1
|
Meng L, Tang Q, Zhou W, Wei D, Zhao J, Shen J, Yang M, He S, Huang S, Qin Y, Song J, Luo L, Tang Q. Contributions of T Cell Signaling for Wound Healing. J Burn Care Res 2024; 45:1513-1519. [PMID: 39110034 DOI: 10.1093/jbcr/irae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
It has long been known that T cells participate in wound healing; however, the landscape of the signaling derived from T cells in the process of wound healing is still enigmatic. With the advantages of scRNA-seq, in combination with immunofluorescent imaging, we identified activated T cells, cytotoxic T cells (CTLs), exhausting T cells, and Tregs existing in the inflammation phase of wound healing. Further analysis revealed each T cell population possess distinguished signals contributed to wound healing, some are critical for improving the wound healing quality. Besides, this study discovered and validated the existence of exhausting T cells among the T cells accumulated in the skin during wound healing, and the molecular mechanism(s) and contribution of exhausting T cells to wound healing deserve extensive studies in the future.
Collapse
Affiliation(s)
- Lingzhang Meng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, 533000, China
- Institute of Cardiovascular Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Qiang Tang
- Key Laboratory of Medical Research Basic Guarantee for Immune-related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Burn Plastic & Trauma Surgery Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Wei Zhou
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Dalong Wei
- Key Laboratory of Medical Research Basic Guarantee for Immune-related Diseases Research of Guangxi (Cultivation), Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Burn Plastic & Trauma Surgery Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jiajia Shen
- Department of Laboratory Medicine, Nanning Maternity and Child Health Hospital & Nanning Women and Children's Hospital, Nanning, 530011, China
| | - Mingyue Yang
- Department of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Siyuan He
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shaoang Huang
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yujuan Qin
- Graduate School, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Jian Song
- Institute of Cardiovascular Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Qianli Tang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Life Science and Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| |
Collapse
|
2
|
Xing L, Chen B, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Qin D. The role of neuropeptides in cutaneous wound healing: a focus on mechanisms and neuropeptide-derived treatments. Front Bioeng Biotechnol 2024; 12:1494865. [PMID: 39539691 PMCID: PMC11557334 DOI: 10.3389/fbioe.2024.1494865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of cutaneous nerves, neuropeptides, and specific receptors richly innervates the skin and influences a variety of physiological and pathological processes. The sensory and autonomic nerve fibers secrete a variety of neuropeptides that are essential to the different phases of wound healing. In addition to initiating a neurogenic inflammatory response in the early stages of healing, neuropeptides also control wound healing by influencing immune cells, repair cells, and the growth factor network. However, the precise mechanism by which they accomplish these roles in the context of cutaneous wound healing is still unknown. Investigating the mechanisms of action of neuropeptides in wound healing and potential therapeutic applications is therefore urgently necessary. The present review discusses the process of wound healing, types of neuropeptides, potential mechanisms underlying the role of neuropeptides in cutaneous wound healing, as well as some neuropeptide-derived treatment strategies, such as hydrogels, new dressings, electro stimulation, and skin-derived precursors. Future in-depth mechanistic studies of neuropeptides in cutaneous wound healing may provide opportunities to develop therapeutic technologies that harness the roles of neuropeptides in the wound healing process.
