1
|
Kronborg L, Hansen EO, Bertelsen T, Rittig AH, Emmanuel T, Jørgensen S, Hjuler KF, Iversen L, Johansen C. ERAP1 and ERAP2 gene variants as potential clinical biomarkers of anti-interleukin-17A response in psoriasis vulgaris. Clin Exp Dermatol 2024; 49:1171-1178. [PMID: 38616723 DOI: 10.1093/ced/llae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Interleukin (IL)-17A is a proinflammatory cytokine that plays an essential role in the development of psoriasis. Although treatment with anti-IL-17A monoclonal antibodies has demonstrated high efficacy in patients with psoriasis, not all patients respond equally well, highlighting the need for biomarkers to predict treatment response. Specific single-nucleotide polymorphisms (SNPs) in the genes encoding endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) have been associated with psoriasis and other immune-mediated diseases. OBJECTIVES To investigate the association between the ERAP1 and ERAP2 genotypes and response to secukinumab treatment in patients with psoriasis. METHODS In total, 75 patients with plaque psoriasis were included. All patients were genotyped for the ERAP1 rs27524, rs27044, rs30187, rs2287987 and rs26653 SNPs, the ERAP2 rs2248374 SNP, and the status of the human leucocyte antigen HLA-C*06:02 gene. RESULTS Our results demonstrated that individuals with specific ERAP1 and ERAP2 genotypes had a considerably lower response rate to secukinumab treatment. Patients with the ERAP2 rs2248374 GG genotype had a more than sixfold increased risk of treatment failure compared with patients with the rs2248374 AG or AA genotypes. Stratifying for HLA-C*06:02 status, the ERAP2 GG genotype pointed towards an increased risk of treatment failure among HLA-C*06:02-positive patients, although this was not statistically significant. CONCLUSIONS Taken together, this unique study breaks new ground by identifying distinct ERAP1 and ERAP2 gene variants that may serve as potential biomarkers for predicting the treatment response to secukinumab in patients with psoriasis. Notably, our data extend existing knowledge by linking specific ERAP1 and ERAP2 gene variants to treatment outcome.
Collapse
Affiliation(s)
- Lasse Kronborg
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma Oxlund Hansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Hald Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sofie Jørgensen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Fjellhaugen Hjuler
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Abbas MA, Masry MAA, ALQusi SM, Hadhoud MM, Fouda EAM. The association between endoplasmic reticulum aminopeptidase 2 gene single nucleotide polymorphisms and the risk of psoriasis and psoriatic arthritis in Egyptians. Mol Biol Rep 2024; 51:847. [PMID: 39046539 DOI: 10.1007/s11033-024-09733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Psoriasis (Ps) is a disorder attributed to the immune system that involves inflammation of the skin and joints. Psoriasis is a multifactorial disorder in which genetic factors represent about 70% of the disease risk. This study aims to establish the correlation between the ERAP2 gene's single nucleotide polymorphisms (SNPs) rs2910686 and rs2248374 with the susceptibility to Ps and/or psoriatic arthritis (PsA) among the Egyptian population. METHODS AND RESULTS Genotyping of ERAP2 gene SNPs (rs2910686 and rs2248374) in 120 psoriatic patients with and without arthritis and 100 controls was done using real-time PCR. The genotype frequency and distribution of the ERAP2 SNP (rs2910686 and rs2248374) were in Hardy-Weinberg equilibrium (HWE). For rs2910686, the TC and CC genotypes and C allele frequency were significant risk factors for PsA compared to the controls (OR = 5.708, OR = 10.165, and OR = 4.282, respectively). They also were significant risk factors for Ps compared to the controls (OR = 5.165, OR = 5.040, and OR = 3.258, respectively). For rs2248374, the AG genotype significantly increased the risk of PsA (OR = 2.605) and Ps (OR = 3.768) compared to controls. The AG genotype was significantly related to the risk of Ps (OR = 3.369) G allele with PsA (OR = 1.608) and Ps (OR = 1.965) compared to controls. CONCLUSION In Egyptian individuals, the ERAP2 gene polymorphisms (rs2248374 and rs2910686) may contribute genetically to the pathophysiology of psoriasis and PsA.
Collapse
Affiliation(s)
- Mona A Abbas
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Yassen Abd Al Ghafar Street, Shebin El-Kom City, Menoufia governorate, 32511, Egypt.
| | | | - Salah M ALQusi
- Department of Organic Chemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Mahmoud M Hadhoud
- Department of Orthopedic Surgery, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman A M Fouda
- Department of Biochemistry, Faculty of Science, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Al-kaabi M, Deshpande P, Firth M, Pavlos R, Chopra A, Basiri H, Currenti J, Alves E, Kalams S, Fellay J, Phillips E, Mallal S, John M, Gaudieri S. Epistatic interaction between ERAP2 and HLA modulates HIV-1 adaptation and disease outcome in an Australian population. PLoS Pathog 2024; 20:e1012359. [PMID: 38980912 PMCID: PMC11259285 DOI: 10.1371/journal.ppat.1012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/19/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.
