1
|
Guo S, Yu Y, Bu Y, Ren J, Zhang L, Ma X, Li J, Li A, Liu X. Pan-cancer analysis reveals the prognostic and immunomodulatory potential of super-enhancer-induced ANGPT2 and experimental validation in colorectal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03818-5. [PMID: 39695006 DOI: 10.1007/s12094-024-03818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND ANGPT2 plays important roles in cancer development. However, there is still no systematic analysis of ANGPT2 in pan-cancer. METHODS In this paper, we conducted a pan-cancer analysis to investigate the characteristics of ANGPT2. Furthermore, we investigated the impact of genetic and epigenetic factors on ANGPT2 expression by bioinformatics and assays. RESULTS By several TCGA and GEO databases, we identified elevated expression of ANGPT2 in various tumor types. Besides, high expression of ANGPT2 induced poor prognosis of patients in multiple tumors. Through enrichment analysis, we found that ANGPT2 participated in various biological processes, including angiogenesis and immunity. Various immune analyses indicated that high expression of ANGPT2 might suggest a propensity towards a hot tumor microenvironment, but its impact on immunotherapy was negative. Bioinformatics analysis and experiments confirmed that genetic and epigenetic factors explained part of the mechanism behind ANGPT2 abnormal expression. Finally, we screened candidate drugs targeting the ANGPT2 protein by molecular docking and molecular dynamics simulation. CONCLUSION ANGPT2 has diagnostic and prognostic values in multiple tumor types. Though with a hot tumor microenvironment, ANGPT2 high expression patients are not suitable for immunotherapy because of its proangiogenic function, contributing to selecting the exact patients for immunotherapy. Both genetic and epigenetic factors influenced ANGPT2 expression, with the influence of super-enhancer being more pronounced. This paper for the first time did the systematic analysis of ANGPT2 and showed its characteristic in pan-cancer. We summarized the biomarker role of ANGPT2 on tumor diagnosis and prognosis, as well as its target role on tumor immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Yanan Yu
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Yulan Bu
- Department of Radiotherapy, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jiaqiu Li
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| | - Ao Li
- Department of Oncology, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
2
|
Luo X, Ni H, Lu J, Feng J, Mou X, Zhang J. Injectable and Degradable Zwitterionic Cryogels as Cancer Vaccine Platforms to Prevent Cancer Recurrence after Surgery. ACS APPLIED BIO MATERIALS 2024; 7:8696-8708. [PMID: 39630107 DOI: 10.1021/acsabm.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cancer has become a highly prevalent disease and poses serious threats to human health. Conventional cancer treatments still face high risks of recurrence. Training the immune system to recognize and eliminate tumors via external stimulation, such as vaccines, emerges as a promising approach for cancer prevention and treatment. However, injectable vaccines may have limited immune activation, causing difficulties in maintaining long-term immune surveillance of tumorigenesis by tumor-specific cytotoxic T cells. Here, degradable zwitterionic cryogels were prepared using the cryogelation technique. The cryogenic preparation maintained the biological activities of tumor antigens and immune adjuvants loaded in the cryogels. The macroporous structure endowed the injectability of cryogels into the body via conventional syringes. In the presence of proteases, the cryogels degraded, allowing sustained release of antigens and adjuvants, ensuring continued dendritic cell (DC) recruitment and antigen presentation to maturing tumor-specific cytotoxic T cells. In vivo experiments demonstrated that the cryogel cancer vaccines elicited robust immune activation and effectively modulated tumor microenvironments. The combination with photothermal therapy significantly inhibited tumor growth, showing great potential for preventing postoperative recurrence. Additionally, the zwitterionic cryogels were biocompatible without obvious toxicities during degradation. The cryogels could serve as effective vaccine platforms to prevent cancer recurrence after surgery.
Collapse
Affiliation(s)
- Xinxin Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Haifeng Ni
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jie Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jie Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, PR China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
3
|
Gubala J, Mieville V, Benamran D, Tille JC, Valerio M, Nowak-Sliwinska P. Generation and maintenance of kidney and kidney cancer organoids from patient-derived material for drug development and precision oncology. Mol Ther Methods Clin Dev 2024; 32:101368. [PMID: 39659758 PMCID: PMC11629258 DOI: 10.1016/j.omtm.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Despite significant advancements in targeted- and immunotherapies, millions of patients with cancer still succumb to the disease each year. In renal cell carcinoma, up to 25% of metastatic patients do not respond to first-line therapies. This reality underscores the urgent need for innovative or repurposed therapies to effectively treat these patients. Patient-derived organoids represent a promising model for evaluating treatment efficacy and toxicity, offering a potential breakthrough in personalized medicine. However, utilizing organoid models for drug screening presents several challenges. Our protocol aims to address these obstacles by outlining a practical approach to successfully isolate and cultivate patient-derived renal cell carcinoma and kidney organoids for treatment screening purposes.
Collapse
Affiliation(s)
- Jakub Gubala
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Valentin Mieville
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | | | - Massimo Valerio
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Mazetto RASV, Monteiro SON, Bulhões E, Defante MLR, Antunes VLJ, Balieiro CCA, Feitoza L, Ferreira ALC, Carvalho AM, Guida C. The cardiotoxic effects of CAR-T cell therapy: An updated systematic review and meta-analysis. Eur J Haematol 2024; 113:798-809. [PMID: 39171519 DOI: 10.1111/ejh.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Chimeric antigen receptor T-cell (CAR-T) therapy has shown promise in treating hematologic malignancies, yet its potential cardiotoxic effects require thorough investigation. OBJECTIVES We aim to conduct a systematic review and meta-analysis to examine the cardiotoxic effects of CAR-T therapy in adults with hematologic malignancies. METHODS We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials for studies reporting cardiovascular outcomes, such as arrhythmias, heart failure, and reduced left ventricle ejection fraction (LVEF). RESULTS Our analysis of 20 studies involving 4789 patients revealed a 19.68% incidence rate of cardiovascular events, with arrhythmias (7.70%), heart failure (5.73%), and reduced LVEF (3.86%) being the most prevalent. Troponin elevation was observed in 23.61% of patients, while NT-Pro-BNP elevation was observed in 9.4. Subgroup analysis showed higher risks in patients with pre-existing conditions, such as atrial arrhythmia (OR 3.12; p < .001), hypertension (OR 1.85; p = .002), previous heart failure (OR 3.38; p = .003), and coronary artery disease (OR 2.80; p = .003). CONCLUSION Vigilant cardiovascular monitoring is crucial for patients undergoing CAR-T therapy to enhance safety and treatment efficacy.Novelty Statements.
Collapse
Affiliation(s)
| | | | - Elísio Bulhões
- Medicine Department, Faculty of Higher Superior of the Amazon Reunida, Redenção, Brazil
| | | | - Vanio L J Antunes
- Medicine Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | | | - Luanna Feitoza
- Medicine Department, Fametro University Center, Manaus, Brazil
| | - André L C Ferreira
- Medicine Department, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Amadeu M Carvalho
- Medicine Department, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Guida
- Division of Cardiology, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| |
Collapse
|
5
|
Rosichini M, Del Baldo G, De Luca CD, Benini F, Genah S, Vinci M, Cerimele A, Coccetti M, Flamini S, Carsetti R, Cacchione A, Carai A, Mastronuzzi A, Locatelli F, Velardi E. Pediatric brain tumor patients display altered immune activation and reduced lymphopoiesis at the onset of disease. NPJ Precis Oncol 2024; 8:269. [PMID: 39567679 PMCID: PMC11579487 DOI: 10.1038/s41698-024-00755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Optimal immune function is crucial in preventing cancer development and growth and for the success of anti-cancer therapies. Here, we characterized the peripheral immunological status of 83 steroids-naïve pediatric patients with central nervous system neoplasia at the disease onset. Tumors were classified into low-grade gliomas (LGG), high-grade gliomas (HGG), medulloblastoma, and other tumors. We revealed that glioma patients showed an altered lymphocyte pool. T-cells of HGG patients shifted from naïve to effector memory phenotype. LGG patients exhibited T-cell central memory expansion and higher T-cell activation. Interestingly, HGG patients displayed reduced thymic function. Furthermore, LGG and HGG patients showed reduced activated B-cells and suboptimal B-cell formation. Our data demonstrate that glioma patients have reduced lymphopoiesis at the disease onset, which could contribute to the systemic lymphopenia characterizing these patients. This study offers novel insights into the immunological status of brain tumor patients which may help in designing more effective treatments.