Collapse
Affiliation(s)
- Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bing Chen
- School of Medicine, Kunming University, Kunming, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Hu W, Sheng H, Yang J, Chen C, Shang R, Liu Z, Hu X, Zhang X, He W, Huang C, Luo G. Comparison of inferior vena cava puncture under continuous cardiac perfusion with cardiac puncture in blood acquisition of the laboratory mouse. Lab Anim 2024:236772241256023. [PMID: 39391969 DOI: 10.1177/00236772241256023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Obtaining sufficient blood volume from mice significantly facilitates experimental research. This study explored the inferior vena cava puncture under continuous cardiac perfusion (IVCP-UCCP) technique and evaluated its efficiency in comparison with conventional cardiac puncture (CP). In an initial dose-finding study, 50 mice were randomly assigned to one of 10 groups with escalating perfusion volume from 0.5 to 4.5 ml in 0.5-ml increments. The minimum perfusion volume was determined to be 2 ml in collecting whole circulating blood. In the next comparison using the conventional method, 40 mice were randomly assigned to one of two groups denoting different blood collection methods: Group 1: CP, Group 2: IVCP-UCCP. The results showed 1) that the cells and undiluted blood volume collected via IVCP-UCCP was over twofold higher than that by CP (p < 0.001), confirmed by the cell counts and hematoxylin-eosin staining of different tissues slides (p < 0.001); 2) the new technique did not alter the cellular composition or viability, which was verified by routine blood tests and flow cytometry (p > 0.05); 3) the blood collected via the novel technique was diluted 2.1 times: the hemato-biochemical indicator results multiplied by 2.1 were identical with the test results of blood from CP (p > 0.05). Together, the refined blood collection method of IVCP-UCCP completely extracted the limited blood resources in mice, significantly enhanced the utilization of each mouse, and thus offered scientific and ethical benefits. This technique may be also applicable for other small animal models.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Hao Sheng
- Urology Department, Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - JiaCai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Chibing Huang
- Urology Department, Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| |
Collapse
|
4
|
Sommer C, Neuhaus V, Gogesch P, Flandre T, Dehmel S, Sewald K. Type 2 responses determine skin rash during recombinant interleukin-2 therapy. J Immunotoxicol 2024; 21:S48-S59. [PMID: 39655497 DOI: 10.1080/1547691x.2024.2343359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | | | | | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| |
Collapse
|
5
|
Sabsabi MA, Kheimar A, You Y, von La Roche D, Härtle S, Göbel TW, von Heyl T, Schusser B, Kaufer BB. Unraveling the role of γδ T cells in the pathogenesis of an oncogenic avian herpesvirus. mBio 2024; 15:e0031524. [PMID: 38953352 PMCID: PMC11323538 DOI: 10.1128/mbio.00315-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.
Collapse
Affiliation(s)
| | - Ahmed Kheimar
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Yu You
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Dominik von La Roche
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas W. Göbel
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Theresa von Heyl
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, München, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, München, Germany
- Center for Infection Prevention (ZIP), Technische Universität München, München, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol 2024; 25:599-616. [PMID: 38528155 DOI: 10.1038/s41580-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Wound healing is a complex process that involves the coordinated actions of many different tissues and cell lineages. It requires tight orchestration of cell migration, proliferation, matrix deposition and remodelling, alongside inflammation and angiogenesis. Whereas small skin wounds heal in days, larger injuries resulting from trauma, acute illness or major surgery can take several weeks to heal, generally leaving behind a fibrotic scar that can impact tissue function. Development of therapeutics to prevent scarring and successfully repair chronic wounds requires a fuller knowledge of the cellular and molecular mechanisms driving wound healing. In this Review, we discuss the current understanding of the different phases of wound healing, from clot formation through re-epithelialization, angiogenesis and subsequent scar deposition. We highlight the contribution of different cell types to skin repair, with emphasis on how both innate and adaptive immune cells in the wound inflammatory response influence classically studied wound cell lineages, including keratinocytes, fibroblasts and endothelial cells, but also some of the less-studied cell lineages such as adipocytes, melanocytes and cutaneous nerves. Finally, we discuss newer approaches and research directions that have the potential to further our understanding of the mechanisms underpinning tissue repair.
Collapse
Affiliation(s)
- Oscar A Peña
- School of Biochemistry, University of Bristol, Bristol, UK.
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
7
|
Wei T, Pan T, Peng X, Zhang M, Guo R, Guo Y, Mei X, Zhang Y, Qi J, Dong F, Han M, Kong F, Zou L, Li D, Zhi D, Wu W, Kong D, Zhang S, Zhang C. Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds. NATURE NANOTECHNOLOGY 2024; 19:1178-1189. [PMID: 38740936 DOI: 10.1038/s41565-024-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization. The Janus liposozyme consists of liposome-like selenoenzymes for reactive oxygen species (ROS) scavenging to restore tissue redox and immune homeostasis. The liposozymes are used to encapsulate photosensitizers for photodynamic therapy of infections. We demonstrate application in methicillin-resistant Staphylococcus aureus-infected diabetic wounds showing high ROS levels for antibacterial function from the photosensitizer and nanozyme ROS scavenging from the liposozyme to restore redox and immune homeostasis. We demonstrate that the liposozyme can directly regulate macrophage polarization and induce a pro-regenerative response. By employing single-cell RNA sequencing, T cell-deficient Rag1-/- mice and skin-infiltrated immune cell analysis, we further reveal that IL-17-producing γδ T cells are critical for mediating M1/M2 macrophage transition. Manipulating the local immune homeostasis using the liposozyme is shown to be effective for skin wound repair and tissue regeneration in mice and mini pigs.
