1
|
Wojas-Krawczyk K, Krawczyk P, Błach J, Kucharczyk T, Grenda A, Krzyżanowska N, Szklener K, Horaczyńska-Wojtaś A, Wójcik-Superczyńska M, Chmielewska I, Milanowski J. Immunological insights: assessing immune parameters in medical professionals exposed to SARS-CoV-2. BMC Infect Dis 2024; 24:865. [PMID: 39187767 PMCID: PMC11348584 DOI: 10.1186/s12879-024-09772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The immunological background responsible for the severe course of COVID-19 and the immune factors that protect against SARS-CoV-2 infection are still unclear. The aim of this study was to investigate immune system status in persons with high exposure to SARS-CoV-2 infection. METHODS Seventy-one persons employed in the observation and infectious diseases unit were qualified for the study between November 2020 and October 2021. Symptomatic COVID-19 was diagnosed in 35 persons. Anti-SARS-CoV-2 antibodies were also found in 8 persons. Peripheral blood mononuclear cells subpopulations were analyzed by flow cytometry, and the concentrations of cytokines and anti-SARS-CoV-2 antibodies were determined by ELISA. RESULTS The percentages of cytotoxic T lymphocytes (CTLs), CD28+ and T helper (Th) cells with invariant T-cell receptors were significantly higher in persons with symptomatic COVID-19 than in those who did not develop COVID-19' symptoms. Conversely, symptomatic COVID-19 persons had significantly lower percentages of: a) CTLs in the late stage of activation (CD8+/CD95+), b) NK cells, c) regulatory-like Th cells (CD4+/CTLA-4+), and d) Th17-like cells (CD4+/CD161+) compared to asymptomatic COVID-19' persons. Additionally, persons with anti-SARS-CoV-2 antibodies had a significantly higher lymphocyte count and IL-6 concentration than persons without these antibodies. CONCLUSION Numerous lymphocyte populations are permanently altered by SARS-CoV-2 infection. High percentages of both populations: NK cells-as a part of the non-specific response, and T helper cells' as those regulating the immune response, could protect against the acute COVID-19 symptoms development. Understanding the immune background of COVID-19 may improve the prevention of this disease by identifying people at risk of a severe course of infection. TRIAL REGISTRATION This is a retrospective observational study without a trial registration number.
Collapse
Affiliation(s)
- Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
- Department of Clinical Immunology Medical University of Lublin, Lublin, Poland
| | - Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy Medical University of Lublin, Lublin, Poland
| | - Anna Horaczyńska-Wojtaś
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, University Children's Hospital, Lublin, Poland
| | - Magdalena Wójcik-Superczyńska
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology Medical University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| |
Collapse
|
2
|
Wang CM, Jan Wu YJ, Huang LY, Zheng JW, Chen JY. Comprehensive Co-Inhibitory Receptor (Co-IR) Expression on T Cells and Soluble Proteins in Rheumatoid Arthritis. Cells 2024; 13:403. [PMID: 38474367 DOI: 10.3390/cells13050403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Co-inhibitory receptors (Co-IRs) are essential in controlling the progression of immunopathology in rheumatoid arthritis (RA) by limiting T cell activation. The objective of this investigation was to determine the phenotypic expression of Co-IR T cells and to assess the levels of serum soluble PD-1, PDL-2, and TIM3 in Taiwanese RA patients. METHODS Co-IRs T cells were immunophenotyped employing multicolor flow cytometry, and ELISA was utilized for measuring soluble PD-1, PDL-2, and TIM3. Correlations have been detected across the percentage of T cells expressing Co-IRs (MFI) and different indicators in the blood, including ESR, high-sensitivity CRP (hsCRP), 28 joint disease activity scores (DAS28), and soluble PD-1/PDL-2/TIM3. RESULTS In RA patients, we recognized elevated levels of PD-1 (CD279), CTLA-4, and TIGIT in CD4+ T cells; TIGIT, HLA-DR, TIM3, and LAG3 in CD8+ T cells; and CD8+CD279+TIM3+, CD8+HLA-DR+CD38+ T cells. The following tests were revealed to be correlated with hsCRP: CD4/CD279 MFI, CD4/CD279%, CD4/TIM3%, CD8/TIM3%, CD8/TIM3 MFI, CD8/LAG3%, and CD8+HLA-DR+CD38+%. CD8/LAG3 and CD8/TIM3 MFIs are linked to ESR. DAS28-ESR and DAS28-CRP exhibited relationships with CD4/CD127 MFI, CD8/CD279%, and CD8/CD127 MFI, respectively. CD4+CD279+TIM3+% was correlated with DAS28-ESR (p = 0.0084, N = 46), DAS28-CRP (p = 0.007, N = 47), and hsCRP (p = 0.002, N = 56), respectively. In the serum of patients with RA, levels of soluble PD-1, PDL-2, and Tim3 were extremely elevated. CD4+ TIM3+% (p = 0.0089, N = 46) and CD8+ TIM3+% (p = 0.0305, N = 46) were correlated with sTIM3 levels; sPD1 levels were correlated with CD4+CD279+% (p < 0.0001, N = 31) and CD3+CD279+% (p = 0.0084, N = 30). CONCLUSIONS Co-IR expressions on CD4+ and CD8+ T cells, as well as soluble PD-1, PDL-2, and TIM3 levels, could function as indicators of disease activity and potentially play crucial roles in the pathogenesis of RA.