wuyunsiri Guleng
- Psychosomatic Medicine Department, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Liqun Ma
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, China
| | - Haiying Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Wang T, Liu H, Wei X. Association between the Composite Dietary Antioxidant Index and Stroke: A cross-sectional Study. Biol Trace Elem Res 2024; 202:4335-4344. [PMID: 38153669 DOI: 10.1007/s12011-023-04011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The composite dietary antioxidant index (CDAI) is indeed a valuable nutritional tool used to evaluate the overall antioxidant capacity of an individual's daily food consumption. The CDAI was calculated from the intake of six antioxidant components in the diet, including vitamin A, vitamin C and vitamin E, carotenoids, selenium, and zinc. This study aimed to determine the association between CDAI and stroke. Utilizing data from the 2003-2018 NHANES dataset, CDAI was computed by summarizing the intake of six dietary antioxidants based on 24-hour dietary recall interviews. The relationship between CDAI and stroke was examined using multivariate logistic regression and restricted cubic spline analysis. This study ultimately included 39,432 participants, of whom 1,527 (3.87%) had a stroke. The multivariate logistic regression model 3 that fully adjusted all confounding variables showed a negative association between CDAI and stroke (OR = 0.97; 95% CI:0.95, 0.99). The highest tertile of CDAI saw a 23% drop in the prevalence of stroke compared to the lowest tertile (OR = 0.77; 95%CI: 0.64,0.92). Restricted cubic spline suggested that this negative correlation was nonlinear with an inflection point of -2.99. Subgroup analyses and interaction tests showed that this negative correlation was more applicable in patients with prediabetes (P < 0.05). There was a non-linear negative correlation between CDAI level and stroke prevalence, and this correlation was more significant in people with pre-diabetes. Appropriate CDAI levels may contribute to the management of stroke risk.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiue Wei
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Belenichev I, Bukhtiyarova N, Ryzhenko V, Makyeyeva L, Morozova O, Oksenych V, Kamyshnyi O. Methodological Approaches to Experimental Evaluation of Neuroprotective Action of Potential Drugs. Int J Mol Sci 2024; 25:10475. [PMID: 39408802 PMCID: PMC11477376 DOI: 10.3390/ijms251910475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The authors propose a novel approach to a comprehensive evaluation of neuroprotective effects using both in vitro and in vivo methods. This approach allows for the initial screening of numerous newly synthesized chemical compounds and substances from plant and animal sources while saving animal life by reducing the number of animals used in research. In vitro techniques, including mitochondrial suspensions and neuronal cell cultures, enable the assessment of neuroprotective activity, which can be challenging in intact organisms. The preliminary methods help outline the neuroprotection mechanism depending on the neurodestruction agent. The authors have validated a model of acute cerebrovascular accident, which simulates key cerebrovascular phenomena such as reduced cerebral blood flow, energy deficit, glutamate-calcium excitotoxicity, oxidative stress, and early gene expression. A significant advantage of this model is its ability to reproduce the clinical picture of cerebral ischemia: impaired motor activity; signs of neurological deficits (paresis, paralysis, etc.); as well as disturbances in attention, learning, and memory. Crucial to this approach is the selection of biochemical, molecular, and cellular markers to evaluate nerve tissue damage and characterize potential neuroprotective agents. Additionally, a comprehensive set of molecular, biochemical, histological, and immunohistochemical methods is proposed for evaluating neuroprotective effects and underlying mechanisms of potential pharmaceutical compounds.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oksana Morozova
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
5
|
Zhao S, Zhuang H, Ji W, Cheng C, Liu Y. Identification of Disulfidptosis-Related Genes in Ischemic Stroke by Combining Single-Cell Sequencing, Machine Learning Algorithms, and In Vitro Experiments. Neuromolecular Med 2024; 26:39. [PMID: 39278970 PMCID: PMC11402847 DOI: 10.1007/s12017-024-08804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Ischemic stroke (IS) is a severe neurological disorder with a pathogenesis that remains incompletely understood. Recently, a novel form of cell death known as disulfidptosis has garnered significant attention in the field of ischemic stroke research. This study aims to investigate the mechanistic roles of disulfidptosis-related genes (DRGs) in the context of IS and to examine their correlation with immunopathological features. METHODS To enhance our understanding of the mechanistic underpinnings of disulfidptosis in IS, we initially retrieved the expression profile of peripheral blood from human IS patients from the GEO database. We then utilized a suite of machine learning algorithms, including LASSO, random forest, and SVM-RFE, to identify and validate pivotal genes. Furthermore, we developed a predictive nomogram model, integrating multifactorial logistic regression analysis and calibration curves, to evaluate the risk of IS. For the analysis of single-cell sequencing data, we employed a range of analytical tools, such as "Monocle" and "CellChat," to assess the status of immune cell infiltration and to characterize intercellular communication networks. Additionally, we utilized an oxygen-glucose deprivation (OGD) model to investigate the effects of SLC7A11 overexpression on microglial polarization. RESULTS This study successfully identified key genes associated with disulfidptosis and developed a reliable nomogram model using machine learning algorithms to predict the risk of ischemic stroke. Examination of single-cell sequencing data showed a robust correlation between disulfidptosis levels and the infiltration of immune cells. Furthermore, "CellChat" analysis elucidated the intricate characteristics of intercellular communication networks. Notably, the TNF signaling pathway was found to be intimately linked with the disulfidptosis signature in ischemic stroke. In an intriguing finding, the OGD model demonstrated that SLC7A11 expression suppresses M1 polarization while promoting M2 polarization in microglia. CONCLUSION The significance of our findings lies in their potential to shed light on the pathogenesis of ischemic stroke, particularly by underscoring the pivotal role of disulfidptosis-related genes (DRGs). These insights could pave the way for novel therapeutic strategies targeting DRGs to mitigate the impact of ischemic stroke.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Hao Zhuang
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| | - Yuankun Liu
- Department of Neurosurgery, The Afliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
6
|