Collapse
Affiliation(s)
- Tingting Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Tiezheng Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Xiuping Peng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Mengjuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Ru Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Yuqing Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Xiaohan Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Meijuan Han
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Fandi Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Lina Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Dan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Dengke Zhi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China
| | - Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
- Institute for Immunology, Nankai University, Tianjin, China.
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Institute of Transplantation Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Huang Y, Jiang C, Zhu J, Lin L, Mao M, Yin T, Cai G. Expansion of effector memory Vδ2 neg γδ T cells associates with cytomegalovirus reactivation in allogeneic stem cell transplant recipients. Front Immunol 2024; 15:1397483. [PMID: 38915409 PMCID: PMC11194311 DOI: 10.3389/fimmu.2024.1397483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Cytomegalovirus (CMV) reactivation is a significant concern following allogeneic stem cell transplantation. While previous research has highlighted the anti-CMV reactivation effect of γδ T cells in immunocompromised transplant patients, their characterization in recipients at high risk of CMV reactivation remains limited. Methods This study focused on D+/R+ recipients (where both donor and recipient are CMV seropositive) at high risk of CMV reactivation. We analyzed 28 patients who experienced CMV recurrence within 100 days post-allogeneic hematopoietic stem cell transplantation, along with 36 matched recipients who did not experience CMV recurrence. Clinical data from both groups were compared, and risk factors for CMV reactivation were identified. Additionally, CMV viral load was measured, and flow cytometric analysis was conducted to assess changes in peripheral blood γδ T cell proportions, subpopulation distribution, and differentiation status. We also analyzed the CDR3 repertoire of the TCR δ chain in different γδ T cell subsets. Functional analysis was performed by measuring the lysis of CMV-infected cells upon stimulation. Results CMV reactivation post-transplantation was associated with acute graft-versus-host disease (aGvHD) and reactivation of non-CMV herpesviruses. Notably, CMV reactivation led to sustained expansion of γδ T cells, primarily within the Vδ2neg γδ T cell subpopulation, with a trend toward differentiation from Naive to effector memory cells. Analysis of the δ chain CDR3 repertoire revealed a delay in the reconstitution of clonal diversity in Vδ2neg γδ T cells following CMV reactivation, while Vδ2pos T cells remained unaffected. Upon stimulation with CMV-infected MRC5 cells, the Vδ2neg γδ T cell subpopulation emerged as the primary effector cell group producing IFN-γ and capable of lysing CMV-infected cells. Moreover, our findings suggest that NKG2D is not necessary involved in Vδ2neg γδ T cell-mediated anti-CMV cytotoxicity. Conclusion This study provides novel insights into the role of γδ T cells in the immune response to CMV reactivation in transplantation recipients at high risk of CMV infection. Specifically, the Vδ2neg γδ T cell subpopulation appears to be closely associated with CMV reactivation, underscoring their potential role in controlling infection and reflecting CMV reactivation in HSCT patients.