Collapse
Affiliation(s)
- Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Martin Firth
- School of Physics, Mathematics and Computing, Department of Mathematics and Statistics, University of Western Australia, Crawley, Australia
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Hamed Basiri
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Spyros Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss HIV Cohort Study, Zurich, Switzerland
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
5
|
Kuiper J, van Endert P. Uncovering the genomic toll of the Black Death. Trends Immunol 2023; 44:90-92. [PMID: 36526581 DOI: 10.1016/j.it.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
The Black Death, a notorious devastating pandemic caused by Yersinia pestis infection during the 14th century, posed a formidable challenge to human immune defenses. A new article by Klunk et al. reports that a variant in an antigen-processing gene may have favored survival during the plague and may have undergone genomic selection in Europeans at unprecedented speed.
Collapse
Affiliation(s)
- Jonas Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
6
|
ERAP/HLA-C and KIR Genetic Profile in Couples with Recurrent Implantation Failure. Int J Mol Sci 2022; 23:ijms232012518. [PMID: 36293373 PMCID: PMC9603896 DOI: 10.3390/ijms232012518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Proper embryo implantation depends on the tolerance of the maternal immune system to the fetus and its foreign paternal antigens. During implantation and early pregnancy, the dominant leukocytes in the uterus are uterine NK cells, expressing killer immunoglobulin-like receptors (KIR). KIRs recognize human leukocyte antigens (HLA-C) on the human trophoblast inherited from the father and mother. The antigenic peptides presented by the HLA are formed via their cleavage by endoplasmic reticulum aminopeptidases ERAP1 and ERAP2. The aim of this study was to assess the association of combined KIR genes and their HLA-C ligands, as well as ERAP1 and ERAP2 polymorphisms with recurrent implantation failure after in vitro fertilization (RIF). We tested 491 couples who underwent in vitro fertilization (IVF) and 322 fertile couples. Genotype CC rs27044 ERAP1 in female with a male’s HLA-C1C1 or HLA-C1C2 protected from RIF (p/pcorr. = 0.005/0.044, OR = 0.343; p/pcorr. = 0.003/0.027, OR = 0.442, respectively). Genotype TT rs30187 ERAP1 in female with a male’s HLA-C1C2 genotype increased the risk of RIF. Summarizing, in the combination of female ERAP1 and an HLA-C partner, the rs30187 C>T and rs27044 C>G polymorphisms play an important role in implantation failure.
Collapse
|
7
|
Mattorre B, Tedeschi V, Paldino G, Fiorillo MT, Paladini F, Sorrentino R. The emerging multifunctional roles of ERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation. Front Immunol 2022; 13:1002375. [PMID: 36203608 PMCID: PMC9531115 DOI: 10.3389/fimmu.2022.1002375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Endoplasmic Reticulum Aminopeptidase 1 and 2 (ERAP1 and ERAP2) and Insulin Regulated Aminopeptidase (IRAP) are three M1 zinc metalloproteases whose role in antigen processing is the refining of peptidome either in the Endoplasmic reticulum (ERAP1 and ERAP2), or in the endosomes (IRAP). However, other novel and distinct functions are emerging. Here, we focus specifically on ERAP2. This gene has a peculiar evolutionary history, being absent in rodents and undergoing in humans to a balanced selection of two haplotypes, one of which not expressing the full length ERAP2. These observations suggest that its role in antigen presentation is not essential. An additional, less investigated role is in the regulation of the Renin Angiotensin System (RAS). ERAP1 and ERAP2 cleave Angiotensin II (Ang II) into Ang III and IV, which counteract the action of Ang II whereas IRAP is itself the receptor for Ang IV. We have recently reported that macrophages, independently from the haplotype, express and release a N-terminus ERAP2 “short” form which directly binds IRAP and the two molecules are co-expressed in the endosomes and on the cell membrane. This new evidence suggests that the maintenance of the ERAP2 gene in humans could be due to its activity in the regulation of the RAS system, possibly as an Ang IV agonist. Its role in the immune-mediated diseases as well as in disorders more specifically related to an imbalance of the RAS system, including hypertension, pre-eclampsia but also viral infections such as COVID-19, is discussed here.
Collapse
|