Huang J, Hu X, Li J, Gong D. Edaravone dexborneol promotes M2 microglia polarization against lipopolysaccharide-induced inflammation via suppressing TLR4/MyD88/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6647-6659. [PMID: 38489082 DOI: 10.1007/s00210-024-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Edaravone dexborneol (ED) is a novel neuroprotective compound that consists of two active ingredients, edaravone and ( +)-borneol in a 4:1 ratio, which has been shown the anti-inflammatory properties in animal models of ischemic stroke, cerebral hemorrhage, and autoimmune encephalomyelitis. However, the effect of ED on the polarization of microglia in neuroinflammation has not been elucidated. This study was to investigate the effects of ED on the polarization of microglia induced by lipopolysaccharide (LPS) and potential mechanisms. BV-2 microglial cells were incubated with ED (100, 200, and 400 µM) for 2 h, followed by lipopolysaccharide (LPS, 1 µg/ml) for 12 h. The researchers used the Griess method, western blot, immunocytochemistry, and subcellular fractionation to assess the effects and potential mechanisms of ED on neuroinflammatory reactions. The expression of ROS and the activities of antioxidant enzymes (SOD, GPx, and CAT) in LPS-induced BV-2 cells were also measured using the DCFH-DA fluorescent probe and colorimetric methods, respectively. It was observed that ED significantly declined the levels of TLR4/NF-κB pathway-associated proteins (TLR4, MyD88, p65, p-p65, IκBα, p-IκBα, IKKβ, p-IKKβ) and therefore inhibited LPS-induced production of NO, IL-1β, and TNF-α. Moreover, ED markedly downregulated the M1 marker (iNOS) and upregulated the M2 marker (Arginase-1, Ym-1). In addition, ED also reduced ROS generation and enhanced GPx activity. ED induced the polarization of LPS-stimulated microglia from M1 to M2 against inflammation by negatively regulating the TLR4/MyD88/NF-κB signaling pathway. Additionally, ED performed antioxidative function by depleting the intracellular excessive ROS caused by LPS through the enhancement of the enzymatic activity of GPx. ED may be a potential agent to attenuate neuroinflammation via regulating the polarization of microglia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xiaohui Hu
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Juanqin Li
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Daokai Gong
- Department of Neurology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
| |
Collapse
|
7
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
8
|
Fiadeiro MB, Diogo JC, Silva AA, Kim YS, Cristóvão AC. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. Antioxid Redox Signal 2024; 41:522-541. [PMID: 38760935 DOI: 10.1089/ars.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.
Collapse
Affiliation(s)
- Mariana B Fiadeiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - João C Diogo
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Ana A Silva
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ana C Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
9
|
Zhang HQ, Shi J, Yue T, Weng JH, Wang XL, Wang H, Su XY, Zheng XY, Luo SH, Ding Y, Wang CF. Association between composite dietary antioxidant index and stroke among individuals with diabetes. World J Diabetes 2024; 15:1742-1752. [PMID: 39192859 PMCID: PMC11346086 DOI: 10.4239/wjd.v15.i8.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Recent research has underscored the potentially protective role of dietary antioxidants against chronic conditions, such as cardiovascular diseases and stroke. The composite dietary antioxidant index (CDAI), which reflects the overall intake of key dietary antioxidants, has been identified as a crucial metric for exploring this relationship. Although previous research has shown a negative correlation between CDAI levels and stroke risk in prediabetic individuals, there remains a substantial gap in understanding this association among individuals with dia-betes, who are at an inherently greater risk for cerebrovascular events. AIM To investigate the association between CDAI and stroke risk in individuals with diabetes. METHODS Using a cross-sectional study design, this investigation analyzed data from the National Health and Nutrition Examination Survey spanning from 2003 to 2018 that included 6735 participants aged over 20 years with diabetes. The CDAI was calculated from 24-h dietary recalls to assess intake of key antioxidants: Vitamins A, C, and E; carotenoids; selenium; and zinc. Multivariate logistic regression and restricted cubic spline analysis were used to rigorously examine the relationship between CDAI and stroke risk. RESULTS The participant cohort, with an average age of 59.5 years and a slight male majority, reflected the broader demographic characteristics of individuals with diabetes. The analysis revealed a strong inverse relationship between CDAI levels and stroke risk. Remarkably, those in the highest quintile of CDAI demonstrated a 43% lower prevalence of stroke compared to those in the lowest quintile, even after adjustments for various confounders. This finding not only highlights the negative association between CDAI and stroke risk but also underscores the significant potential of antioxidant-rich diets in reducing stroke prevalence among patients with diabetes. CONCLUSION Our findings suggested that CDAI was inversely associated with stroke prevalence among patients with diabetes. These results suggest incorporating antioxidant-rich foods into dietary regimens as a potential strategy for stroke prevention.
Collapse
Affiliation(s)
- Hong-Qiang Zhang
- Department of Cardiology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jie Shi
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Tong Yue
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jia-Hao Weng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Xu-Lin Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Hao Wang
- Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Xiao-Yu Su
- Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Xue-Ying Zheng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Si-Hui Luo
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yu Ding
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Chao-Fan Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
10
|
Zhang L, Hu Z, Li Z, Lin Y. Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regen Res 2024; 19:1660-1670. [PMID: 38103229 PMCID: PMC10960298 DOI: 10.4103/1673-5374.389361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Central nervous system injuries have a high rate of resulting in disability and mortality; however, at present, effective treatments are lacking. Programmed cell death, which is a genetically determined form of active and ordered cell death with many types, has recently attracted increasing attention due to its functions in determining the fate of cell survival. A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage. In this review, we provide an overview of the role of programmed cell death in central nervous system injuries, including the pathways involved in mitophagy, pyroptosis, ferroptosis, and necroptosis, and the underlying mechanisms by which mitophagy regulates pyroptosis, ferroptosis, and necroptosis. We also discuss the new direction of therapeutic strategies targeting mitophagy for the treatment of central nervous system injuries, with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury. In conclusion, based on these properties and effects, interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
11
|
Ogunsuyi OB, Ogunruku OO, Umar HI, Oboh G. Effect of curcumin-donepezil combination on spatial memory, astrocyte activation, and cholinesterase expressions in brain of scopolamine-treated rats. Mol Biol Rep 2024; 51:864. [PMID: 39073463 DOI: 10.1007/s11033-024-09712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Department of Biomedical Technology, School of Basic Medical Sciences, The Federal University of Technology, Akure, Nigeria.