Collapse
Affiliation(s)
- Yiwen Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Jiacheng Zhu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Minjing Mao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| |
Collapse
|
9
|
Hu W, Zhang X, Sheng H, Liu Z, Chen Y, Huang Y, He W, Luo G. The mutual regulation between γδ T cells and macrophages during wound healing. J Leukoc Biol 2024; 115:840-851. [PMID: 37493223 DOI: 10.1093/jleuko/qiad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophages are the main cells shaping the local microenvironment during wound healing. As the prime T cells in the skin, γδ T cells participate in regulating microenvironment construction, determining their mutual regulation helps to understand the mechanisms of wound healing, and explore innovative therapeutic options for wound repair. This review introduced their respective role in wound healing firstly, and then summarized the regulatory effect of γδ T cells on macrophages, including chemotaxis, polarization, apoptosis, and pyroptosis. Last, the retrograde regulation on γδ T cells by macrophages was also discussed. The main purpose is to excavate novel interventions for treating wound and provide new thought for further research.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, Second Affiliated Hospital, Third Military Medical University (Army Medical University), XinQiao District, Chongqing 400037, China
| | - Zhongyang Liu
- Department of Plastic Surgery, First Affiliated Hospital, Zhengzhou University, ErQi District, Zhengzhou, Henan 450000, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| |
Collapse
|
10
|
Hu W, Zhang X, Liu Z, Yang J, Sheng H, Liu Z, Chen C, Shang R, Chen Y, Lu Y, Hu X, Huang Y, Yin W, Cai X, Fan D, Yan L, Hao J, Luo G, He W. Spatiotemporal orchestration of macrophage activation trajectories by Vγ4 T cells during skin wound healing. iScience 2024; 27:109545. [PMID: 38617557 PMCID: PMC11015460 DOI: 10.1016/j.isci.2024.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhongyang Liu
- Department of Plastic Surgery, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Jiacai Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zhihui Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yifei Lu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Wenjing Yin
- Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xin Cai
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dejiang Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Lingfeng Yan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000 Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
11
|
Keller B, Kfir-Erenfeld S, Matusewicz P, Hartl F, Lev A, Lee YN, Simon AJ, Stauber T, Elpeleg O, Somech R, Stepensky P, Minguet S, Schraven B, Warnatz K. Combined Immunodeficiency Caused by a Novel Nonsense Mutation in LCK. J Clin Immunol 2023; 44:4. [PMID: 38112969 PMCID: PMC10730691 DOI: 10.1007/s10875-023-01614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/14/2023] [Indexed: 12/21/2023]
Abstract
Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.
Collapse
Affiliation(s)
- Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Matusewicz
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Frederike Hartl
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Susana Minguet
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GC-I3) Medical Faculty, Otto-Von Guericke University Magdeburg, Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-Von Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
13
|
Reali E, Ferrari D. From the Skin to Distant Sites: T Cells in Psoriatic Disease. Int J Mol Sci 2023; 24:15707. [PMID: 37958689 PMCID: PMC10648543 DOI: 10.3390/ijms242115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin has long been known as a protective organ, acting as a mechanical barrier towards the external environment. More recent is the acquisition that in addition to this fundamental role, the complex architecture of the skin hosts a variety of immune and non-immune cells playing preeminent roles in immunological processes aimed at blocking infections, tumor progression and migration, and elimination of xenobiotics. On the other hand, dysregulated or excessive immunological response into the skin leads to autoimmune reactions culminating in a variety of skin pathological manifestations. Among them is psoriasis, a multifactorial, immune-mediated disease with a strong genetic basis. Psoriasis affects 2-3% of the population; it is associated with cardiovascular comorbidities, and in up to 30% of the cases, with psoriatic arthritis. The pathogenesis of psoriasis is due to the complex interplay between the genetic background of the patient, environmental factors, and both innate and adaptive responses. Moreover, an autoimmune component and the comprehension of the mechanisms linking chronic skin inflammation with systemic and joint manifestations in psoriatic patients is still a major challenge. The understanding of these mechanisms may offer a valuable chance to find targetable molecules to treat the disease and prevent its progression to severe systemic conditions.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, 44100 Ferrara, Italy
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
14
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Zhu M, Cao L, Melino S, Candi E, Wang Y, Shao C, Melino G, Shi Y, Chen X. Orchestration of Mesenchymal Stem/Stromal Cells and Inflammation During Wound Healing. Stem Cells Transl Med 2023; 12:576-587. [PMID: 37487541 PMCID: PMC10502569 DOI: 10.1093/stcltm/szad043] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023] Open