Collapse
Affiliation(s)
- Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmen Dolores De Luca
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Benini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Shirley Genah
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alfredo Cerimele
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marianna Coccetti
- Research Core Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Flamini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B cell unit Research Area of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
7
|
Zhou L, Zhu Y, Guo F, Long H, Yin M. Pan-cancer analysis of oncogenic role of CEP55 and experiment validation in clear cell renal cell carcinoma. Sci Rep 2024; 14:28279. [PMID: 39550427 PMCID: PMC11569145 DOI: 10.1038/s41598-024-80057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Immunotherapy has emerged as a vital component in the contemporary landscape of cancer treatment. Recent studies have indicated that CEP55 plays an oncogenic role; however, its specific mechanisms in promoting tumor proliferation and its potential value in prognosis and immunotherapy prediction across various cancers remain to be elucidated. CEP55 was significantly overexpressed in 22 cancer types compared with their adjacent normal tissues. Elevated CEP55 expression was positively correlated with younger onset age, worse tumor stage, lower response rate to the first treatment, lower tumor-free survival rate, and poorer overall survival (OS) and disease-free survival (DFS) prognosis in most cancers. Moreover, CEP55 expression was positively correlated with its binding and related genes, such as KIF11 (R = 0.83, P < 0.001), CDK1 (R = 0.77, P < 0.001) and CCNA2 (R = 0.76, P < 0.001), and the classic proliferation markers, including MKI67 and PCNA. Enrichment analyses indicated that CEP55 was predominantly associated with cell division, cell cycle activities and proliferation. Immune cell infiltration analysis by TIMER2.0 revealed that CEP55 expression was positively correlated with many kinds of infiltrating cells, such as Th2 cells and some CD4+ T cell subsets. The CEP55 expression was positively associated with increased MSI and TMB in various cancers. Our analyzation indicated that the CEP55 expression level in patients with complete remission (CR) or partial remission (PR) to anti-PDL1 therapy was significantly higher than patients with stable disease (SD) or progressive disease (PD) based on IMvigor210 cohort. We also used Gene Set Cancer Analysis (GSCA) to predict a serious of small molecule CEP55 targeted drugs, such as AZ628, SB52334, SB590885, A-770,041, AZD7762, Elesclomol, panobinostat, BRD-A94377914, and LRRK2-IN-1. Furthermore, the patients with high level of CEP55-posivie tumor epithelial cells had inferior overall survival in ccRCC according to single-cell analysis. Finally, our wet lab experiments verified that the CEP55-positive rate in ccRCC tissues (19/30, 63.3%) was significantly higher than that in renal adjacent tissues (10/30, 33.3%). The clinicopathologic analysis revealed that CEP55 protein level was significantly associated with tumor size (P = 0.044), histology grade (P < 0.001) and stage (P = 0.034). Our study indicated that CEP55 overexpression in most caner types was associated with poor prognosis. Notably, CEP55 was closely relevant to immune cell infiltration and impacted the response to immunotherapy and small molecule drugs against cancers.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yimeng Zhu
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Shaoxing, Zhejiang, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Huimin Long
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Min Yin
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
8
|
Moon S, Jung M, Go S, Hong J, Sohn HS, Kim C, Kang M, Lee BJ, Kim J, Lim J, Kim BS. Engineered Nanoparticles for Enhanced Antitumoral Synergy Between Macrophages and T Cells in the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410340. [PMID: 39252658 DOI: 10.1002/adma.202410340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Indexed: 09/11/2024]
Abstract
T cells and macrophages have the potential to collaborate to eliminate tumor cells efficiently. Macrophages can eliminate tumor cells through phagocytosis and subsequently activate T cells by presenting tumor antigens. The activated T cells, in turn, can kill tumor cells and redirect tumor-associated macrophages toward an antitumoral M1 phenotype. However, checkpoint molecules expressed on tumor cells impede the collaborative action of these immune cells. Meanwhile, monotherapy with a single immune checkpoint inhibitor (ICI) for either macrophages or T cells yields suboptimal efficacy in cancer patients. To address this challenge, here a nanoparticle capable of efficiently delivering dual ICIs to tumors for both macrophages and T cells is developed. These programmed cell death protein 1 (PD-1)-transfected macrophage membrane-derived nanoparticles (PMMNPs) can target tumors and provide signal-regulatory protein alpha and PD-1 to block CD47 and programmed cell death-ligand 1 (PD-L1), respectively, on tumor cells. PMMNPs enhance macrophage-mediated cancer cell phagocytosis and antigen presentation, promote T cell activation, and induce the reprogramming of macrophages toward an antitumoral phenotype. In syngeneic tumor-bearing mice, PMMNPs demonstrate superior therapeutic efficacy compared to nanoparticles delivering single ICIs and non-targeted delivery of anti-CD47 and anti-PD-L1 antibodies. PMMNPs capable of augmenting the antitumoral interplay between macrophages and T cells may offer a promising avenue for cancer immunotherapy.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Joon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Institute of Chemical Processes, and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Quist M, van Os M, van Laake LW, Bovenschen N, Crnko S. Integration of circadian rhythms and immunotherapy for enhanced precision in brain cancer treatment. EBioMedicine 2024; 109:105395. [PMID: 39413708 PMCID: PMC11530607 DOI: 10.1016/j.ebiom.2024.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Circadian rhythms significantly impact (patho)physiological processes, with disruptions linked to neurodegenerative diseases and heightened cancer vulnerability. While immunotherapy has shown promise in treating various cancers, its efficacy in brain malignancies remains limited. This review explores the nexus of circadian rhythms and immunotherapy in brain cancer treatment, emphasising precision through alignment with the body's internal clock. We evaluate circadian regulation of immune responses, including cell localisation and functional phenotype, and discuss how circadian dysregulation affects anti-cancer immunity. Additionally, we analyse and assess the effectiveness of current immunotherapeutic approaches for brain cancer including immune checkpoint blockades, adoptive cellular therapies, and other novel strategies. Future directions, such as chronotherapy and personalised treatment schedules, are proposed to optimise immunotherapy precision against brain cancers. Overall, this review provides an understanding of the often-overlooked role of circadian rhythms in brain cancer and suggests avenues for improving immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Matthias Quist
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maas van Os
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linda W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre and Circulatory Health Research Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Goldmann O, Medina E. Metabolic pathways fueling the suppressive activity of myeloid-derived suppressor cells. Front Immunol 2024; 15:1461455. [PMID: 39534601 PMCID: PMC11554506 DOI: 10.3389/fimmu.2024.1461455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are considered an aberrant population of immature myeloid cells that have attracted considerable attention in recent years due to their potent immunosuppressive activity. These cells are typically absent or present in very low numbers in healthy individuals but become abundant under pathological conditions such as chronic infection, chronic inflammation and cancer. The immunosuppressive activity of MDSC helps to control excessive immune responses that might otherwise lead to tissue damage. This same immunosuppressive activity can be detrimental, particularly in cancer and chronic infection. In the cancer setting, tumors can secrete factors that promote the expansion and recruitment of MDSC, thereby creating a local environment that favors tumor progression by inhibiting the effective immune responses against cancer cells. This has made MDSC a target of interest in cancer therapy, with researchers exploring strategies to inhibit their function or reduce their numbers to improve the efficacy of cancer immunotherapies. In the context of chronic infections, MDSC can lead to persistent infections by suppressing protective immune responses thereby preventing the clearance of pathogens. Therefore, targeting MDSC may provide a novel approach to improve pathogen clearance during chronic infections. Ongoing research on MDSC aims to elucidate the exact processes behind their expansion, recruitment, activation and suppressive mechanisms. In this context, it is becoming increasingly clear that the metabolism of MDSC is closely linked to their immunosuppressive function. For example, MDSC exhibit high rates of glycolysis, which not only provides energy but also generates metabolites that facilitate their immunosuppressive activity. In addition, fatty acid metabolic pathways, such as fatty acid oxidation (FAO), have been implicated in the regulation of MDSC suppressive activity. Furthermore, amino acid metabolism, particularly arginine metabolism mediated by enzymes such as arginase-1, plays a critical role in MDSC-mediated immunosuppression. In this review, we discuss the metabolic signature of MDSC and highlight the therapeutic implications of targeting MDSC metabolism as a novel approach to modulate their immunosuppressive functions.