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria.
| | | | - Haruna Isiyaku Umar
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
- Molecular Biology and Bioinformatics Lab, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
12
|
Jiang Y, Liu Q, Wang C, Zhao Y, Jin C, Sun M, Ge S. The interplay between cytokines and stroke: a bi-directional Mendelian randomization study. Sci Rep 2024; 14:17657. [PMID: 39085243 PMCID: PMC11291972 DOI: 10.1038/s41598-024-67615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke, the second leading cause of death and disability, causes massive cell death in the brain followed by secondary inflammatory injury initiated by disease associated molecular patterns released from dead cells. Nonetheless, the evidence regarding the causal relationship between inflammatory cytokines and stroke subtypes is obscure. To leverage large scale genetic association data to investigate the interplay between circulating cytokines and stroke, we adopted a two-sample bi-directional Mendelian randomization (MR) analysis. Firstly, we performed a forward MR analysis to examine the associations of genetically determined 31 cytokines with 6 stroke subtypes. Secondly, we conducted a reverse MR analysis to check the associations of 6 stroke subtypes with 31 cytokines. In the forward MR analysis, genetic evidence suggests that 21 cytokines were significantly associated with certain stroke subtype risk with |β| ranging from 1.90 × 10-4 to 0.74. In the reverse MR analysis, our results found that five stroke subtypes (intracerebral hemorrhage (ICH), large artery atherosclerosis ischemic stroke (LAAS), lacunar stroke (LS), cardioembolic ischemic stroke (CEI), small-vessel ischemic stroke (SV)) caused significantly changes in 16 cytokines with |β| ranging from 1.08 × 10-4 to 0.69. In particular, those five stroke subtypes were statistically significantly associated with C-reactive protein (CRP). In addition, ICH, LAAS, LS and SV were significantly correlated with vascular endothelial growth factor (VEGF), while LAAS, LS, CEI and SV were significantly related to fibroblast growth factor (FGF). Moreover, integrated bi-directional MR analysis, these factors (IL-3Rα, IL-6R, IL-6Rα, IL-1Ra, insulin-like growth factor-1(IGF-1), IL-12Rβ2) can be used as predictors of some specific stroke subtypes. As well as, IL-16 and C-C motif chemokine receptor 7 (CCR7) can be used as prognostic factors of stroke. Our findings prognostic identify potential pharmacological opportunities, including perturbation of circulating cytokines for both predicting stroke risk and post stroke treatment effects. As we conducted a comprehensive search and analysis of stroke subtype and cytokines in the existing publicly available GWAS database, the results have good population-generalizability.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Qingying Liu
- Department of Pain Management, The First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Chunyang Wang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chen Jin
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Siqi Ge
- Department of Neuroepidemiology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
13
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
14
|
Kletkiewicz H, Wojciechowski MS, Rogalska J. Cannabidiol effectively prevents oxidative stress and stabilizes hypoxia-inducible factor-1 alpha (HIF-1α) in an animal model of global hypoxia. Sci Rep 2024; 14:15952. [PMID: 38987284 PMCID: PMC11237132 DOI: 10.1038/s41598-024-66599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
15
|
Zeng T, Liu J, Zhang W, Yu Y, Ye X, Huang Q, Li P, Jiang Q. Update on the mechanism of microglia involvement in post-stroke cognitive impairment. Front Aging Neurosci 2024; 16:1366710. [PMID: 38887610 PMCID: PMC11181926 DOI: 10.3389/fnagi.2024.1366710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a clinical syndrome characterized by cognitive deficits that manifest following a stroke and persist for up to 6 months post-event. This condition is grave, severely compromising patient quality of life and longevity, while also imposing substantial economic burdens on societies worldwide. Despite significant advancements in identifying risk factors for PSCI, research into its underlying mechanisms and therapeutic interventions remains inadequate. Microglia, the brain's primary immune effector cells, are pivotal in maintaining, nurturing, defending, and repairing neuronal function, a process intrinsically linked to PSCI's progression. Thus, investigating microglial activation and mechanisms in PSCI is crucial. This paper aims to foster new preventive and therapeutic approaches for PSCI by elucidating the roles, mechanisms, and characteristics of microglia in the condition.
Collapse
Affiliation(s)
- Tianxiang Zeng
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Jun Liu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Recovery Medicine, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Yanyan Yu
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Xinyun Ye
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Qianliang Huang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuhua Jiang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Dhapola R, Medhi B, HariKrishnaReddy D. Insight into the pathophysiological advances and molecular mechanisms underlying cerebral stroke: current status. Mol Biol Rep 2024; 51:649. [PMID: 38733445 DOI: 10.1007/s11033-024-09597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Molecular pathways involved in cerebral stroke are diverse. The major pathophysiological events that are observed in stroke comprises of excitotoxicity, oxidative stress, mitochondrial damage, endoplasmic reticulum stress, cellular acidosis, blood-brain barrier disruption, neuronal swelling and neuronal network mutilation. Various biomolecules are involved in these pathways and several major proteins are upregulated and/or suppressed following stroke. Different types of receptors, ion channels and transporters are activated. Fluctuations in levels of various ions and neurotransmitters have been observed. Cells involved in immune responses and various mediators involved in neuro-inflammation get upregulated progressing the pathogenesis of the disease. Despite of enormity of the problem, there is not a single therapy that can limit infarction and neurological disability due to stroke. This is because of poor understanding of the complex interplay between these pathophysiological processes. This review focuses upon the past to present research on pathophysiological events that are involved in stroke and various factors that are leading to neuronal death following cerebral stroke. This will pave a way to researchers for developing new potent therapeutics that can aid in the treatment of cerebral stroke.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
