1
|
Luo P, Gu Q, Wang J, Li X, Li N, Yang W, Meng X, Zhao M. SS31 alleviates LPS-induced acute lung injury by inhibiting inflammatory responses through the S100A8/NLRP3/GSDMD signaling pathway. Eur J Med Res 2024; 29:567. [PMID: 39609864 PMCID: PMC11605876 DOI: 10.1186/s40001-024-02169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an acute, diffuse, inflammatory lung injury caused by various endogenous or exogenous factors. It is currently widely recognized that an excessive inflammatory response resulting from immune imbalance constitutes a crucial pathogenic mechanism in ALI/ARDS. SS31 is a novel mitochondria-targeted antioxidant peptide. This article validates the role of SS31 in lipopolysaccharide (LPS)-induced ALI. METHODS The study applied transcriptome sequencing, immunofluorescence, PCR, immunofluorescence and other methods to explore the mechanism of SS31 in LPS induced ALI. RESULTS Transcriptome sequencing results indicate that LPS-induced ALI is closely associated with immune regulatory processes, the Toll-like receptor pathway, and the NF-κB signaling pathway. The role of SS31 in acute lung injury is closely related to biological processes, such as immune regulation and cell death. This study demonstrated that SS31 can inhibit the expression of inflammatory factors IL-6, IL-1β, IL-18, and TNF-α, and reduce the expression of pyroptosis-related proteins NLRP3, and GSDMD-N. Further analysis revealed that S100A8 may be a key gene in the effect of SS31. LPS stimulation leads to increased expression of S100A8, while SS31 decreases its expression. Recombinant protein S100A8 can attenuate the inhibitory effect of SS31 on IL-1β, IL-18, NLRP3, and GSDMD-N. CONCLUSIONS The research results indicate that SS31 may inhibit the activation of the NLRP3 inflammasome and suppress inflammatory responses by regulating S100A8, thereby alleviating LPS-induced ALI in mice; this process may be related to pyroptosis.
Collapse
Affiliation(s)
- Peiyao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Quankuan Gu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Xianyong Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Nana Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Wei Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Chang YH, Hsu MF, Chen WN, Wu MH, Kong WL, Lu MYJ, Huang CH, Chang FJ, Chang LY, Tsai HY, Tung CP, Yu JH, Kuo Y, Chou YC, Bai LY, Chang YC, Chen AY, Chen CC, Chen YH, Liao CC, Chang CS, Liang JJ, Lin YL, Angata T, Hsu STD, Lin KI. Functional and structural investigation of a broadly neutralizing SARS-CoV-2 antibody. JCI Insight 2024; 9:e179726. [PMID: 38775156 PMCID: PMC11141937 DOI: 10.1172/jci.insight.179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Nan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Wye-Lup Kong
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Ju Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Ho-Yang Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jou-Hui Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yali Kuo
- Biomedical Translation Research Center (BioTReC)
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC)
| | - Li-Yang Bai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Biological Chemistry and
- Academia Sinica Cryo-EM Center, and
| | - An-Yu Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
| | - Shang-Te Danny Hsu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKC M2, ) Hiroshima University, Hiroshima, Japan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC)
| |
Collapse
|
3
|
Li C, Wu K, Yang R, Liao M, Li J, Zhu Q, Zhang J, Zhang X. Comprehensive analysis of immunogenic cell death-related gene and construction of prediction model based on WGCNA and multiple machine learning in severe COVID-19. Sci Rep 2024; 14:8450. [PMID: 38600309 PMCID: PMC11006847 DOI: 10.1038/s41598-024-59117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The death of coronavirus disease 2019 (COVID-19) is primarily due to from critically ill patients, especially from ARDS complications caused by SARS-CoV-2. Therefore, it is essential to contribute an in-depth understanding of the pathogenesis of the disease and to identify biomarkers for predicting critically ill patients at the molecular level. Immunogenic cell death (ICD), as a specific variant of regulatory cell death driven by stress, can induce adaptive immune responses against cell death antigens in the host. Studies have confirmed that both innate and adaptive immune pathways are involved in the pathogenesis of SARS-CoV-2 infection. However, the role of ICD in the pathogenesis of severe COVID-19 has rarely been explored. In this study, we systematically evaluated the role of ICD-related genes in COVID-19. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis based on ICD differentially expressed genes. The results showed that immune infiltration characteristics were altered in severe and non-severe COVID-19. In addition, we used multiple machine learning methods to screen for five risk genes (KLF5, NSUN7, APH1B, GRB10 and CD4), which are used to predict COVID-19 severity. Finally, we constructed a nomogram to predict the risk of severe COVID-19 based on the classification and recognition model, and validated the model with external data sets. This study provides a valuable direction for the exploration of the pathogenesis and progress of COVID-19, and helps in the early identification of severe cases of COVID-19 to reduce mortality.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ke Wu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Rui Yang
- Department of Internal Medicine, Guiyang First People's Hospital, Guiyang, 550004, Guizhou, China
| | - Minghua Liao
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jun Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qian Zhu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiayi Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xianming Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
4
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
5
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
6
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
7
|