Collapse
Affiliation(s)
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
11
|
Mamede I, Escalante-Romero L, Celso DSG, Reis PCA, Dacoregio MI, Alves AC, Stecca C. Immunotherapy Plus Chemotherapy Versus Chemotherapy Alone as First-Line Treatment for Advanced Urothelial Cancer: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Genitourin Cancer 2024; 22:102154. [PMID: 39094286 DOI: 10.1016/j.clgc.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Platinum-based chemotherapy (CTX) has historically been the primary treatment for advanced urothelial cancer (aUC), with limited alternative options. The therapeutic landscape experienced a paradigm shift following the results of the EV-302 and Checkmate-901 trials, which led to the approval of Enfortumab vedotin plus pembrolizumab (EV-P) as the preferred first-line treatment, and nivolumab plus CTX for those unable to receive the preferred regimen. Currently, further investigations are underway to explore PD-1 and PD-L1 inhibitors in the initial treatment of aUC. PATIENTS AND METHODS We conducted a systematic search across PubMed, Embase, and the Cochrane Library for randomized controlled trials (RCTs) comparing immune checkpoint inhibitors (ICI)-CTX combinations versus CTX alone as first-line treatment for advanced UC. Employing a random-effects model, we pooled hazard ratios (HR) with 95% confidence intervals (CI). RESULTS Our analysis encompassed 3 RCTs, involving 2162 participants, with 51.16% randomized to combination therapy with platinum-based CTX. Compared to CTX alone, immune-chemotherapy significantly improved overall survival (HR 0.84; 95% CI 0.75-0.93; P < .01), progression-free survival (HR 0.78; 95% CI 0.70-0.86; P < .01), and objective response rate (RR 1.20; 95% CI 1.06-1.36; P < .01), while elevating the risk of immune-related adverse events (P-value = .02). CONCLUSION In this meta-analysis of RCTs, ICI plus CTX demonstrated a significant association with improved survival at the expense of an increased risk of immune-related adverse events. Therefore, our findings suggest that this combination should be considered as an initial treatment for aUC in platinum-eligible patients who cannot receive EV-P.
Collapse
Affiliation(s)
- Isadora Mamede
- Department of Medicine, Federal University of Sao Joao del-Rei, Divinopolis, Minas Gerais 35501-296, Brazil.
| | - Lorena Escalante-Romero
- Department of Pediatric Oncology, Federal University of Sao Paulo, Sao Paulo, Sao Paulo 04021-001, Brazil
| | - Davi S Gonçalves Celso
- Department of Medicine, Federal University of Vicosa, Vicosa, Minas Gerais 36570-900, Brazil
| | - Pedro C Abrahao Reis
- Department of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Rio De Janeiro 21044-020, Brazil
| | - Maria Inez Dacoregio
- Department of Medicine, Universidade Estadual do Centro Oeste-UNICENTRO, Guarapuava, Parana 85015-430, Brazil
| | - Ana Caroline Alves
- Department of Clinical Oncology, Sao Domingos Hospital/DASA, Sao Luis, Maranhao 65060-645, Brazil
| | - Carlos Stecca
- Department of Clinical Oncology, Mackenzie Evangelical University Hospital, Curitiba, Parana 80730-150, Brazil
| |
Collapse
|
12
|
Esposito A, Ferraresi A, Vallino L, Garavaglia B, Dhanasekaran DN, Isidoro C. Three-Dimensional In Vitro Cell Cultures as a Feasible and Promising Alternative to Two-Dimensional and Animal Models in Cancer Research. Int J Biol Sci 2024; 20:5293-5311. [PMID: 39430243 PMCID: PMC11488579 DOI: 10.7150/ijbs.96469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer represents one of the diseases with the highest mortality rate worldwide. The burden of cancer continues to increase, not only affecting the health-related quality of life of patients but also causing an elevated global financial impact. The complexity and heterogeneity of cancer pose significant challenges in research and clinical practice, contributing to increase the failure rate of clinical trials for antitumoral drugs. This is partially due to the fact that preclinical models still present important limitations in faithfully recapitulating human tumors to serve as reliable indicators of drug effectiveness. Up to now, research and development strategies employ expensive animal models (including the so-called "humanized mice") that not only raise ethical concerns, but also frequently fail to accurately predict responses to anticancer drugs because they do not faithfully replicate human physiology as well as the patient's tumor microenvironment. On the other side, traditional two-dimensional (2D) cell cultures fail to adequately reproduce the structural organization of tumor and the cellular heterogeneity found in vivo. The growing necessity to develop more accurate cancer models has increasingly emphasized the importance of three-dimensional (3D) in vitro cell cultures, such as cancer-derived spheroids and organoids, as promising alternatives to bridge the gap between 2D and animal models. In this review, we provide a brief overview focusing on 3D in vitro cell cultures as preclinical models capable of properly reproducing the tissue organization, biological composition, and complexity of in vivo tumors in a fine-tuned microenvironment. Despite their limitations, these models collectively enhance our understanding of the mechanisms underlying cancer and may offer the potential for a more reliable assessment of drug efficacy before clinical testing and, consequently, improve therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
13
|
Ungureanu L, Vasilovici AF, Halmágyi SR, Trufin II, Apostu AP, Prisecaru M, Șenilă SC. Immunotherapy in Basal Cell Carcinoma. J Clin Med 2024; 13:5730. [PMID: 39407789 PMCID: PMC11476842 DOI: 10.3390/jcm13195730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Basal cell carcinoma (BCC) is the most frequent of all cancers, with an increasing incidence. The first line therapy is surgical excision, but topical therapies can be used in low-risk superficial BCCs, while the more advanced, unresectable, or metastatic BCCs benefit from systemic therapies with hedgehog inhibitors and immunotherapy. The purpose of this review is to highlight local and systemic immunotherapies and their efficacy in the management of BCCs. Local therapies can be considered in superficial and low-risk nodular BCCs, with imiquimod frequently used for its antitumor and immunoregulatory properties. Imiquimod alone demonstrated higher histological clearance rates, but patients treated with imiquimod experienced more adverse events than ones treated with other therapies. Imiquimod can be used as an adjuvant before Mohs micrographic surgery and can also be combined with other local therapies, like curettage, electrodesiccation, cryosurgery, and photodynamic therapy, with some treatment methods yielding results comparable with the surgery. Interferons and Interleukin-2 were evaluated in a small number of studies with different results. Systemic immunotherapies with programmed death-ligand 1 (PD-L1) inhibitors showed inconsistent results in patients with advanced BCCs, being effective in some patients that progressed on or were intolerant to hedgehog pathway inhibitors (HHI).