17
|
Helbing DL, Haas F, Cirri E, Rahnis N, Dau TTD, Kelmer Sacramento E, Oraha N, Böhm L, Lajqi T, Fehringer P, Morrison H, Bauer R. Impact of inflammatory preconditioning on murine microglial proteome response induced by focal ischemic brain injury. Front Immunol 2024; 15:1227355. [PMID: 38655254 PMCID: PMC11036884 DOI: 10.3389/fimmu.2024.1227355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Preconditioning with lipopolysaccharide (LPS) induces neuroprotection against subsequent cerebral ischemic injury, mainly involving innate immune pathways. Microglia are resident immune cells of the central nervous system (CNS) that respond early to danger signals through memory-like differential reprogramming. However, the cell-specific molecular mechanisms underlying preconditioning are not fully understood. To elucidate the distinct molecular mechanisms of preconditioning on microglia, we compared these cell-specific proteomic profiles in response to LPS preconditioning and without preconditioning and subsequent transient focal brain ischemia and reperfusion, - using an established mouse model of transient focal brain ischemia and reperfusion. A proteomic workflow, based on isolated microglia obtained from mouse brains by cell sorting and coupled to mass spectrometry for identification and quantification, was applied. Our data confirm that LPS preconditioning induces marked neuroprotection, as indicated by a significant reduction in brain infarct volume. The established brain cell separation method was suitable for obtaining an enriched microglial cell fraction for valid proteomic analysis. The results show a significant impact of LPS preconditioning on microglial proteome patterns by type I interferons, presumably driven by the interferon cluster regulator proteins signal transducer and activator of transcription1/2 (STAT1/2).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
- German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Jena, Germany
| | - Fabienne Haas
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | | | - Nova Oraha
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Leopold Böhm
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Pascal Fehringer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Bahire KL, Maļuhins R, Bello F, Upīte J, Makarovs A, Jansone B. Long-Term Region-Specific Mitochondrial Functionality Changes in Both Cerebral Hemispheres after fMCAo Model of Ischemic Stroke. Antioxidants (Basel) 2024; 13:416. [PMID: 38671864 PMCID: PMC11047464 DOI: 10.3390/antiox13040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebral ischemia/reperfusion (I/R) refers to a secondary brain injury that results in mitochondrial dysfunction of variable extent, leading to neuronal cell damage. The impact of this process has mainly been studied in the short term, from the early hours up to one week after blood flow reperfusion, and in the ischemic hemisphere only. The focus of this study was to assess the long-term impacts of I/R on mitochondrial functionality using high-resolution fluorespirometry to evaluate state-dependent activities in both ischemic (ipsilateral) and non-ischemic (contralateral) hemispheres of male mice 60, 90, 120, and 180 days after I/R caused by 60-min-long filament-induced middle cerebral artery occlusion (fMCAo). Our results indicate that in cortical tissues, succinate-supported oxygen flux (Complex I&II OXPHOS state) and H2O2 production (Complex II LEAK state) were significantly decreased in the fMCAo (stroke) group ipsilateral hemisphere compared to measurements in the contralateral hemisphere 60 and 90 days after stroke. In hippocampal tissues, during the Complex I&II ET state, mitochondrial respiration was generally lower in the ipsilateral compared to the contralateral hemisphere 90 days following stroke. An aging-dependent impact on mitochondria oxygen consumption following I/R injury was observed 180 days after surgery, wherein Complex I&II activities were lowest in both hemispheres. The obtained results highlight the importance of long-term studies in the field of ischemic stroke, particularly when evaluating mitochondrial bioenergetics in specific brain regions within and between separately affected cerebral hemispheres.
Collapse
Affiliation(s)
- Ksenija Lūcija Bahire
- Department of Pharmacology, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (R.M.); (F.B.); (J.U.); (A.M.)
| | | | | | | | | | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (R.M.); (F.B.); (J.U.); (A.M.)
| |
Collapse
|
19
|
Fang J, Lou S, Zhou X, Lou D, Zhou L, Bian R. Dihydromyricetin reverses capecitabine-induced peripheral myelin dysfunction through modulation of oxidative stress. Clin Exp Pharmacol Physiol 2024; 51:e13833. [PMID: 38302079 DOI: 10.1111/1440-1681.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 02/03/2024]
Abstract
Previous clinical reports have shown that capecitabine, an oral prodrug of 5-fluorouracil (5-Fu), can induce peripheral neuropathy, resulting in numbness, paresthesia and hypoesthesia. However, the mechanism through which capecitabine causes peripheral nerve injury remains unclear. Here, we demonstrate that systemic administration of capecitabine leads to myelin abnormalities in the peripheral nerves of mice, which are possibly attributed to the death of Schwann cells, the myelinating cells in the peripheral nervous system. Furthermore, our results show that 5-Fu induces significant oxidative stress in Schwann cells by inhibiting the expression of the anti-oxidative protein DJ-1, leading to a decrease in Schwann cell markers. We found that the anti-oxidant dihydromyricetin (DMY) reverses 5-Fu-induced Schwann cell death and oxidative stress and alleviates capecitabine-induced myelin abnormalities. Taken together, our data indicate that capecitabine induces peripheral myelin dysfunction by regulating DJ-1-mediated oxidative stress in Schwann cells and reveal DMY as a potential therapeutic strategy for capecitabine-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Jie Fang
- Emergency Department, Zhoushan Hospital, Zhoushan, China
| | - Shuyi Lou
- National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China
| | | | - Dayong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxin, China
| | - Liqin Zhou
- Zhuji People's Hospital of Zhejiang Province, Shaoxin, China
| | - Rong Bian
- Zhuji People's Hospital of Zhejiang Province, Shaoxin, China
| |
Collapse
|
20
|
Li XN, Shang NY, Kang YY, Sheng N, Lan JQ, Tang JS, Wu L, Zhang JL, Peng Y. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway. Acta Pharmacol Sin 2024; 45:248-267. [PMID: 37833536 PMCID: PMC10789749 DOI: 10.1038/s41401-023-01177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.
