1
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Karami N, Barani S, Fani M, Meri S, Shafiei R, Kalantar K. The effects of killer cell immunoglobulin-like receptor (KIR) genes on susceptibility to severe COVID-19 in the Iranian population. BMC Immunol 2024; 25:38. [PMID: 38943065 PMCID: PMC11212229 DOI: 10.1186/s12865-024-00631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Variations in the innate and adaptive immune response systems are linked to variations in the severity of COVID-19. Natural killer cell (NK) function is regulated by sophisticated receptor system including Killer-cell immunoglobulin-like receptor (KIR) family. We aimed to investigate the impact of possessing certain KIR genes and genotypes on COVID19 severity in Iranians. KIR genotyping was performed on 394 age/sex matched Iranians with no underlying conditions who developed mild and severe COVID- 19. The presence and/or absence of 11 KIR genes were determined using the PCR with sequence specific primers (PCR-SSP). RESULTS Patients with mild symptoms had higher frequency ofKIR2DS1 (p = 0.004) and KIR2DS2 (p = 0.017) genes compared to those with severe disease. While KIR3DL3 and deleted variant of KIR2DS4 occurred more frequently in patients who developed a severe form of the disease. In this study, a significant increase of and B haplotype was observed in the Mild group compared to the Severe group (respectively, p = 0.002 and p = 0.02). Also, the prevalence of haplotype A was significantly higher in the Severe group than in the Mild group (p = 0.02). CONCLUSIONS These results suggest that the KIR2DS1, KIR2DS, and B haplotype maybe have a protective effect against COVID-19 severity. The results also suggest the inhibitory gene KIR2DL3 and haplotype A are risk factors for the severity of COVID-19.
Collapse
Affiliation(s)
- Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran
| | - Shaghik Barani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mona Fani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seppo Meri
- Department of Bacteriology & Immunology and Translational immunology Research Program, University of Helsinki Diagnostic Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran.
- Department of Bacteriology & Immunology and Translational immunology Research Program, University of Helsinki Diagnostic Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Teshnizi SH, Mirzazadeh S, Mashhadi N, Meri S, Kabelitz D, Kalantar K. Association study between killer immunoglobulin-like receptor polymorphisms and susceptibility to COVID-19 disease: a systematic review and meta-analysis. Immunol Res 2024; 72:175-184. [PMID: 37874432 DOI: 10.1007/s12026-023-09428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a known virus that leads to a respiratory disease called coronavirus disease 19 (COVID-19). Natural killer (NK) cells, as members of innate immunity, possess crucial roles in restricting viral infections, including COVID-19. Their functions and development depend on receiving signals through various receptors, of which killer cell immunoglobulin-like receptors (KIRs) belong to the most effective ones. Different studies investigated the association between KIR gene content and susceptibility to COVID-19. Since previous studies have yielded contradictory results, we designed this meta-analysis study to draw comprehensive conclusions about COVID-19 risk and KIR gene association. According to PRISMA guidelines, a systematic search was performed in the electronic databases to find all studies investigating KIR gene contents in COVID-19 patients before March 2023. Any association between KIR genes and COVID-19 risk was determined by calculating pooled odds ratio (OR) and 95% confidence interval (CI). After applying the inclusion and exclusion criteria, 1673 COVID-19 patients and 1526 healthy controls from eight studies were included in this meta-analysis. As the main results, we observed a positive association between the 2DL3 (OR = 1.48, 95% CI = 1.17-1.88, P < 0.001) and susceptibility to COVID-19 and a negative association between the 2DP1 and the risk for COVID-19 (OR = 0.48, 95% CI = 0.23-0.99, P = 0.049). This meta-analysis demonstrated that KIR2DL3, as a member of iKIRs, might be associated with an increased risk of COVID-19 disease.
Collapse
Affiliation(s)
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran
| | - Niloofar Mashhadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran.
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Baek IC, Choi EJ, Kim HJ, Choi H, Shin HS, Lim DG, Kim TG. Association of KIR Genes with Middle East Respiratory Syndrome Coronavirus Infection in South Koreans. J Clin Med 2024; 13:258. [PMID: 38202265 PMCID: PMC10779705 DOI: 10.3390/jcm13010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Middle East respiratory syndrome (MERS) is a lower respiratory tract disease caused by a beta coronavirus (CoV) called MERS-CoV, characterized by a high mortality rate. We aimed to evaluate the association between genetic variation in killer cell immunoglobulin-like receptors (KIRs) and the risk of MERS in South Koreans. METHODS KIR genes were genotyped by multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP). A case-control study was performed to identify the odds ratios (OR) of KIR genes for MERS and the association of KIR genes and their ligands, human leukocyte antigens (HLA) genes. RESULTS KIR2DS4D and KIR3DP1F showed higher frequencies in the group of all patients infected with MERS-CoV than in the control group (p = 0.023, OR = 2.4; p = 0.039, OR = 2.7). KIR2DL1, KIR2DP1, and KIR3DP1D were significantly associated with moderate/mild (Mo/Mi) cases. KIR2DL2, KIR2DS1, and KIR3DP1F were affected in severe cases. When we investigated the association between KIR genes and their ligands in MERS patient and control groups, KIR3DL1+/Bw4(80I)+, KIR3DL1+/Bw6+, KIR3DL1+/Bw6-, KIR2DS1+/C2+, and KIR3DS+/Bw4(80I)+ were associated with MERS. KIR3DL1+/Bw6- was found in Mo/Mi cases. KIR2DS1+/C2+ and KIR2DS2+/C1+ were found in severe cases. CONCLUSION Further investigations are needed to prove the various immune responses of MERS-CoV-infected cells according to variations in the KIR gene and ligand gene. A treatment strategy based on current research on the KIR gene and MERS-CoV will suggest potential treatment targets.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Eun-Jeong Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Hyoung-Jae Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Haeyoun Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Infectious Diseases, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea;
| | - Dong-Gyun Lim
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|