1
|
Park JH, Lee YB, Lee SH, Ko E, Imm JY. Combination of Milk Polar Lipids and Casein Hydrolysate as a Healthy Emulsifier for Ice Cream. Food Sci Anim Resour 2024; 44:1389-1402. [PMID: 39554821 PMCID: PMC11564146 DOI: 10.5851/kosfa.2024.e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
The demand for healthy ingredients in food products including ice cream, is continuously increasing. The potential of a combination of milk polar lipids (MPL) and casein hydrolysate (CH) to replace synthetic emulsifiers such as diacetyl tartaric acid esters of monoglycerides (DATEM), in ice cream production was investigated. Changes in particle size, emulsion stability, and interfacial tension of model emulsions (milk protein, casein:whey=8:2, w/v) were analyzed after the addition of MPL, CH, and their combination (MPL+CH). The use of MPL+CH reduced interfacial tension and increased αs- and β-casein displacement from the surface of cream layers compared to the addition of MPL alone. The addition of MPL+CH improved ice cream overrun to levels comparable to those of control ice cream containing DATEM (0.3%, w/v), without adversely affecting melt rate or microstructure. Confocal laser scanning microscopy revealed that ice cream prepared with MPL+CH formed a thick protein and coalesced fat layer on the surface of air cells that might help enhance overrun. These findings suggest that the combination of MPL (0.3%, w/v) and CH (0.03%, w/v) can be used as a potential emulsifier alternative to replace chemically synthesized emulsifiers such as DATEM.
Collapse
Affiliation(s)
- Ji-Hwa Park
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Yu Bin Lee
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Sung Ho Lee
- Research Institute of Food and
Biotechnology, SPC Group, Seoul 08826, Korea
| | - Eunkyung Ko
- Research and Development Team,
Baskinrobbins Korea, SPC Group, Seoul 06737, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
2
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Pitkänen M, Matilainen O. Milk Fat Globule Membrane-Containing Protein Powder Promotes Fitness in Caenorhabditis elegans. Nutrients 2024; 16:2290. [PMID: 39064733 PMCID: PMC11280102 DOI: 10.3390/nu16142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Milk-derived peptides and milk fat globule membrane (MFGM) have gained interest as health-promoting food ingredients. However, the mechanisms by which these nutraceuticals modulate the function of biological systems often remain unclear. We utilized Caenorhabditis elegans to elucidate how MFGM-containing protein powder (MProPow), previously used in a clinical trial, affect the physiology of this model organism. Our results demonstrate that MProPow does not affect lifespan but promotes the fitness of the animals. Surprisingly, gene expression analysis revealed that MProPow decreases the expression of genes functioning on innate immunity, which also translates into reduced survival on pathogenic bacteria. One of the innate immunity-associated genes showing reduced expression upon MProPow supplementation is cpr-3, the homolog of human cathepsin B. Interestingly, knockdown of cpr-3 enhances fitness, but not in MProPow-treated animals, suggesting that MProPow contributes to fitness by downregulating the expression of this gene. In summary, this research highlights the value of C. elegans in testing the biological activity of food supplements and nutraceuticals. Furthermore, this study should encourage investigations into whether milk-derived peptides and MFGM mediate their beneficial effects through the modulation of cathepsin B expression in humans.
Collapse
Affiliation(s)
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|
4
|
Wang Y, Gong Y, Farid MS, Zhao C. Milk: A Natural Guardian for the Gut Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8285-8303. [PMID: 38588092 DOI: 10.1021/acs.jafc.3c06861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, β-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.
Collapse
Affiliation(s)
- Yanli Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | | | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Li D, Wan X, Yun Y, Li Y, Duan W. Genes Selectively Expressed in Rat Organs. Curr Genomics 2024; 25:261-297. [PMID: 39156728 PMCID: PMC11327808 DOI: 10.2174/0113892029273121240401060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 08/20/2024] Open
Abstract
Background Understanding organic functions at a molecular level is important for scientists to unveil the disease mechanism and to develop diagnostic or therapeutic methods. Aims The present study tried to find genes selectively expressed in 11 rat organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach. Materials and Methods Three normal male Sprague-Dawley (SD) rats were anesthetized, their organs mentioned above were harvested, and RNA in the fresh organs was extracted. Purified RNA was reversely transcribed and sequenced using the Solexa high-throughput sequencing technique. The abundance of a gene was measured by the expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM). Genes in organs with the highest expression level were sought out and compared with their median value in organs. If a gene in the highest expressed organ was significantly different (p < 0.05) from that in the medianly expressed organ, accompanied by q value < 0.05, and accounted for more than 70% of the total abundance, the gene was assumed as the selective gene in the organ. Results & Discussion The Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) pathways were enriched by the highest expressed genes. Based on the criterion, 1,406 selective genes were screened out, 1,283 of which were described in the gene bank and 123 of which were waiting to be described. KEGG and GO pathways in the organs were partly confirmed by the known understandings and a good portion of the pathways needed further investigation. Conclusion The novel selective genes and organic functional pathways are useful for scientists to unveil the mechanisms of the organs at the molecular level, and the selective genes' products are candidate disease markers for organs.