Collapse
Affiliation(s)
- Xin-Nan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Nian-Ying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Peng L, Ji Y, Li Y, You Y, Zhou Y. PRDX6-iPLA2 aggravates neuroinflammation after ischemic stroke via regulating astrocytes-induced M1 microglia. Cell Commun Signal 2024; 22:76. [PMID: 38287382 PMCID: PMC10823689 DOI: 10.1186/s12964-024-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The crosstalk between astrocytes and microglia plays a pivotal role in neuroinflammation following ischemic stroke, and phenotypic distribution of these cells can change with the progression of ischemic stroke. Peroxiredoxin (PRDX) 6 phospholipase A2 (iPLA2) activity is involved in the generation of reactive oxygen species(ROS), with ROS driving the activation of microglia and astrocytes; however, its exact function remains unexplored. MJ33, PRDX6D140A mutation was used to block PRDX6-iPLA2 activity in vitro and vivo after ischemic stroke. PRDX6T177A mutation was used to block the phosphorylation of PRDX6 in CTX-TNA2 cell lines. NAC, GSK2795039, Mdivi-1, U0126, and SB202190 were used to block the activity of ROS, NOX2, mitochondrial fission, ERK, and P38, respectively, in CTX-TNA2 cells. In ischemic stroke, PRDX6 is mainly expressed in astrocytes and PRDX6-iPLA2 is involved in the activation of astrocytes and microglia. In co-culture system, Asp140 mutation in PRDX6 of CTX-TNA2 inhibited the polarization of microglia, reduced the production of ROS, suppressed NOX2 activation, and inhibited the Drp1-dependent mitochondrial fission following OGD/R. These effects were further strengthened by the inhibition of ROS production. In subsequent experiments, U0126 and SB202190 inhibited the phosphorylation of PRDX6 at Thr177 and reduced PRDX6-iPLA2 activity. These results suggest that PRDX6-iPLA2 plays an important role in the astrocyte-induced generation of ROS and activation of microglia, which are regulated by the activation of Nox2 and Drp1-dependent mitochondrial fission pathways. Additionally, PRDX6-iPLA2 activity is regulated by MAPKs via the phosphorylation of PRDX6 at Thr177 in astrocytes.
Collapse
Affiliation(s)
- Li Peng
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanyan Ji
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
22
|
Kozin S, Kravtsov A, Ivashchenko L, Dotsenko V, Dzhimak S, Aksenov N, Vashurin A, Ivlev V, Baryshev M, Bespalov A, Fedulova L, Dorohova A, Anashkina A. Structure and Neuroprotector Properties of a Complex Compound of Lithium with Comenic Acid. Int J Mol Sci 2023; 25:286. [PMID: 38203457 PMCID: PMC10778946 DOI: 10.3390/ijms25010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The structure, antioxidant and neuroprotective properties of lithium comenate (lithium 5-hydroxy-4-oxo-4H-pyran-2-carboxylate) were studied. Lithium comenate was obtained by reacting comenic acid (H2Com) with lithium hydroxide in an aqueous solution. The structure of lithium comenate was confirmed via thermal analysis, mass spectrometry, IR, NMR and UV spectroscopy. The crystal structure was studied in detail via X-ray diffraction. The compound crystallized in a non-centrosymmetric space group of symmetry of the orthorhombic system Pna21 in the form of a hydrate, with three water molecules entering the first coordination sphere of the cation Li+ and one molecule forming a second environment through non-valent contacts. The gross formula of the complex compound was established [Li(HCom)(H2O)3]·H2O. It has been established that lithium comenate has a pronounced neuroprotective activity under the excitotoxic effect of glutamate, increasing the survival rate of cultured rat cerebellar neurons more than two-fold. It has also been found that the pre-stress use of lithium comenate at doses of 1 and 2 mg/kg has an antioxidant effect, which is manifested in a decrease in oxidative damage to the brain tissues of mice subjected to immobilization stress. Based on the data available in the literature, we believe that the high neuroprotective and antioxidant efficacy of lithium comenate is a consequence of the mutual potentiation of the pharmacological effects of lithium and comenic acid.
Collapse
Affiliation(s)
- Stanislav Kozin
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia; (S.K.); (A.K.); (S.D.); (A.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia;
- Laboratory of Technologies for the Production of Physiologically Active Substances, Kuban State Technological University, 350072 Krasnodar, Russia
| | - Alexandr Kravtsov
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia; (S.K.); (A.K.); (S.D.); (A.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia;
| | - Lev Ivashchenko
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (L.I.); (V.D.); (A.B.)
| | - Victor Dotsenko
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (L.I.); (V.D.); (A.B.)
- Faculty of Chemistry and Pharmacy, North Caucasus Federal University, 355017 Stavropol, Russia;
| | - Stepan Dzhimak
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia; (S.K.); (A.K.); (S.D.); (A.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia;
| | - Nicolai Aksenov
- Faculty of Chemistry and Pharmacy, North Caucasus Federal University, 355017 Stavropol, Russia;
| | - Arthur Vashurin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Vasily Ivlev
- Research and Educational Resource Center “Pharmacy”, RUDN University, 117198 Moscow, Russia;
| | - Mikhail Baryshev
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia;
| | - Alexandr Bespalov
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia; (L.I.); (V.D.); (A.B.)
| | - Lilia Fedulova
- Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin, The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia;
| | - Anna Dorohova
- Physics and Technology Faculty, Kuban State University, 350040 Krasnodar, Russia; (S.K.); (A.K.); (S.D.); (A.D.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia;
| | - Anastasia Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
23
|
Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms. Animal Model Exp Med 2023; 6:559-572. [PMID: 38013621 PMCID: PMC10757213 DOI: 10.1002/ame2.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders have become one of the most severe psychiatric disorders, and the incidence is increasing every year. They impose an extraordinary personal and socioeconomic burden. Anxiety disorders are influenced by multiple complex and interacting genetic, psychological, social, and environmental factors, which contribute to disruption or imbalance in homeostasis and eventually cause pathologic anxiety. The selection of a suitable animal model is important for the exploration of disease etiology and pathophysiology, and the development of new drugs. Therefore, a more comprehensive understanding of the advantages and limitations of existing animal models of anxiety disorders is helpful to further study the underlying pathological mechanisms of the disease. This review summarizes animal models and the pathogenesis of anxiety disorders, and discusses the current research status to provide insights for further study of anxiety disorders.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Mi Zhou
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yang Liu
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Jiaqi Jiang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yuhong Wang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| |
Collapse
|
24
|
Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S. Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 2023; 14:1606-1617. [PMID: 37196119 PMCID: PMC10529737 DOI: 10.14336/ad.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023] Open
Abstract
The worldwide population is aging exponentially, creating burdens to patients, their families and society. Increasing age is associated with higher risk of a wide range of chronic diseases, and aging of the vascular system is closely linked to the development of many age-related diseases. Endothelial glycocalyx is a layer of proteoglycan polymers on the surface of the inner lumen of blood vessels. It plays an important role in maintaining vascular homeostasis and protecting various organ functions. Endothelial glycocalyx loss happens through the aging process and repairing the endothelial glycocalyx may alleviate the symptoms of age-related diseases. Given the important role of the glycocalyx and its regenerative properties, it is posited that the endothelial glycocalyx may be a potential therapeutic target for aging and age-related diseases and repairing endothelial glycocalyx could play a role in the promotion of healthy aging and longevity. Here, we review the composition, function, shedding, and manifestation of the endothelial glycocalyx in aging and age-related diseases, as well as regeneration of endothelial glycocalyx.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China.