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yeong-Jian Jan Wu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| | - Li-Yu Huang
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| | - Jian-Wen Zheng
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| | - Ji-Yih Chen
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
3
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
4
|
T Cells Immunophenotyping and CD38 Overexpression as Hallmarks of the Severity of COVID-19 and Predictors of Patients' Outcomes. J Clin Med 2023; 12:jcm12020710. [PMID: 36675642 PMCID: PMC9861629 DOI: 10.3390/jcm12020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND By the end of 2019, the COVID-19 pandemic spread all around the world with a wide spectrum of clinical presentations ranging from mild to moderate to severe or critical cases. T cell subtype dysregulation is mostly involved in the immunopathogenic mechanism. The present study aimed to highlight the role of monitoring T cell subtypes and their activation (expression of CD38) in COVID-19 patients compared to healthy subjects and their role in predicting severity and patients' outcomes. MATERIALS The study involved 70 adult COVID-19 confirmed cases stratified into three groups: a mild/asymptomatic group, a clinically moderate group, and a clinically severe/critical group. Flow cytometry analysis was used for the assessment of CD3+ cells for total T cell count, CD4+ cells for helper T cells (Th), CD8+ cells for cytotoxic T cells (Tc), CD4+CD25+ cells for regulatory T cells (T reg), and CD38 expression in CD4+ T cells and CD8+ T cells for T cell activation. RESULTS A statistically significant difference was found between COVID-19 cases and healthy controls as regards low counts of all the targeted T cell subtypes, with the lowest counts detected among patients of the severe/critical group. Furthermore, CD38 overexpression was observed in both CD4+ and CD8+ T cells. CONCLUSION Decreased T cell count, specifically CD8+ T cell (Tc), with T cell overactivation which was indicated by CD38 overexpression on CD4+ and CD8+ T cells had a substantial prognostic role in predicting severity and mortality among COVID-19 patients. These findings can provide a preliminary tool for clinicians to identify high-risk patients requiring vigilant monitoring, customized supportive therapy, or ICU admission. Studies on larger patient groups are needed.
Collapse
|
5
|
Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms 2022; 10:2452. [PMID: 36557705 PMCID: PMC9784975 DOI: 10.3390/microorganisms10122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Long coronavirus disease-19 (COVID-19) is a newly discovered syndrome characterized by multiple organ manifestations that persist for weeks to months, following the recovery from acute disease. Occasionally, neurological and cardiovascular side effects mimicking long COVID-19 have been reported in recipients of COVID-19 vaccines. Hypothetically, the clinical similarity could be due to a shared pathogenic role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike (S) protein produced by the virus or used for immunization. The S protein can bind to neuropilin (NRP)-1, which normally functions as a coreceptor for the vascular endothelial growth factor (VEGF)-A. By antagonizing the docking of VEGF-A to NRP-1, the S protein could disrupt physiological pathways involved in angiogenesis and nociception. One consequence could be the increase in unbound forms of VEGF-A that could bind to other receptors. SARS-CoV-2-infected individuals may exhibit increased plasma levels of VEGF-A during both acute illness and convalescence, which could be responsible for diffuse microvascular and neurological damage. A few studies suggest that serum VEGF-A may also be a potential biomarker for long COVID-19, whereas evidence for COVID-19 vaccines is lacking and merits further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|