Collapse
Affiliation(s)
- Loredana Ungureanu
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.U.)
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| | - Alina Florentina Vasilovici
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.U.)
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| | - Salomea-Ruth Halmágyi
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | | | - Adina Patricia Apostu
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | - Manuela Prisecaru
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | - Simona Corina Șenilă
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.U.)
- Department of Dermatology, Emergency County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Bartoszewska E, Tota M, Kisielewska M, Skowron I, Sebastianka K, Stefaniak O, Molik K, Rubin J, Kraska K, Choromańska A. Overcoming Antigen Escape and T-Cell Exhaustion in CAR-T Therapy for Leukemia. Cells 2024; 13:1596. [PMID: 39329777 PMCID: PMC11430486 DOI: 10.3390/cells13181596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Leukemia is a prevalent pediatric cancer with significant challenges, particularly in relapsed or refractory cases. Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a personalized cancer treatment, modifying patients' T cells to target and destroy resistant cancer cells. This study reviews the current therapeutic options of CAR-T therapy for leukemia, addressing the primary obstacles such as antigen escape and T-cell exhaustion. We explore dual-targeting strategies and their potential to improve treatment outcomes by preventing the loss of target antigens. Additionally, we examine the mechanisms of T-cell exhaustion and strategies to enhance CAR-T persistence and effectiveness. Despite remarkable clinical successes, CAR-T therapy poses risks such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Our findings highlight the need for ongoing research to optimize CAR-T applications, reduce toxicities, and extend this innovative therapy to a broader range of hematologic malignancies. This comprehensive review aims to provide valuable insights for improving leukemia treatment and advancing the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Kamil Sebastianka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Oliwia Stefaniak
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland (M.K.); (I.S.); (K.S.); (O.S.); (K.M.); (J.R.); (K.K.)
- Student Research Group No K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
15
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
16
|
Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci 2024; 12:4607-4629. [PMID: 39115141 DOI: 10.1039/d3bm02133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chemodynamic therapy (CDT), as a new type of therapy, has received more and more attention in the field of tumor therapy in recent years. By virtue of the characteristics of weak acidity and excess H2O2 in the tumor microenvironment, CDT uses the Fenton or Fenton-like reactions to catalyze the transformation of H2O2 into strongly oxidizing ˙OH, resulting in increased intracellular oxidative stress for lipid oxidation, protein inactivation, or DNA damage, and finally inducing apoptosis of cancer cells. In particular, CDT has the advantage of tumor specificity. However, the therapeutic efficacy of CDT frequently depends on the catalytic efficiency of the Fenton reaction, which needs the presence of sufficient H2O2 and catalytic metal ions. Relatively low concentrations of H2O2 and the lack of catalytic metal ions usually limit the final therapeutic effect. The combination of CDT with immunotherapy will be an effective means to improve the therapeutic effect. In this review paper, the recent progress related to nanomedicine for the combination of CDT and immunotherapy is summarized. Immunogenic death of tumor cells, immune checkpoint inhibitors, and stimulator of interferon gene (STING) activation as the main immunotherapy strategies to combine with CDT are discussed. Finally, the challenges and prospects for the clinical translation and future development direction are discussed.
Collapse
Affiliation(s)
- Waqas Ahmad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wasim Sajjad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
17
|
Lu C, Zou L, Wang Q, Sun M, Shi T, Xu S, Meng F, Du J. Potent antitumor activity of a bispecific T-cell engager antibody targeting the intracellular antigen KRAS G12V. BIOMOLECULES & BIOMEDICINE 2024; 24:1424-1434. [PMID: 38752985 PMCID: PMC11379025 DOI: 10.17305/bb.2024.10431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 09/07/2024]
Abstract
Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is one of the most frequent oncogenes. However, there are limited treatment options due to its intracellular expression. To address this, we developed a novel bispecific T-cell engager (BiTE) antibody targeting HLA-A2/KRAS G12V complex and CD3 (HLA-G12V/CD3 BiTE). We examined its specific binding to tumor cells and T cells, as well as its anti-tumor effects in vivo. HLA-G12V/CD3 BiTE was expressed in Escherichia coli and its binding affinities to CD3 and HLA-A2/KRAS G12V were measured by flow cytometry, along with T-cell activation. In a xenograft pancreatic tumor model, the HLA-G12V/CD3 BiTE's anti-tumor effects were assessed through tumor growth, survival time, and safety. Our results demonstrated specific binding of HLA-G12V/CD3 BiTE to tumor cells with an HLA-A2/KRAS G12V mutation and T cells. The HLA-G12V/CD3 BiTE also activated T-cells in the presence of tumor cells in vitro. HLA-G12V/CD3 BiTE in vivo testing showed delayed tumor growth without severe toxicity to major organs and prolonged mouse survival. This study highlights the potential of constructing BiTEs recognizing an HLA-peptide complex and providing a novel therapy for cancer treatment targeting the intracellular tumor antigen.
Collapse
Affiliation(s)
- Changchang Lu
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Lu Zou
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiaoli Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengna Sun
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianyu Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuang Xu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fanyan Meng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Juan Du
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Kim H, Shin YE, Yoo HJ, Kim JY, Yoo JJ, Kim SG, Kim YS. Atezolizumab-Induced Ulcerative Colitis in Patient with Hepatocellular Carcinoma: Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1422. [PMID: 39336463 PMCID: PMC11433725 DOI: 10.3390/medicina60091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Immune check inhibitor (ICI) colitis is one of most common and adverse side effects of ICI. However, there was no case report of ulcerative colitis (UC)-mimicking colitis after atezolizumab use in hepatocellular carcinoma (HCC) to our knowledge. Materials and Methods: We would like to introduce the case of a patient with Stage IV HCC who complained of abdominal pain, diarrhea and rectal bleeding after two cycles of atezolizumab/bevacizumab chemotherapy and was then diagnosed with UC-mimicking colitis. Results: Endoscopy revealed typical findings of UC, suggesting diagnosis of UC-mimicking colitis. The patient was treated with systemic steroids and oral mesalamine, which significantly improved his symptoms, which were also supported by endoscopic findings. The patient resumed chemotherapy with atezolizumab and bevacizumab without any interruption to the chemotherapy schedule. Conclusions: Early endoscopic evaluation is pivotal to diagnosing UC-mimicking colitis. If diagnosed, UC-based treatments such as steroids and mesalamine should be strongly considered. Given previous reports of inflammatory bowel disease (IBD) flare-ups after immunotherapy, routine lower endoscopy, performed together with upper endoscopy before atezolizumab/bevacizumab therapy, is promising to patients.
Collapse
Affiliation(s)
- Hyuk Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (H.K.); (Y.E.S.)
| | - Yoon E Shin
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (H.K.); (Y.E.S.)
| | - Hye-Jin Yoo
- Department of Internal Medicine, Soonchunhyang University School of Medicine, Cheonan 31151, Republic of Korea; (H.-J.Y.); (J.-Y.K.)
| | - Jae-Young Kim
- Department of Internal Medicine, Soonchunhyang University School of Medicine, Cheonan 31151, Republic of Korea; (H.-J.Y.); (J.-Y.K.)
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (S.G.K.); (Y.S.K.)