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaisy Xinhong Ye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Shoushi Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Collyer E, Blanco-Suarez E. Astrocytes in stroke-induced neurodegeneration: a timeline. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1240862. [PMID: 39086680 PMCID: PMC11285566 DOI: 10.3389/fmmed.2023.1240862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/02/2024]
Abstract
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
Collapse
Affiliation(s)
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Tan R, Hong R, Sui C, Yang D, Tian H, Zhu T, Yang Y. The role and potential therapeutic targets of astrocytes in central nervous system demyelinating diseases. Front Cell Neurosci 2023; 17:1233762. [PMID: 37720543 PMCID: PMC10502347 DOI: 10.3389/fncel.2023.1233762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes play vital roles in the central nervous system, contributing significantly to both its normal functioning and pathological conditions. While their involvement in various diseases is increasingly recognized, their exact role in demyelinating lesions remains uncertain. Astrocytes have the potential to influence demyelination positively or negatively. They can produce and release inflammatory molecules that modulate the activation and movement of other immune cells. Moreover, they can aid in the clearance of myelin debris through phagocytosis and facilitate the recruitment and differentiation of oligodendrocyte precursor cells, thereby promoting axonal remyelination. However, excessive or prolonged astrocyte phagocytosis can exacerbate demyelination and lead to neurological impairments. This review provides an overview of the involvement of astrocytes in various demyelinating diseases, emphasizing the underlying mechanisms that contribute to demyelination. Additionally, we discuss the interactions between oligodendrocytes, oligodendrocyte precursor cells and astrocytes as therapeutic options to support myelin regeneration. Furthermore, we explore the role of astrocytes in repairing synaptic dysfunction, which is also a crucial pathological process in these disorders.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Hong
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Sato RY, Kotake K, Zhang Y, Onishi H, Matsui F, Norimoto H, Zhou Z. Methyl vinyl ketone impairs spatial memory and activates hippocampal glial cells in mice. PLoS One 2023; 18:e0289714. [PMID: 37651419 PMCID: PMC10470879 DOI: 10.1371/journal.pone.0289714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Memory is a fundamental brain function that can be affected by a variety of external factors including environmental pollutants. One of these pollutants is methyl vinyl ketone (MVK), a hazardous substance found in cigarettes, industrial wastes, and car exhaust. Humans can be exposed to MVK under many circumstances; however, it is unclear whether MVK affects higher-order brain functions such as memory. Here, we examined the memory performances of mice receiving systemic MVK administration. We found that 1 mg/kg of MVK impaired spatial memory. We also showed that 1 mg/kg MVK activated glial cells and altered glial functions in several subregions of the hippocampus, a brain region involved in learning and memory. These results suggest that MVK induces memory deficits and activates glial cells in hippocampal subregions.
Collapse
Affiliation(s)
- Ren Y. Sato
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koki Kotake
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yumin Zhang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Onishi
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Futaba Matsui
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Betto F, Chiricosta L, Mazzon E. An In Silico Analysis Reveals Sustained Upregulation of Neuroprotective Genes in the Post-Stroke Human Brain. Brain Sci 2023; 13:986. [PMID: 37508918 PMCID: PMC10377198 DOI: 10.3390/brainsci13070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a cerebrovascular disease caused by an interruption of blood flow to the brain, thus determining a lack of oxygen and nutrient supply. The ischemic event leads to the activation of several molecular signaling pathways involved in inflammation and the production of reactive oxygen species, causing irreversible neuronal damage. Several studies have focused on the acute phase of ischemic stroke. It is not clear if this traumatic event can influence some of the molecular processes in the affected area even years after the clinical event. In our study, we performed an in silico analysis using freely available raw data with the purpose of evaluating the transcriptomic state of post-mortem brain tissue. The samples were taken from non-fatal ischemic stroke patients, meaning that they suffered an ischemic stroke and lived for a period of about 2 years after the event. These samples were compared with healthy controls. The aim was to evaluate possible recovery processes useful to mitigating neuronal damage and the detrimental consequences of stroke. Our results highlighted differentially expressed genes codifying for proteins along with long non-coding genes with anti-inflammatory and anti-oxidant functions. This suggests that even after an amount of time from the ischemic insult, different neuroprotective mechanisms are activated to ameliorate brain conditions and repair post-stroke neuronal injury.