Abstract
Wound healing is a complex process and encompasses a number of overlapping phases, during which coordinated inflammatory responses following tissue injury play dominant roles in triggering evolutionarily highly conserved principals governing tissue repair and regeneration. Among all nonimmune cells involved in the process, mesenchymal stem/stromal cells (MSCs) are most intensely investigated and have been shown to play fundamental roles in orchestrating wound healing and regeneration through interaction with the ordered inflammatory processes. Despite recent progress and encouraging results, an informed view of the scope of this evolutionarily conserved biological process requires a clear understanding of the dynamic interplay between MSCs and the immune systems in the process of wound healing. In this review, we outline current insights into the ways in which MSCs sense and modulate inflammation undergoing the process of wound healing, highlighting the central role of neutrophils, macrophages, and T cells during the interaction. We also draw attention to the specific effects of MSC-based therapy on different pathological wound healing. Finally, we discuss how ongoing scientific advances in MSCs could be efficiently translated into clinical strategies, focusing on the current limitations and gaps that remain to be overcome for achieving preferred functional tissue regeneration.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People’s Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata,”Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People’s Republic of China
| | - Xiaodong Chen
- Wuxi Sinotide New Drug Discovery Institutes, Huishan Economic and Technological Development Zone, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Li R, Rouse M, Pace BT, Grey SF, Mclaughlin K, Schobel SA, Simons MP. Host CD3 + T-cells can significantly modulate phage treatment effects on bacterial bioburden in mouse models. Front Microbiol 2023; 14:1240176. [PMID: 37766890 PMCID: PMC10520710 DOI: 10.3389/fmicb.2023.1240176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Wound healing is a complex system including such key players as host, microbe, and treatments. However, little is known about their dynamic interactions. Here we explored the interplay between: (1) bacterial bioburden and host immune responses, (2) bacterial bioburden and wound size, and (3) treatments and wound size, using murine models and various treatment modalities: Phosphate buffer saline (PBS or vehicle, negative control), doxycycline, and two doses of A. baumannii phage mixtures. We uncovered that the interplay between bacterial bioburden and host immune system may be bidirectional, and that there is an interaction between host CD3+ T-cells and phage dosage, which significantly impacts bacterial bioburden. Furthermore, the bacterial bioburden and wound size association is significantly modulated by the host CD3+ T-cells. When the host CD3+ T-cells (x on log10 scale) are in the appropriate range (1.35 < x < = 1.5), we observed a strong association between colony forming units (CFU) and wound size, indicating a hallmark of wound healing. On the basis of the findings and our previous work, we proposed an integrated parallel systems biology model.
Collapse
Affiliation(s)
- Renhua Li
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Michael Rouse
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Brendon T. Pace
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Eastern Virginia Medical School, Norfolk, VA, United States
| | - Scott F. Grey
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Kimberly Mclaughlin
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Seth A. Schobel
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Surgical Critical Care Initiative (SC2i), Uniformed Services University (USU), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, United States
| | - Mark P. Simons
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
17
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
18
|
Luo W, Bian X, Liu X, Zhang W, Xie Q, Feng L. A new method for the treatment of myocardial ischemia-reperfusion injury based on γδT cell-mediated immune response. Front Cardiovasc Med 2023; 10:1219316. [PMID: 37600023 PMCID: PMC10435296 DOI: 10.3389/fcvm.2023.1219316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Acute myocardial ischemia is a disease with high morbidity and mortality, and re-perfusion is currently the best intervention. However, re-perfusion may lead to further myocardial injury and increase the area of myocardial infarction. The mechanism of myocardial ischemia-re-perfusion injury is complex, but with more in-depth study, it has been proved that the immune system plays an important role in the process of MIRI. Among them, the γδT cell population has received increasing attention as the main early source of IL-17A in many immune response models. Because γδT cells have the characteristics of linking innate immunity and adaptive immunity,they can rapidly produce IL-17A and produce subsequent immune killing of cardiomyocytes. It can be seen that γδT cells play an important role in MIRI. Therefore, here we review the research progress of immune response in myocardial ischemia-re-perfusion injury, the key characteristics of γδT cells and the role of rapidly produced IL-17 in myocardial ischemia-re-perfusion injury, and propose relevant treatment strategies and prospects for myocardial repair, in order to provide new ideas and methods for clinical treatment of myocardial ischemia-re-perfusion injury.