Akbar SMF, Al Mahtab M, Khan S. Cellular and Molecular Mechanisms of Pathogenic and Protective Immune Responses to SARS-CoV-2 and Implications of COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11030615. [PMID: 36992199 DOI: 10.3390/vaccines11030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has devastated the world with coronavirus disease 2019 (COVID-19), which has imparted a toll of at least 631 million reported cases with 6.57 million reported deaths. In order to handle this pandemic, vaccines against SARS-CoV-2 have been developed and billions of doses of various vaccines have been administered. In the meantime, several antiviral drugs and other treatment modalities have been developed to treat COVID-19 patients. At the end of the day, it seems that anti-SARS-CoV-2 vaccines and newly developed antiviral drugs may be improved based on various new developments. COVID-19 represents a virus-induced, immune-mediated pathological process. The severity of the disease is related to the nature and properties of the host immune responses. In addition, host immunity plays a dominant role in regulating the extent of COVID-19. The present reality regarding the role of anti-SARS-CoV-2 vaccines, persistence of SARS-CoV-2 infection even three years after the initiation of the pandemic, and divergent faces of COVID-19 have initiated several queries among huge populations, policy makers, general physicians, and scientific communities. The present review aims to provide some information regarding the molecular and cellular mechanisms underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - Mamun Al Mahtab
- Interventional Hepatology Division, Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| |
Collapse
|
8
|
Lustig G, Ganga Y, Rodel H, Tegally H, Jackson L, Cele S, Khan K, Jule Z, Reedoy K, Karim F, Bernstein M, Moosa MYS, Archary D, de Oliveira T, Lessells R, Abdool Karim SS, Sigal A. SARS-CoV-2 evolves increased infection elicited cell death and fusion in an immunosuppressed individual. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.23.22282673. [PMID: 36451879 PMCID: PMC9709797 DOI: 10.1101/2022.11.23.22282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The milder clinical manifestations of Omicron infection relative to pre-Omicron SARS CoV-2 raises the possibility that extensive evolution results in reduced pathogenicity. To test this hypothesis, we quantified induction of cell fusion and cell death in SARS CoV-2 evolved from ancestral virus during long-term infection. Both cell fusion and death were reduced in Omicron BA.1 infection relative to ancestral virus. Evolved virus was isolated at different times during a 6-month infection in an immunosuppressed individual with advanced HIV disease. The virus isolated 16 days post-reported symptom onset induced fusogenicity and cell death at levels similar to BA.1. However, fusogenicity was increased in virus isolated at 6 months post-symptoms to levels intermediate between BA.1 and ancestral SARS-CoV-2. Similarly, infected cell death showed a graded increase from earlier to later isolates. These results may indicate that, at least by the cellular measures used here, evolution in long-term infection does not necessarily attenuate the virus.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Hylton Rodel
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | | | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Zesuliwe Jule
- Africa Health Research Institute, Durban, South Africa
| | - Kajal Reedoy
- Africa Health Research Institute, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, USA
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alex Sigal
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Badillo-Almaraz JI, Cardenas-Cadena SA, Gutierrez-Avella FD, Villegas-Medina PJ, Garza-Veloz I, Almaraz VB, Martinez-Fierro ML. COVID-19 Syndemic: Convergence of COVID-19, Pulmonary Aspergillosis (CAPA), Pulmonary Tuberculosis, Type 2 Diabetes Mellitus, and Arterial Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12092058. [PMID: 36140460 PMCID: PMC9498291 DOI: 10.3390/diagnostics12092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Bacterial coinfections, which increase the severity of respiratory viral infections, are frequent causes of mortality in influenza pandemics but have not been well characterized in patients with Coronavirus disease 2019 (COVID-19). Moreover, the association of COVID-19 infection with pulmonary Mycobacterium tuberculosis disease (TB) and concurrent pulmonary fungal infection is not well known. The classification of patients with COVID-19-associated pulmonary aspergillosis (CAPA) using the current definitions for invasive fungal diseases has proven difficult. In this study, we aimed to provide information about three patients with underlying diseases ongoing with COVID-19 and co-infection with pulmonary TB, and with COVID-19-associated pulmonary aspergillosis (CAPA). At the time of hospital admission, each patient presented complications such as decompensated T2DM with diabetic ketoacidosis and/or hypertension. Findings of chest computed tomography and serum galactomannan by radioimmunoassay were useful for classifying them as possible CAPA. One of the three possible CAPA cases was fatal. These three cases are rare and are the first of their kind reported worldwide. The generation of reliable algorithms, early diagnosis, standardization of classification criteria, and the selection of specific and personalized treatments for COVID-19-associated opportunistic infections, including CAPA, are necessary to improve outcomes in these kinds of patients.
Collapse
Affiliation(s)
- Jose Isaias Badillo-Almaraz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
- Hospital General Luz Gonzalez Cosio, Circuito ciudad Gobierno, Zacatecas 98160, Mexico
- Clinica San Antonio Memorial Center, Rio Grande, Zacatecas 98400, Mexico
| | - Sergio Andres Cardenas-Cadena
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
| | | | | | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
| | - Valentin Badillo Almaraz
- Unidad Academica de Estudios Nucleares. Universidad Autonoma de Zacatecas, Zacatecas 98000, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ siglo XXI-L1, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico
- Correspondence: ; Tel.: +52-(492)-9256690 (ext. 2102)
| |
Collapse
|