Collapse
Affiliation(s)
- Federica Betto
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
29
|
Liu L, Ma Z, Han Q, Meng W, Ye H, Zhang T, Xia Y, Xiang Z, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Phenylboronic Ester-Bridged Chitosan/Myricetin Nanomicelle for Penetrating the Endothelial Barrier and Regulating Macrophage Polarization and Inflammation against Ischemic Diseases. ACS Biomater Sci Eng 2023. [PMID: 37327139 DOI: 10.1021/acsbiomaterials.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The brain and liver are more susceptible to ischemia and reperfusion (IR) injury (IRI), which triggers the reactive oxygen species (ROS) burst and inflammatory cascade and results in severe neuronal damage or hepatic injury. Moreover, the damaged endothelial barrier contributes to proinflammatory activity and limits the delivery of therapeutic agents such as some macromolecules and nanomedicine despite the integrity being disrupted after IRI. Herein, we constructed a phenylboronic-decorated chitosan-based nanoplatform to deliver myricetin, a multifunctional polyphenol molecule for the treatment of cerebral and hepatic ischemia. The chitosan-based nanostructures are widely studied cationic carriers for endothelium penetration such as the blood-brain barrier (BBB) and sinusoidal endothelial barrier (SEB). The phenylboronic ester was chosen as the ROS-responsive bridging segment for conjugation and selective release of myricetin molecules, which meanwhile scavenged the overexpressed ROS in the inflammatory environment. The released myricetin molecules fulfill a variety of roles including antioxidation through multiple phenolic hydroxyl groups, inhibition of the inflammatory cascade by regulation of the macrophage polarization from M1 to M2, and endothelial injury repairment. Taken together, our present study provides valuable insight into the development of efficient antioxidant and anti-inflammatory platforms for potential application against ischemic disease.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| |
Collapse
|
30
|
Khan A, Park JS, Kang MH, Lee HJ, Ali J, Tahir M, Choe K, Kim MO. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants (Basel) 2023; 12:1284. [PMID: 37372012 DOI: 10.3390/antiox12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress plays an important role in cognitive dysfunctions and is seen in neurodegeneration and Alzheimer's disease (AD). It has been reported that the polyphenolic compound caffeic acid possesses strong neuroprotective and antioxidant effects. The current study was conducted to investigate the therapeutic potential of caffeic acid against amyloid beta (Aβ1-42)-induced oxidative stress and memory impairments. Aβ1-42 (5 μL/5 min/mouse) was administered intracerebroventricularly (ICV) into wild-type adult mice to induce AD-like pathological changes. Caffeic acid was administered orally at 50 mg/kg/day for two weeks to AD mice. Y-maze and Morris water maze (MWM) behavior tests were conducted to assess memory and cognitive abilities. Western blot and immunofluorescence analyses were used for the biochemical analyses. The behavioral results indicated that caffeic acid administration improved spatial learning, memory, and cognitive abilities in AD mice. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed and showed that the levels of ROS and LPO were markedly reduced in the caffeic acid-treated mice, as compared to Aβ-induced AD mice brains. Moreover, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were regulated with the administration of caffeic acid, compared to the Aβ-injected mice. Next, we checked the expression of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic proteins (GFAP), and other inflammatory markers in the experimental mice, which suggested enhanced expression of these markers in AD mice brains, and were reduced with caffeic acid treatment. Furthermore, caffeic acid enhanced synaptic markers in the AD mice model. Additionally, caffeic acid treatment also decreased Aβ and BACE-1 expression in the Aβ-induced AD mice model.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
31
|
Jiang W, Long X, Li Z, Hu M, Zhang Y, Lin H, Tang W, Ouyang Y, Jiang L, Chen J, He P, Ouyang X. The Role of Circular RNAs in Ischemic Stroke. Neurochem Res 2023:10.1007/s11064-023-03935-7. [PMID: 37126193 DOI: 10.1007/s11064-023-03935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
Ischemic stroke (IS), a devastating condition characterized by intracranial artery stenosis and middle cerebral artery occlusion leading to insufficient oxygen supply to the brain, is a major cause of death and physical disability worldwide. Recent research has demonstrated the critical role of circular RNAs (circRNAs), a class of covalently enclosed noncoding RNAs that are widespread in eukaryotic cells, in regulating various physiological and pathophysiological cellular processes, including cell apoptosis, autophagy, synaptic plasticity, and neuroinflammation. In the past few years, circRNAs have attracted extensive attention in the field of IS research. This review summarizes the current understanding of the mechanisms underlying the involvement of circRNAs in IS development. A better understanding of circRNA-mediated pathogenic mechanisms in IS may pave the way for translating circRNA research into clinical practice, ultimately improving the clinical outcomes of IS patients.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiongquan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
| | - Zhicheng Li
- Collage of Pharmacy, University of South China, Hengyang, Hunan, China
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Huiling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Wanying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinzhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Pingping He
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Xinping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China.
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, 410081, Hunan Province, China.
| |
Collapse
|
32
|
Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, Nie J, Zhong N, Zhu G, Liu J, Liu Z. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neurosci Ther 2023; 29:1094-1108. [PMID: 36627822 PMCID: PMC10018110 DOI: 10.1111/cns.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A growing body of research shows that drug monomers from traditional Chinese herbal medicines have antineuroinflammatory and neuroprotective effects that can significantly improve the recovery of motor function after spinal cord injury (SCI). Here, we explore the role and molecular mechanisms of Alpinetin on activating microglia-mediated neuroinflammation and neuronal apoptosis after SCI. METHODS Stimulation of microglia with lipopolysaccharide (LPS) to simulate neuroinflammation models in vitro, the effect of Alpinetin on the release of pro-inflammatory mediators in LPS-induced microglia and its mechanism were detected. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of Alpinetin on activating microglia-mediated neuronal apoptosis. Finally, rat spinal cord injury models were used to study the effects on inflammation, neuronal apoptosis, axonal regeneration, and motor function recovery in Alpinetin. RESULTS Alpinetin inhibits microglia-mediated neuroinflammation and activity of the JAK2/STAT3 pathway. Alpinetin can also reverse activated microglia-mediated reactive oxygen species (ROS) production and decrease of mitochondrial membrane potential (MMP) in PC12 neuronal cells. In addition, in vivo Alpinetin significantly inhibits the inflammatory response and neuronal apoptosis, improves axonal regeneration, and recovery of motor function. CONCLUSION Alpinetin can be used to treat neurodegenerative diseases and is a novel drug candidate for the treatment of microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zihao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anan Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangbo Nie
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nanshan Zhong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoqing Zhu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaming Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Tumangelova-Yuzeir K, Minkin K, Angelov I, Ivanova-Todorova E, Kurteva E, Vasilev G, Arabadjiev J, Karazapryanov P, Gabrovski K, Zaharieva L, Genova T, Kyurkchiev D. Alteration of Mesenchymal Stem Cells Isolated from Glioblastoma Multiforme under the Influence of Photodynamic Treatment. Curr Issues Mol Biol 2023; 45:2580-2596. [PMID: 36975539 PMCID: PMC10047864 DOI: 10.3390/cimb45030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The central hypothesis for the development of glioblastoma multiforme (GBM) postulates that the tumor begins its development by transforming neural stem cells into cancer stem cells (CSC). Recently, it has become clear that another kind of stem cell, the mesenchymal stem cell (MSC), plays a role in the tumor stroma. Mesenchymal stem cells, along with their typical markers, can express neural markers and are capable of neural transdifferentiation. From this perspective, it is hypothesized that MSCs can give rise to CSC. In addition, MSCs suppress the immune cells through direct contact and secretory factors. Photodynamic therapy aims to selectively accumulate a photosensitizer in neoplastic cells, forming reactive oxygen species (ROS) upon irradiation, initiating death pathways. In our experiments, MSCs from 15 glioblastomas (GB-MSC) were isolated and cultured. The cells were treated with 5-ALA and irradiated. Flow cytometry and ELISA were used to detect the marker expression and soluble-factor secretion. The MSCs' neural markers, Nestin, Sox2, and glial fibrillary acid protein (GFAP), were down-regulated, but the expression levels of the mesenchymal markers CD73, CD90, and CD105 were retained. The GB-MSCs also reduced their expression of PD-L1 and increased their secretion of PGE2. Our results give us grounds to speculate that the photodynamic impact on GB-MSCs reduces their capacity for neural transdifferentiation.