Collapse
Affiliation(s)
- Dan Li
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulian Wan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yu Yun
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yongkun Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
6
|
Kosmerl E, Miller C, Jiménez-Flores R. Preventative Effects of Milk Fat Globule Membrane Ingredients on DSS-Induced Mucosal Injury in Intestinal Epithelial Cells. Nutrients 2024; 16:954. [PMID: 38612988 PMCID: PMC11013169 DOI: 10.3390/nu16070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
The goblet cells of the gastrointestinal tract (GIT) produce glycoproteins called mucins that form a protective barrier from digestive contents and external stimuli. Recent evidence suggests that the milk fat globule membrane (MFGM) and its milk phospholipid component (MPL) can benefit the GIT through improving barrier function. Our objective was to compare the effects of two digested MFGM ingredients with or without dextran sodium sulfate (DSS)-induced barrier stress on mucin proteins. Co-cultured Caco-2/HT29-MTX intestinal cells were treated with in vitro digests of 2%, 5%, and 10% (w/v) MFGM or MPL alone for 6 h or followed by challenge with 2.5% DSS (6 h). Transepithelial electrical resistance and fluorescein isothiocyanate (FITC)-dextran (FD4) permeability measurements were used to measure changes in barrier integrity. Mucin characterization was performed using a combination of slot blotting techniques for secreted (MUC5AC, MUC2) and transmembrane (MUC3A, MUC1) mucins, scanning electron microscopy (SEM), and periodic acid Schiff (PAS)/Alcian blue staining. Digested MFGM and MPL prevented a DSS-induced reduction in secreted mucins, which corresponded to the prevention of DSS-induced increases in FD4 permeability. SEM and PAS/Alcian blue staining showed similar visual trends for secreted mucin production. A predictive bioinformatic approach was also used to identify potential KEGG pathways involved in MFGM-mediated mucosal maintenance under colitis conditions. This preliminary in silico evidence, combined with our in vitro findings, suggests the role of MFGM in inducing repair and maintenance of the mucosal barrier.
Collapse
Affiliation(s)
| | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (C.M.)
| |
Collapse
|
7
|
Nie C, Zhao Y, Wang X, Li Y, Fang B, Wang R, Wang X, Liao H, Li G, Wang P, Liu R. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024; 16:587. [PMID: 38474716 DOI: 10.3390/nu16050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.
Collapse
Affiliation(s)
- Chao Nie
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Yunyi Zhao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Haiping Liao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Gengsheng Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
9
|
Kim MJ, Jung DR, Lee JM, Kim I, Son H, Kim ES, Shin JH. Microbial dysbiosis index for assessing colitis status in mouse models: A systematic review and meta-analysis. iScience 2024; 27:108657. [PMID: 38205250 PMCID: PMC10777064 DOI: 10.1016/j.isci.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Although countless gut microbiome studies on colitis using mouse models have been carried out, experiments with small sample sizes have encountered reproducibility limitations because of batch effects and statistical errors. In this study, dextran-sodium-sulfate-induced microbial dysbiosis index (DiMDI) was introduced as a reliable dysbiosis index that can be used to assess the state of microbial dysbiosis in DSS-induced mouse models. Meta-analysis of 189 datasets from 11 independent studies was performed to construct the DiMDI. Microbial dysbiosis biomarkers, Muribaculaceae, Alistipes, Turicibacter, and Bacteroides, were selected through four different feature selection methods and used to construct the DiMDI. This index demonstrated a high accuracy of 82.3% and showed strong robustness (88.9%) in the independent cohort. Therefore, DiMDI may be used as a standard for assessing microbial imbalance in DSS-induced mouse models and may contribute to the development of reliable colitis microbiome studies in mouse experiments.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ikwhan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Tie Y, Huang Y, Chen R, Li L, Chen M, Zhang S. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets. Gut Microbes 2023; 15:2265028. [PMID: 37822139 PMCID: PMC10572083 DOI: 10.1080/19490976.2023.2265028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease of the gastrointestinal tract. In addition to digestive symptoms, patients with IBD may also develop extra-intestinal manifestations (EIMs), the etiology of which remains undefined. The gut microbiota has been reported to exert a critical role in the pathogenesis of IBD, with a similar pattern of gut dysbiosis observed between patients with IBD and those with EIMs. Therefore, it is hypothesized that the gut microbiota is also involved in the pathogenesis of EIMs. The potential mechanisms are presented in this review, including: 1) impaired gut barrier: dysbiosis induces pore formation in the intestinal epithelium, and activates pattern recognition receptors to promote local inflammation; 2) microbial translocation: intestinal pathogens, antigens, and toxins translocate via the impaired gut barrier into extra-intestinal sites; 3) molecular mimicry: certain microbial antigens share similar epitopes with self-antigens, inducing inflammatory responses targeting extra-intestinal tissues; 4) microbiota-related metabolites: dysbiosis results in the dysregulation of microbiota-related metabolites, which could modulate the differentiation of lymphocytes and cytokine production; 5) immunocytes and cytokines: immunocytes are over-activated and pro-inflammatory cytokines are excessively released. Additionally, we summarize microbiota-related therapies, including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation, to promote better clinical management of IBD-associated EIMs.