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (S.G.K.); (Y.S.K.)
| | - Young Seok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (S.G.K.); (Y.S.K.)
| |
Collapse
|
19
|
Wang X, Wu J, Xie W. Evolution of Treatment Strategies for Gestational Trophoblastic Neoplasia: Chemotherapy, Immunotherapy, and Molecular Targeted Therapy. Curr Treat Options Oncol 2024; 25:1055-1062. [PMID: 39052205 DOI: 10.1007/s11864-024-01235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
OPINION STATEMENT In addressing Gestational Trophoblastic Neoplasia (GTN), it is imperative to acknowledge the evolving landscape of treatment options, especially in light of the challenges posed by traditional methods. While historically, surgical interventions, radiation therapy, and chemotherapeutic agents have been the mainstays, the emergence of resistance and high-risk scenarios necessitates a reevaluation of our therapeutic approaches. Our review highlights the promising advancements in immunotherapy and molecular targeted therapy as viable alternatives for GTN management. The introduction of immune checkpoint inhibitors and kinase inhibitors offers a paradigm shift, particularly for patients resistant to conventional chemotherapy regimens. These novel therapies not only exhibit efficacy but also demonstrate manageable toxicity profiles, particularly in high-risk cases. However, integrating these innovative treatments into established international guidelines presents a formidable task. As we move forward, it is imperative that future research not only prioritizes fertility preservation but also rigorously evaluates long-term toxicity implications. International collaboration becomes pivotal in addressing the nuances of this rare and complex disease. In conclusion, our review underscores the need for a nuanced approach to GTN treatment, one that prioritizes reduced toxicity and improved quality of life. By embracing the advancements in immunotherapy and molecular targeted therapy, we can pave the way for more effective and patient-centered care in the management of GTN.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Jianlei Wu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
20
|
Kattimani V, Bhukya NKN, Panga GSK, Chakrabarty A, Lingamaneni P. Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review. J Maxillofac Oral Surg 2024; 23:763-771. [PMID: 39118900 PMCID: PMC11303611 DOI: 10.1007/s12663-024-02251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Nanotechnology has shown potential in treating different types of cancers. In particular, nano-drug delivery systems (DDSs) offer a promising strategy for treating oral cancer. By customizing therapy and improving drug delivery, these systems can improve outcomes for patients. Hence, a review was conducted to assess the current evidence and explore the use of DDSs for treating oral cancer. Aim To comprehensively explore the nano-drug carriers and target delivery for oral cancer therapy and to discuss the benefits, challenges, and potential to guide future research and clinical practice. Methodology A systematic search of articles archived in PubMed, Scopus, and Cochrane using keywords such as Nano, drug carrier, target drug delivery, and oral cancer was performed to fulfill the objectives from inception till February 2, 2024. Articles providing insights into nano-drug carriers in oral cancer were included. Results The results revealed a total of 156 articles. After duplicate removal, 136 articles were screened for title and abstract as per the inclusion and exclusion criteria. A total of 113 articles were excluded with reasons. Out of the remaining 23 articles, only 11 were included for qualitative data synthesis. Conclusion The literature revealed scarcity of oral cancer-related work using DDSs. Qualitative synthesis of data revealed that nano-drug carriers demonstrated a promising avenue for targeted therapeutic approaches in oral cancer, despite the challenges and their potential benefits. Continued research and development in this field are crucial to overcoming these challenges and fully realizing the potential of nano-drug carriers in revolutionizing oral cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-024-02251-z.
Collapse
Affiliation(s)
- Vivekanand Kattimani
- SIBAR Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh 522509 India
| | - Nom Kumar Naik Bhukya
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | | | | |
Collapse
|
21
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
22
|
Varnier R, Fontaine-Delaruelle C, Freymond N, Essongue A, Bouali A, Boschetti G, Lebosse F, Tartas S, Milley S, Cugnet-Anceau C, Novel-Catin E, Joubert B, Massy E, Dalle S, Maillet D. Evolving Practices in Immune-Related Adverse Event Management: Insights From the IMMUCARE Multidisciplinary Board. JCO Oncol Pract 2024:OP2400042. [PMID: 39038252 DOI: 10.1200/op.24.00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/20/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSE The management of immune-related adverse events (irAEs) requires multidisciplinary boards to handle complex cases. This study aimed to examine the evolving practices of the IMMUCARE board and to evaluate its impact on clinical practices. MATERIALS AND METHODS The IMMUCARE board gathers oncologists and organ specialists from the Cancerology Institute of the Lyon University Hospital since 2018. We conducted a retrospective analysis of its activity (participants' specialty, referred cases, and recommendations) from 2018 to 2021, coupled with a survey among the physicians who participated. RESULTS Across 68 board meetings, 245 cases from 195 patients were discussed. Each board had a median of six participants (IQR, 5-8). Participation rates varied across specialties and also over time (participation of nephrologists and rheumatologists significantly increased over time, whereas it decreased for endocrinologists). Most of the referred patients (89%) were treated at our center. Only 4% of referrals concerned eligibility for immune checkpoint inhibitor (ICI), whereas the majority pertained to irAEs. The board recommended ICI interruption for 56% and steroids for 41% of them. Immunosuppressants were recommended in 17% of cases, with a notable increase over time. ICI reintroduction was debated in 50% of cases, and the board identified a definitive contraindication in 26% of them. The survey of 49 of 98 physicians showed that the board significantly affected immunosuppressant introduction and ICI rechallenge decisions. The board's educational and collaborative benefits were highlighted, but time constraints posed challenges. CONCLUSION Our 4-year analysis of irAE management practices reveals changing patterns in the distribution of cases presented and in specialists' involvement. Dedicated multidisciplinary boards remain essential, particularly for intricate cases. Expanding access to these boards is crucial to ensure comprehensive care for all patients.
Collapse
Affiliation(s)
- Romain Varnier
- Department of Medical Oncology, Hospices Civils de Lyon, Pierre-Bénite, France
- Research on Healthcare Performance (RESHAPE), INSERM U1290, Université Claude Bernard Lyon 1, Lyon, France
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Clara Fontaine-Delaruelle
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Respiratory Medicine, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Nathalie Freymond
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Respiratory Medicine, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Aurore Essongue
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Anissa Bouali
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Cardiology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Gilles Boschetti
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Gastroenterology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Fanny Lebosse
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Hepatology, Lyon Liver Institute, Hospices Civils de Lyon, Lyon, France
| | - Sophie Tartas
- Department of Medical Oncology, Hospices Civils de Lyon, Pierre-Bénite, France
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
| | - Sarah Milley
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Dermatology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Christine Cugnet-Anceau
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Endocrinology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Etienne Novel-Catin
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Nephrology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Bastien Joubert
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Neuro-Oncology, Hospices Civils de Lyon, Bron, France
| | - Emmanuel Massy
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Rheumatology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Stéphane Dalle
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Department of Dermatology, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Denis Maillet
- Department of Medical Oncology, Hospices Civils de Lyon, Pierre-Bénite, France
- ImmuCare (Immunology Cancer Research), Institut de Cancérologie des Hospices Civils de Lyon, Lyon, France
- Faculté de médecine Jacques Lisfranc, Saint-Etienne, France
| |
Collapse
|
23
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
24
|
Aghakhani A, Pezeshki PS, Rezaei N. The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy. Expert Opin Investig Drugs 2024; 33:721-740. [PMID: 38795060 DOI: 10.1080/13543784.2024.2360209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Alieva M, Barrera Román M, de Blank S, Petcu D, Zeeman AL, Dautzenberg NMM, Cornel AM, van de Ven C, Pieters R, den Boer ML, Nierkens S, Calkoen FGJ, Clevers H, Kuball J, Sebestyén Z, Wehrens EJ, Dekkers JF, Rios AC. BEHAV3D: a 3D live imaging platform for comprehensive analysis of engineered T cell behavior and tumor response. Nat Protoc 2024; 19:2052-2084. [PMID: 38504137 DOI: 10.1038/s41596-024-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024]
Abstract
Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.