Collapse
Affiliation(s)
- Kalina Tumangelova-Yuzeir
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Krassimir Minkin
- Clinic of Neurosurgery, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ekaterina Kurteva
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Georgi Vasilev
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | | - Petar Karazapryanov
- Clinic of Neurosurgery, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Kaloyan Gabrovski
- Clinic of Neurosurgery, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Lidia Zaharieva
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Tsanislava Genova
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital “St. Ivan Rilski”, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
34
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
35
|
Chen T, Hu Y, Lu L, Zhao Q, Tao X, Ding B, Chen S, Zhu J, Guo X, Lin Z. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol 2023; 14:1134464. [PMID: 36969871 PMCID: PMC10031108 DOI: 10.3389/fphar.2023.1134464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Hypoxic-ischemic encephalopathy (HIE) is a crucial cause of neonatal death and neurological sequelae, but currently there is no effective therapy drug for HIE. Both oxidative stress and apoptosis play critical roles in the pathological development of HIE. Myricetin, a naturally extracted flavonol compound, exerts remarkable effects against oxidative stress, apoptosis, and inflammation. However, the role and underlying molecular mechanism of myricetin on HIE remain unclear. Methods: In this study, we established the neonatal rats hypoxic-ischemic (HI) brain damage model in vivo and CoCl2 induced PC12 cell model in vitro to explore the neuroprotective effects of myricetin on HI injury, and illuminate the potential mechanism. Results: Our results showed that myricetin intervention could significantly reduce brain infarction volume, glia activation, apoptosis, and oxidative stress marker levels through activating NRF2 (Nuclear factor-E2-related factor 2) and increase the expressions of NRF2 downstream proteins NQO-1 and HO-1. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of myricetin. Conclusion: This study found that myricetin might alleviate oxidative stress and apoptosis through NRF2 signaling pathway to exert the protective role for HI injury, which suggested that myricetin might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Xiaoling Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| |
Collapse
|
36
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
37
|
Genetic Ablation of Nrf2 Exacerbates Neuroinflammation in Ocular Autoimmunity. Int J Mol Sci 2022; 23:ijms231911715. [PMID: 36233013 PMCID: PMC9569802 DOI: 10.3390/ijms231911715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) is an animal model of non-infectious uveitis and is developed by immunization with retinal antigen, interphotoreceptor retinoid-binding protein (IRBP). Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2) is responsible for regulating antioxidant and inflammatory responses. In this study, we investigated the role of Nrf2 on the development of EAU. Clinical and pathological examination demonstrated that retinal inflammation was exacerbated in Nrf2 knockout (Nrf2 KO) mice compared to wild type (WT) mice, and the expression of inflammatory cytokines (IFN-γ, IL-6, and IL-17) in the retina was significantly elevated in Nrf2 KO mice. GFAP positive cells (astrocytes) and Iba-1 positive cells (microglia cells) in the retina were more numerous in Nrf2 KO mice compared to WT mice. Furthermore, we examined the suppressive effect of the Nrf2 activator CDDO-Im (2-cyano-3,12 dioxooleana-1,9 dien-28-oyl imidazoline) on the development of EAU. The treatment with CDDO-Im significantly reduced the clinical and pathological score of EAU compared to those of vehicle-treated mice. These findings suggest that Nrf2 plays a regulatory role in the pathogenesis of autoimmune uveoretinitis and the activation of the Nrf2 system may have therapeutic potential for protecting vision from autoimmune neuroinflammation.
Collapse
|
38
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
39
|
Ding Z, Jiang N, Yang T, Han H, Hou M, Kumar G, Wu Y, Song L, Li X, Ma C, Su Y. Mapping the research trends of astrocytes in stroke: A bibliometric analysis. Front Cell Neurosci 2022; 16:949521. [PMID: 36159395 PMCID: PMC9492963 DOI: 10.3389/fncel.2022.949521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Stroke, including ischemic stroke and hemorrhagic stroke, possesses complex pathological mechanisms such as neuroinflammation, oxidative stress and blood-brain barrier damage. Astrocyte functions have been reported during injury, neuroprotection and cell crosstalk. It plays a key role in exacerbating stroke injury, promoting neurological repair and enhancing neuroregeneration. Aim This holistic bibliometric analysis aimed to provide a general overview of the recent advancement and the hotspots in the field of stroke and astrocyte from 2001 to 2021. Materials and methods Publications between 2001 and 2021, related to stroke and astrocyte were retrieved from the Web of Science (WOS) and analyzed in Gephi and VOSviewer. Results In total, 3789 documents were extracted from the WOS databases. The publications showed stable growth since 2001. The United States and China were the most prolific countries and University of California San Francisco and Oakland University were the most influential institutes. The top four most productive journals were Brain Research, Journal of Cerebral Blood Flow and Metabolism, Glia and Journal of Neuroinflammation. Keywords frequency and co-occurrence analysis revealed that the topics related to “micro-RNA”, “toll like receptor”, “neuroinflammation”, “autophagy” and “interleukin” were research frontiers. The field of stroke and astrocyte focused on several aspects, such as the role of astrocytes in the treatment of stroke, metabolic changes in astrocytes, the protective role of apoptosis in astrocytes after oxidative stress injury and neurovascular units. Conclusion This comprehensive bibliometric study provides an updated perspective on the trend of research associated with stroke and astrocyte. It will benefit scientific community to identify the important issues, future directions and provide a novel understanding of stroke pathophysiology, hotspots and frontiers to facilitate future research direction.
Collapse
Affiliation(s)
- Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yige Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- *Correspondence: Cungen Ma,
| | - Yanbing Su
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Yanbing Su,
| |
Collapse
|