Collapse
Affiliation(s)
- Yizhe Tie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongle Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
da Paz Martins AS, de Andrade KQ, de Araújo ORP, da Conceição GCM, da Silva Gomes A, Goulart MOF, Moura FA. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8811463. [PMID: 37577725 PMCID: PMC10423092 DOI: 10.1155/2023/8811463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) characterized by continuous inflammation in the colonic mucosa. Extraintestinal manifestations (EIM) occur due to the disruption of the intestinal barrier and increased permeability caused by redox imbalance, dysbiosis, and inflammation originating from the intestine and contribute to morbidity and mortality. The aim of this study is to investigate the effects of oral N-acetylcysteine (NAC) on colonic, hepatic, and renal tissues in mice with colitis induced by dextran sulfate sodium (DSS). Male Swiss mice received NAC (150 mg/kg/day) in the drinking water for 30 days before and during (DSS 5% v/v; for 7 days) colitis induction. On the 38th day, colon, liver, and kidney were collected and adequately prepared for the analysis of oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione reduced (GSH), glutathione oxidized (GSSG), malondialdehyde (MDA), and hydrogen peroxide (H2O2)) and inflammatory biomarkers (myeloperoxidase (MPO) -, tumor necrosis factor alpha - (TNF-α, and interleukin-10 (IL-10)). In colon, NAC protected the histological architecture. However, NAC did not level up SOD, in contrast, it increased MDA and pro-inflammatory effect (increased of TNF-α and decreased of IL-10). In liver, colitis caused both oxidative (MDA, SOD, and GSH) and inflammatory damage (IL-10). NAC was able only to increase GSH and GSH/GSSG ratio. Kidney was not affected by colitis; however, NAC despite increasing CAT, GSH, and GSH/GSSG ratio promoted lipid peroxidation (increased MDA) and pro-inflammatory action (decreased IL-10). Despite some beneficial antioxidant effects of NAC, the negative outcomes concerning irreversible oxidative and inflammatory damage in the colon, liver, and kidney confirm the nonsafety of the prophylactic use of this antioxidant in models of induced colitis, suggesting that additional studies are needed, and its use in humans not yet recommended for the therapeutic routine of this disease.
Collapse
Affiliation(s)
- Amylly Sanuelly da Paz Martins
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | | | | | | | - Amanda da Silva Gomes
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Fabiana Andréa Moura
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- College of Medicine, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| |
Collapse
|
12
|
Liu L, Sui W, Yang Y, Liu L, Li Q, Guo A. Establishment of an Enteric Inflammation Model in Broiler Chickens by Oral Administration with Dextran Sulfate Sodium. Animals (Basel) 2022; 12:ani12243552. [PMID: 36552471 PMCID: PMC9774581 DOI: 10.3390/ani12243552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the effectiveness of oral gavage of dextran sodium sulfate (DSS) to establish an enteric inflammation model in broilers. Forty 1-day-old male, yellow-feathered broilers were randomly divided into 2 groups with 5 replicates of 4 birds each for a 42-day trial. The experiment design used 2 groups: (1) the control group (CT), normal broilers fed a basal diet, and (2) the DSS group, DSS-treated broilers fed a basal diet. The DSS group received 1 mL of 2.5% DSS solution once a day by oral gavage from 21 to 29 days of age. The results showed that compared with those in CT, DSS treatment significantly increased histological scores for enteritis and mucosal damage at 29 and 42 days of age (p < 0.01) and the disease activity index (DAI) from 23 to 29 days of age (p < 0.01). DSS-treated broilers showed poor growth performance at 42 days of age, including decreased body weight and average daily gain and an increased feed conversion ratio (p < 0.01). DSS also caused gross lesions and histopathological damage in the jejunum of broilers, such as obvious hemorrhagic spots, loss of villus architecture, epithelial cell disruption, inflammatory cell infiltration, and decreased villus height. These results suggest that oral gavage of DSS is an effective method for inducing mild and non-necrotic enteric inflammation in broilers.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Wenjing Sui
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Lily Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Kunming Xianghao Technology Co., Ltd., Kunming 650204, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Correspondence:
| |
Collapse
|
13
|
Cavaletto M, Givonetti A, Cattaneo C. The Immunological Role of Milk Fat Globule Membrane. Nutrients 2022; 14:nu14214574. [PMID: 36364836 PMCID: PMC9655658 DOI: 10.3390/nu14214574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Human milk is the ideal food for newborns until the age of six months. Human milk can be defined as a dynamic living tissue, containing immunological molecules, such as immunoglobulins, supra-molecular structures, such as the milk fat globule membrane (MFGM), and even entire cells, such as the milk microbiota. The milk composition changes throughout lactation to fulfill the infant’s requirements and reflect the healthy/disease status of the lactating mother. Many bioactive milk components are either soluble or bound to the MFGM. In this work, we focus on the peculiar role of the MFGM components, from their structural organization in fat globules to their route into the gastrointestinal tract. Immunometabolic differences between human and bovine MFGM components are reported and the advantages of supplementing infant formula with the MFGM are highlighted.