| | - Mario Barrera Román
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sam de Blank
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Diana Petcu
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Amber L Zeeman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Cesca van de Ven
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Friso G J Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
- Department of Hematology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johanna F Dekkers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Czapla J, Drzyzga A, Ciepła J, Matuszczak S, Jarosz-Biej M, Pilny E, Cichoń T, Smolarczyk R. Combination of STING agonist with anti-vascular RGD-(KLAKLAK) 2 peptide as a novel anti-tumor therapy. Cancer Immunol Immunother 2024; 73:148. [PMID: 38832958 PMCID: PMC11150340 DOI: 10.1007/s00262-024-03732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Immunotherapy is one of the most promising anti-cancer treatment. It involves activating the host's own immune system to eliminate cancer cells. Activation of cGAS-STING pathway is promising therapeutic approach for cancer immunotherapy. However, in human clinical trials, targeting cGAS-STING pathway results in insufficient or unsustainable anti-tumor response. To enhance its effectiveness, combination with other anti-cancer therapies seems essential to achieve synergistic systemic anti-tumor response.The aim of this study was to evaluate whether the combination of STING agonist-cGAMP with anti-vascular RGD-(KLAKLAK)2 peptide results in a better anti-tumor response in poorly immunogenic tumors with various STING protein and αvβ3 integrin status.Combination therapy inhibited growth of murine breast carcinoma more effectively than melanoma. In melanoma, the administration of STING agonist alone was sufficient to obtain a satisfactory therapeutic effect. In both tumor models we have noted stimulation of innate immune response following cGAMP administration alone or in combination. The largest population of immune cells infiltrating the TME after therapy were activated NK cells. Increased infiltration of cytotoxic CD8+ T lymphocytes within the TME was only observed in melanoma tumors. However, they also expressed the "exhaustion" PD-1 receptor. In contrast, in breast carcinoma tumors each therapy caused the drop in the number of infiltrating CD8+ T cells.The obtained results indicate an additional therapeutic benefit from combining STING agonist with an anti-vascular agent. However, this effect depends on the type of tumor, the status of its microenvironment and the expression of specific proteins such as STING and αvβ3 family integrin.
Collapse
Affiliation(s)
- Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| |
Collapse
|
27
|
Tang S, Sun R, Tang K, Wei X, Liu M, Zhang H. A novel prognostic model for predicting patient survival and immunotherapy responsiveness in hepatocellular carcinoma: insights into the involvement of T-cell proliferation. Clin Transl Oncol 2024; 26:1368-1383. [PMID: 38123874 PMCID: PMC11108937 DOI: 10.1007/s12094-023-03363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The cancer-associated biological mechanisms and the implementation of immunotherapy are heavily impacted by the activities of T cells, consequently influencing the effectiveness of therapeutic interventions. Nevertheless, the mechanistic actions of T-cell proliferation in response to immunotherapy and the overall prognosis of individuals diagnosed with hepatocellular carcinoma (HCC) remains insufficiently understood. The present work seeks to present a comprehensive analysis immune landscape in the context of HCC. METHODS To achieve this objective, both clinical data and RNA sequencing data were acquired from authoritative databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). RESULTS Through the utilization of consensus clustering techniques, distinct molecular subtypes associated with T-cell proliferation were delineated. Following this, seven genes of prognostic significance were identified via a combination of Cox and Lasso regression analyses. By integrating these genes into a prognostic signature, the predictive capability of the model was verified through an examination of internal and external datasets. Moreover, immunohistochemistry and qRT-PCR tests have verified the reliability of prognostic markers. Notably, the high-risk group exhibited elevated expression of immune checkpoint genes as well as higher benefit in terms of drug sensitivity testing, as determined by the Chi-square test (P < 0.001). The risk score derived from the prognostic signature depicted considerable efficacy in predicting the survival outcomes of HCC cases. CONCLUSIONS Overall, prognostic markers may become valuable predictive tool for individuals diagnosed with HCC, allowing for the prediction of their prognosis as well as the assessment of their immunological condition and response to immunotherapy.
Collapse
Affiliation(s)
- Shengjie Tang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ming Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
刘 鹏, 娄 丽, 刘 霞, 王 建, 姜 颖. [A risk scoring model based on M2 macrophage-related genes for predicting prognosis of HBV-related hepatocellular carcinoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:827-840. [PMID: 38862440 PMCID: PMC11166709 DOI: 10.12122/j.issn.1673-4254.2024.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the prognostic value of M2 macrophage-related genes (MRG) in hepatitis B virus (HBV)- related hepatocellular carcinoma (HCC). METHODS The transcriptome data of 73 patients with HBV-related HCC were obtained from TCGA database, and the MRG modules were identified by WGCNA. The MRG-based risk scoring model was constructed by LASSO regression analysis and validated using an external dataset. The correlation of the risk score with immune cell infiltration and drug sensitivity of HCC were analyzed with CIBERSORT and R. pRRophetic. The signaling pathways of the differential genes between the high- and low-risk groups were investigated using GSVA and GSEA enrichment analyses, and MRG expressions at the single cell level were validated using R.Seurat. The cell interaction intensity was analyzed by R.Cellchat to identify important cell types related to HCC progression. MRG expression levels were detected by RT-qPCR in THP-1 cells with HCC-conditioned medium-induced M2 polarization and in HBV-positive HCC cells. RESULTS A high M2 macrophage infiltration level was significantly correlated with a poor prognosis of HCC, and 5 hub MRG (VTN, GCLC, PARVB, TRIM27, and GMPR) were identified. The overall survival of HCC patients was significantly lower in the high-risk than in the low-risk group. The high- and the low-risk groups showed significant enrichment of M2 macrophages and na?ve B cells, respectively, and were sensitive to BI. 2536 and to AG. 014699, AKT. inhibitor. Ⅷ, AZD. 0530, AZD7762, and BMS. 708163, respectively. The proliferation-related and metabolism-related pathways were enriched in the high-risk group, where monocytes showed the most active cell interactions during HCC progression. VTN was significantly upregulated in HCC cell lines, while GCLC, PARVB, TRIM27, and GMPR were upregulated in M2 THP-1 cells. CONCLUSION The MRG-based risk scoring model can accurately predict the prognosis of HBV-related HCC and reveal the differences in tumor microenvironment to guide precision treatment of the patients.
Collapse
|
29
|
Trivedi S, Tilsed C, Liousia M, Brody RM, Rajasekaran K, Singhal S, Albelda SM, Klampatsa A. Transcriptomic analysis-guided assessment of precision-cut tumor slices (PCTS) as an ex-vivo tool in cancer research. Sci Rep 2024; 14:11006. [PMID: 38744944 PMCID: PMC11094020 DOI: 10.1038/s41598-024-61684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
With cancer immunotherapy and precision medicine dynamically evolving, there is greater need for pre-clinical models that can better replicate the intact tumor and its complex tumor microenvironment (TME). Precision-cut tumor slices (PCTS) have recently emerged as an ex vivo human tumor model, offering the opportunity to study individual patient responses to targeted therapies, including immunotherapies. However, little is known about the physiologic status of PCTS and how culture conditions alter gene expression. In this study, we generated PCTS from head and neck cancers (HNC) and mesothelioma tumors (Meso) and undertook transcriptomic analyses to understand the changes that occur in the timeframe between PCTS generation and up to 72 h (hrs) in culture. Our findings showed major changes occurring during the first 24 h culture period of PCTS, involving genes related to wound healing, extracellular matrix, hypoxia, and IFNγ-dependent pathways in both tumor types, as well as tumor-specific changes. Collectively, our data provides an insight into PCTS physiology, which should be taken into consideration when designing PCTS studies, especially in the context of immunology and immunotherapy.