Collapse
Affiliation(s)
- Wei Luo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohong Bian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaona Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenchao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xie
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
20
|
Ma L, Feng Y, Zhou Z. A close look at current γδ T-cell immunotherapy. Front Immunol 2023; 14:1140623. [PMID: 37063836 PMCID: PMC10102511 DOI: 10.3389/fimmu.2023.1140623] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Owing to their antitumor and major histocompatibility complex (MHC)-independent capacities, γδ T cells have gained popularity in adoptive T-cell immunotherapy in recent years. However, many unknowns still exist regarding γδ T cells, and few clinical data have been collected. Therefore, this review aims to describe all the main features of the applications of γδ T cells and provide a systematic view of current γδ T-cell immunotherapy. Specifically, this review will focus on how γδ T cells performed in treating cancers in clinics, on the γδ T-cell clinical trials that have been conducted to date, and the role of γδ T cells in the pharmaceutical industry.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Research and Development Department, Beijing Dingchengtaiyuan (DCTY) Biotech Co., Ltd., Beijing, China
| | - Yanmin Feng
- Research and Development Department, Beijing Dingchengtaiyuan (DCTY) Biotech Co., Ltd., Beijing, China
| | - Zishan Zhou
- Research and Development Department, Beijing Dingchengtaiyuan (DCTY) Biotech Co., Ltd., Beijing, China
- *Correspondence: Zishan Zhou,
| |
Collapse
|
21
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
22
|
Stump M, Guo DF, Rahmouni K. T cell-specific deficiency in BBSome component BBS1 interferes with selective immune responses. Am J Physiol Regul Integr Comp Physiol 2023; 324:R161-R170. [PMID: 36534590 PMCID: PMC9844976 DOI: 10.1152/ajpregu.00243.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Bsardet Biedl syndrome (BBS) is a genetic condition associated with various clinical features including cutaneous disorders and certain autoimmune and inflammatory diseases pointing to a potential role of BBS proteins in the regulation of immune function. BBS1 protein, which is a key component of the BBSome, a protein complex involved in the regulation of cilia function and other cellular processes, has been implicated in the immune synapse assembly by promoting the centrosome polarization to the antigen-presenting cells. Here, we assessed the effect of disrupting the BBSome, through Bbs1 gene deletion, in T cells. Interestingly, mice lacking the Bbs1 gene specifically in T cells (T-BBS1-/-) displayed normal body weight, adiposity, and glucose handling, but have smaller spleens. However, T-BBS1-/- mice had no change in the proportion and absolute number of B cells and T cells in the spleen and lymph nodes. There was also no alteration in the CD4/CD8 lineage commitment or survival in the thymus of T-BBS1-/- mice. On the other hand, T-BBS1-/- mice treated with Imiquimod dermally exhibited a significantly higher percentage of CD3-positive splenocytes that was due to CD4 but not CD8 T cell predominance. Notably, we found that T-BBS1-/- mice had significantly decreased wound closure, an effect that was more pronounced in males indicating that the BBSome plays an important role in T cell-mediated skin repair. Together, these findings implicate the BBSome in the regulation of selective functions of T cells.
Collapse
Affiliation(s)
- Madeliene Stump
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Physician Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Dermatology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Deng Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
23
|
Lecron JC, Charreau S, Jégou JF, Salhi N, Petit-Paris I, Guignouard E, Burucoa C, Favot-Laforge L, Bodet C, Barra A, Huguier V, Mcheik J, Dumoutier L, Garnier J, Bernard FX, Ryffel B, Morel F. IL-17 and IL-22 are pivotal cytokines to delay wound healing of S. aureus and P. aeruginosa infected skin. Front Immunol 2022; 13:984016. [PMID: 36275755 PMCID: PMC9585169 DOI: 10.3389/fimmu.2022.984016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlthough the presence of pathogens in skin wounds is known to delay the wound healing process, the mechanisms underlying this delay remain poorly understood. In the present study, we have investigated the regulatory role of proinflammatory cytokines on the healing kinetics of infected wounds.MethodsWe have developed a mouse model of cutaneous wound healing, with or without wound inoculation with Staphylococcus aureus and Pseudomonas aeruginosa, two major pathogens involved in cutaneous wound bacterial infections.ResultsAseptic excision in C57BL/6 mouse skin induced early expression of IL-1β, TNFα and Oncostatin M (OSM), without detectable expression of IL-22 and IL-17A/F. S. aureus and P. aeruginosa wound inoculation not only increased the expression of IL-1β and OSM, but also induced a strong cutaneous expression of IL-22, IL-17A and IL-17F, along with an increased number of infiltrating IL-17A and/or IL-22-producing γδ T cells. The same cytokine expression pattern was observed in infected human skin wounds. When compared to uninfected wounds, mouse skin infection delayed the wound healing process. Injection of IL-1α, TNFα, OSM, IL-22 and IL-17 together in the wound edges induced delayed wound healing similar to that induced by the bacterial infection. Wound healing experiments in infected Rag2KO mice (deficient in lymphocytes) showed a wound healing kinetic similar to uninfected Rag2KO mice or WT mice. Rag2KO infected-skin lesions expressed lower levels of IL-17 and IL-22 than WT, suggesting that the expression of these cytokines is mainly dependent on γδ T cells in this model. Wound healing was not delayed in infected IL-17R/IL-22KO, comparable to uninfected control mice. Injection of recombinant IL-22 and IL-17 in infected wound edges of Rag2KO mice re-establish the delayed kinetic of wound healing, as in infected WT mice.ConclusionThese results demonstrate the synergistic and specific effects of IL-22 and IL-17 induced by bacterial infection delay the wound healing process, regardless of the presence of bacteria per se. Therefore, these cytokines play an unexpected role in delayed skin wound healing.