Collapse
Affiliation(s)
- Maria Cavaletto
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence:
| | - Annalisa Givonetti
- Department of Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Chiara Cattaneo
- Department of Scienze e Innovazione Tecnologica, University of Piemonte Orientale, 15121 Alessandria, Italy
| |
Collapse
|
14
|
Yao Q, Gao Y, Fan L, Wang J, Zheng N. 2'-Fucosyllactose Remits Colitis-Induced Liver Oxygen Stress through the Gut-Liver-Metabolites Axis. Nutrients 2022; 14:nu14194186. [PMID: 36235838 PMCID: PMC9572607 DOI: 10.3390/nu14194186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Liver oxygen stress is one of the main extraintestinal manifestations of colitis and 5% of cases develop into a further liver injury and metabolic disease. 2′-fucosyllactose (2′-FL), a main member of human milk oligosaccharides (HMOs), has been found to exert efficient impacts on remitting colitis. However, whether 2′-FL exerts the function to alleviate colitis-induced liver injury and how 2′-FL influences the metabolism via regulating gut microbiota remain unknown. Herein, in our study, liver oxygen stress was measured by measuring liver weight and oxygen-stress-related indicators. Then, 16S full-length sequencing analysis and non-target metabolome in feces were performed to evaluate the overall responses of metabolites and intestinal bacteria after being treated with 2′-FL (400 mg/kg b.w.) in colitis mice. The results showed that, compared with the control group, the liver weight of colitis mice was significantly decreased by 18.30% (p < 0.05). After 2′-FL treatment, the liver weight was significantly increased by 12.65% compared with colitis mice (p < 0.05). Meanwhile, they exhibited higher levels of oxidation in liver tissue with decreasing total antioxidant capacity (T-AOC) (decreased by 17.15%) and glutathione (GSH) levels (dropped by 22.68%) and an increasing malondialdehyde (MDA) level (increased by 36.24%), and 2′-FL treatment could reverse those tendencies. Full-length 16S rRNA sequencing revealed that there were 39 species/genera differentially enriched in the control, dextran sulphate sodium (DSS), and DSS + 2′-FL groups. After treatment with 2′-FL, the intestinal metabolic patterns, especially glycometabolism and the lipid-metabolism-related process, in DSS mice were strikingly altered with 33 metabolites significantly down-regulated and 26 metabolites up-regulated. Further analysis found DSS induced a 40.01%, 41.12%, 43.81%, and 39.86% decline in acetic acid, propionic acid, butyric acid, and total short chain fatty acids (SCFAs) in colitis mice (all p < 0.05), respectively, while these were up-regulated to different degrees in the DSS + 2′-FL group. By co-analyzing the data of gut microbiota and metabolites, glycometabolism and lipid-metabolism-associated metabolites exhibited strong positive/negative relationships with Akkermansia_muciniphila (all p < 0.01) and Paraprevotella spp. (all p < 0.01), suggesting that the two species might play crucial roles in the process of 2′-FL alleviating colitis-induced liver oxygen stress. In conclusion, in the gut−liver−microbiotas axis, 2′-FL mediated in glucose and lipid-related metabolism and alleviated liver oxygen stress via regulating gut microbiota in the DSS-induced colitis model. The above results provide a new perspective to understand the probiotic function of 2′-FL.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069; Fax: +86-10-62897587
| |
Collapse
|