Collapse
Affiliation(s)
- Sumita Trivedi
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Charlotte, NC, USA
| | - Caitlin Tilsed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Cellular Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Liousia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Cellular Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert M Brody
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Cellular Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Astero Klampatsa
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
31
|
Scuderi SA, Ardizzone A, Salako AE, Pantò G, De Luca F, Esposito E, Capra AP. Pentraxin 3: A Main Driver of Inflammation and Immune System Dysfunction in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2024; 16:1637. [PMID: 38730589 PMCID: PMC11083335 DOI: 10.3390/cancers16091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Ayomide Eniola Salako
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
- University of Florence, 50121 Florence, Italy
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| |
Collapse
|
32
|
Yang W, Rubin JB. Treating sex and gender differences as a continuous variable can improve precision cancer treatments. Biol Sex Differ 2024; 15:35. [PMID: 38622740 PMCID: PMC11017567 DOI: 10.1186/s13293-024-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The significant sex and gender differences that exist in cancer mechanisms, incidence, and survival, have yet to impact clinical practice. One barrier to translation is that cancer phenotypes cannot be segregated into distinct male versus female categories. Instead, within this convenient but contrived dichotomy, male and female cancer phenotypes are highly overlapping and vary between female- and male- skewed extremes. Thus, sex and gender-specific treatments are unrealistic, and our translational goal should be adaptation of treatment to the variable effects of sex and gender on targetable pathways. METHODS To overcome this obstacle, we profiled the similarities in 8370 transcriptomes of 26 different adult and 4 different pediatric cancer types. We calculated the posterior probabilities of predicting patient sex and gender based on the observed sexes of similar samples in this map of transcriptome similarity. RESULTS Transcriptomic index (TI) values were derived from posterior probabilities and allowed us to identify poles with local enrichments for male or female transcriptomes. TI supported deconvolution of transcriptomes into measures of patient-specific activity in sex and gender-biased, targetable pathways. It identified sex and gender-skewed extremes in mechanistic phenotypes like cell cycle signaling and immunity, and precisely positioned each patient's whole transcriptome on an axis of continuously varying sex and gender phenotypes. CONCLUSIONS Cancer type, patient sex and gender, and TI value provides a novel and patient- specific mechanistic identifier that can be used for realistic sex and gender-adaptations of precision cancer treatment planning.
Collapse
Affiliation(s)
- Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
33
|
Maisonial-Besset A, Kryza D, Kopka K, Levesque S, Moreau E, Wenzel B, Chezal JM. Improved automated one-pot two-step radiosynthesis of (S)-[ 18F]FETrp, a radiotracer for PET imaging of indoleamine 2,3-dioxygenase 1 (IDO1). EJNMMI Radiopharm Chem 2024; 9:28. [PMID: 38564046 PMCID: PMC10987429 DOI: 10.1186/s41181-024-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND (S)-[18F]FETrp is a promising PET radiotracer for imaging IDO1 activity, one of the main enzymes involved in the tryptophan metabolism that plays a key role in several diseases including cancers. To date, the radiosynthesis of this tryptophan analogue remains highly challenging due to partial racemization occurring during the nucleophilic radiofluorination step. This work aims to develop a short, epimerization-free and efficient automated procedure of (S)-[18F]FETrp from a corresponding enantiopure tosylate precursor. RESULTS Enantiomerically pure (S)- and (R)-FETrp references as well as tosylate precursors (S)- and (R)-3 were obtained from corresponding Na-Boc-(L and D)-tryptophan in 2 and 4 steps, respectively. Manual optimisation of the radiolabelling conditions resulted in > 90% radiochemical conversion with more than 99% enantiomeric purity. Based on these results, the (S)-[18F]FETrp radiosynthesis was fully automated on a SynChrom R&D EVOI module to produce the radiotracer in 55.2 ± 7.5% radiochemical yield, 99.9% radiochemical purity, 99.1 ± 0.5% enantiomeric excess, and molar activity of 53.2 ± 9.3 GBq/µmol (n = 3). CONCLUSIONS To avoid racemisation and complicated purification processes, currently encountered for the radiosynthesis of (S)-[18F]FETrp, we report herein significant improvements, including a versatile synthesis of enantiomerically pure tosylate precursor and reference compound and a convenient one-pot two-step automated procedure for the radiosynthesis of (S)-[18F]FETrp. This optimised and robust production method could facilitate further investigations of this relevant PET radiotracer for imaging IDO1 activity.
Collapse
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
| | - David Kryza
- Imthernat, LAGEPP, CNRS UMR 5007, Université de Lyon, Hospices Civils de Lyon, Lyon, F-69622, France
- Lumen Nuclear Medicine group, Hospices Civils de Lyon et Centre Léon Bérard, Lyon, F-69008, France
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Sophie Levesque
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, F-63011, France
| | - Emmanuel Moreau
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France
| | - Barbara Wenzel
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318, Leipzig, Germany
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
34
|
Huang X, Yang L, Yang K, Zhou H, Abudureheman T, Zheng W, Chen K, Duan C. Construction of a versatile fusion protein for targeted therapy and immunotherapy. Protein Sci 2024; 33:e4944. [PMID: 38501479 PMCID: PMC10949329 DOI: 10.1002/pro.4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Antibody (Ab)-based drugs have been widely used in targeted therapies and immunotherapies, leading to significant improvements in tumor therapy. However, the failure of Ab therapy due to the loss of target antigens or Ab modifications that affect its function limits its application. In this study, we expanded the application of antibodies (Abs) by constructing a fusion protein as a versatile tool for Ab-based target cell detection, delivery, and therapy. We first constructed a SpaC Catcher (SpaCC for short) fusion protein that included the C domains of Staphylococcal protein A (SpaC) and the SpyCatcher. SpaCC conjugated with SpyTag-X (S-X) to form the SpaCC-S-X complex, which binds non-covalently to an Ab to form the Ab-SpaCC-S-X protein complex. The "X" can be a variety of small molecules such as fluoresceins, cell-penetrating peptide TAT, Monomethyl auristatin E (MMAE), and DNA. We found that Ab-SpaCC-S-FITC(-TAT) could be used for target cell detection and delivery. Besides, we synthesized the Ab-SpaCC-SN3-MMAE complex by linking Ab with MMAE by SpaCC, which improved the cytotoxicity of small molecule toxins. Moreover, we constructed an Ab-DNA complex by conjugating SpaCC with the aptamer (Ap) and found that Ab-SpaCC-SN3-Ap boosted the tumor-killing function of T-cells by retargeting tumor cells. Thus, we developed a multifunctional tool that could be used for targeted therapies and immunotherapies, providing a cheap and convenient novel drug development strategy.