Collapse
Affiliation(s)
- Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire Immunologie et Inflammation, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
- *Correspondence: Jean-Claude Lecron,
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Jean-François Jégou
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Nadjet Salhi
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Isabelle Petit-Paris
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Emmanuel Guignouard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Christophe Burucoa
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Laure Favot-Laforge
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Anne Barra
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Laboratoire Immunologie et Inflammation, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Vincent Huguier
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service de Chirurgie Plastique, Centre Hospitalier et Universitaire (CHU) de Poitiers, Poitiers, France
| | - Jiad Mcheik
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service de Chirurgie Pédiatrique, Centre Hospitalier et Universitaire CHU) de Poitiers, Poitiers, France
| | - Laure Dumoutier
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Julien Garnier
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Qima-Bioalternatives (Qima Life Sciences), Gençay, France
| | - Bernhard Ryffel
- Laboratoire d'Immunologie et Neurogénétique Expérimentales et Moléculaire (INEM) - Unité Mixte de Recherche (UMR) 7355, Centre National de la Recherche Scientifique (CNRS) et Université d’Orléans, Orléans, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| |
Collapse
|
24
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
25
|
Ripszky Totan A, Greabu M, Stanescu-Spinu II, Imre M, Spinu TC, Miricescu D, Ilinca R, Coculescu EC, Badoiu SC, Coculescu BI, Albu C. The Yin and Yang dualistic features of autophagy in thermal burn wound healing. Int J Immunopathol Pharmacol 2022; 36:3946320221125090. [PMID: 36121435 PMCID: PMC9490459 DOI: 10.1177/03946320221125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Burn healing should be regarded as a dynamic process consisting of two main, interrelated phases: (a) the inflammatory phase when neutrophils and monocytes infiltrate the injury site, through localized vasodilation and fluid extravasation, and (b) the proliferative-remodeling phase, which represents a key event in wound healing. In the skin, both canonical autophagy (induced by starvation, oxidative stress, and environmental aggressions) and non-canonical or selective autophagy have evolved to play a discrete, but, essential, “housekeeping” role, for homeostasis, immune tolerance, and survival. Experimental data supporting the pro-survival roles of autophagy, highlighting its Yang, luminous and positive feature of this complex but insufficient explored molecular pathway, have been reported. Autophagic cell death describes an “excessive” degradation of important cellular components that are necessary for normal cell function. This deadly molecular mechanism brings to light the darker, concealed, Yin feature of autophagy. Autophagy seems to perform dual, conflicting roles in the angiogenesis context, revealing once again, its Yin–Yang features. Autophagy with its Yin–Yang features remains the shadow player, able to decide quietly whether the cell survives or dies.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Maria Greabu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Marina Imre
- Department of Complete Denture, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Tudor-Claudiu Spinu
- Department of Fixed Prosthodontics and Occlusology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Daniela Miricescu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Radu Ilinca
- Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Elena Claudia Coculescu
- Department of Oral Pathology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Crenguta Albu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Bucharest, Romania
| |
Collapse
|