Collapse
Affiliation(s)
- Xiu‐Song Huang
- Clinicopathological Diagnosis & Research CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education InstitutesBaiseChina
- Graduate School of Youjiang Medical University for NationalitiesBaiseChina
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
- Fujian Branch of Shanghai Children's Medical Center Affiliated to SJTU‐SM, and Fujian Children's HospitalFujianChina
| | - Ke Yang
- Nanchong Second People's HospitalNanchongChina
| | - Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Kai‐Ming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
- Fujian Branch of Shanghai Children's Medical Center Affiliated to SJTU‐SM, and Fujian Children's HospitalFujianChina
| | - Cai‐Wen Duan
- Clinicopathological Diagnosis & Research CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education InstitutesBaiseChina
- Graduate School of Youjiang Medical University for NationalitiesBaiseChina
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
- Fujian Branch of Shanghai Children's Medical Center Affiliated to SJTU‐SM, and Fujian Children's HospitalFujianChina
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFujianChina
| |
Collapse
|
35
|
Marín-Aquino LA, Mora-García MDL, Moreno-Lafont MC, García-Rocha R, Montesinos-Montesinos JJ, López-Santiago R, Sánchez-Torres LE, Torres-Pineda DB, Weiss-Steider B, Hernández-Montes J, Don-López CA, Monroy-García A. Adenosine increases PD-L1 expression in mesenchymal stromal cells derived from cervical cancer through its interaction with A 2AR/A 2BR and the production of TGF-β1. Cell Biochem Funct 2024; 42:e4010. [PMID: 38613217 DOI: 10.1002/cbf.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-β1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-β1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-β1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-β1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-β1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-β1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-β1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.
Collapse
Affiliation(s)
- Luis Antonio Marín-Aquino
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCyT, Ciudad de México, México
| | - María de Lourdes Mora-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ruben López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Laboratorio de Inmunología de los microorganismos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniela Berenice Torres-Pineda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Christian Azucena Don-López
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Alberto Monroy-García
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| |
Collapse
|
36
|
Piper BJ, Tian M, Saini P, Higazy A, Graham J, Carbe CJ, Bordonaro M. Immunotherapy and Cannabis: A Harmful Drug Interaction or Reefer Madness? Cancers (Basel) 2024; 16:1245. [PMID: 38610922 PMCID: PMC11011043 DOI: 10.3390/cancers16071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
A retrospective (N = 140) and a prospective (N = 102) observational Israeli study by Bar-Sela and colleagues about cannabis potentially adversely impacting the response to immunotherapy have together been cited 202 times, including by clinical practice guidelines. There have also been concerns on PubPeer outlining irregularities and unverifiable information in their statistics and numerous errors in calculating percentages. This reanalysis attempted to verify the data analysis while including non-parametric statistics. The corrected prospective report contained 22 p-values, but only one (4.5%) could be verified despite the authors being transparent about the N and statistics employed. Cannabis users were significantly (p < 0.0025) younger than non-users, but this was not reported in the retrospective report. There were also errors in percentage calculations (e.g., 13/34 reported as 22.0% instead of 38.2%). Overall, these observational investigations, and especially the prospective, appear to contain gross inaccuracies which could impact the statistical decisions (i.e., significant findings reported as non-significant or vice-versa). Although it is mechanistically plausible that cannabis could have immunosuppressive effects which inhibit the response to immunotherapy, these two reports should be viewed cautiously. Larger prospective studies of this purported drug interaction that account for potential confounds (e.g., greater nicotine smoking among cannabis users) may be warranted.
Collapse
Affiliation(s)
- Brian J. Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (M.T.); (P.S.); (C.J.C.); (M.B.)
- Center for Pharmacy Innovation & Outcomes, Geisinger, Danville, PA 17821, USA
| | - Maria Tian
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (M.T.); (P.S.); (C.J.C.); (M.B.)
| | - Pragosh Saini
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (M.T.); (P.S.); (C.J.C.); (M.B.)
| | - Ahmad Higazy
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (M.T.); (P.S.); (C.J.C.); (M.B.)
| | - Jason Graham
- Department of Mathematics, University of Scranton, Scranton, PA 18510, USA
| | - Christian J. Carbe
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (M.T.); (P.S.); (C.J.C.); (M.B.)
| | - Michael Bordonaro
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (M.T.); (P.S.); (C.J.C.); (M.B.)
| |
Collapse
|
37
|
Sato R, Yamaki H, Komatsuda H, Wakisaka R, Inoue T, Kumai T, Takahara M. Exploring Immunological Effects and Novel Immune Adjuvants in Immunotherapy for Salivary Gland Cancers. Cancers (Basel) 2024; 16:1205. [PMID: 38539539 PMCID: PMC10969392 DOI: 10.3390/cancers16061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
Salivary gland cancer (SGC) is rare and comprises over 20 histological subtypes. Recently, clinical experience regarding immunotherapies for SGCs has been accumulating, yet their efficacy remains controversial. Understanding the tumor microenvironment (TME), including the expression of immune checkpoint molecules in SGC, is crucial to optimizing immunotherapy. In this review, we demonstrate that high-grade mucoepidermoid carcinoma and salivary duct carcinoma generally exhibit immune-hot TME with high immune cell infiltration, frequent genetic mutations, and robust immune checkpoint molecule expression. In contrast, adenoid cystic carcinomas exhibit an immune-cold TME. While the reported efficacy of immune checkpoint inhibitors (ICIs) for SGCs is generally poor, several studies showed promising clinical efficacy of ICIs, with an objective response rate ranging from 20.0-33.3%, indicating that ICIs might be beneficial for a specific population of SGC. Molecule-targeted therapies including anti-human epidermal growth factor receptor 2 and anti-androgen receptor therapies have shown promising clinical efficacy against SGC. Recent evidence indicates that these molecules could be targets for antigen-specific immunotherapies including chimeric antigen receptor-T therapy and cancer vaccines. This review discusses the current understanding and future directions of immunotherapies for SGCs, including ongoing clinical trials.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 0788510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 0788510, Japan; (R.S.); (H.Y.); (H.K.); (R.W.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 0788510, Japan
| |
Collapse
|
38
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
39
|
Tseng TS, Lee CC, Chen PJ, Lin CY, Chen WC, Lee YC, Lin JH, Chen KW, Tsai KC. Structure-Guided Discovery of PD-1/PD-L1 Interaction Inhibitors: Peptide Design, Screening, and Optimization via Computation-Aided Phage Display Engineering. J Chem Inf Model 2024; 64:1615-1627. [PMID: 38356220 DOI: 10.1021/acs.jcim.3c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Cancer immunotherapy harnesses the immune system to combat tumors and has emerged as a major cancer treatment modality. The PD-1/PD-L1 immune checkpoint modulates interactions between tumor cells and T cells and has been extensively targeted in cancer immunotherapy. However, the monoclonal antibodies known to target this immune checkpoint have considerable side effects, and novel PD-1/PD-L1 inhibitors are therefore required. Herein, a peptide inhibitor to disrupt PD-1/PD-L1 interactions was designed through structure-driven phage display engineering coupled to computational modification and optimization. BetaPb, a novel peptide library constructed by using the known structure of PD-1/PD-L, was used to develop inhibitors against the immune checkpoint, and specific peptides with high affinity toward PD-1 were screened through enzyme-linked immunosorbent assays, homogeneous time-resolved fluorescence, and biolayer interferometry. A potential inhibitor, B8, was preliminarily screened through biopanning. The binding affinity of B8 toward PD-1 was confirmed through computation-aided optimization. Assessment of B8 variants (B8.1, B8.2, B8.3, B8.4, and B8.5) demonstrated their attenuation of PD-1/PD-L1 interactions. B8.4 exhibited the strongest attenuation efficiency at a half-maximal effective concentration of 0.1 μM and the strongest binding affinity to PD-1 (equilibrium dissociation constant = 0.1 μM). B8.4 outperformed the known PD-1/PD-L1 interaction inhibitor PL120131 in disrupting PD-1/PD-L1 interactions, revealing that B8.4 has remarkable potential for modification to yield an antitumor agent. This study provides valuable information for the future development of peptide-based drugs, therapeutics, and immunotherapies for cancer.
Collapse
Affiliation(s)
- Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Chao-Chang Lee
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Po-Juei Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Chiu-Yuen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Wang-Chuan Chen
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 824005, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung 824005, Taiwan
| | - Yu-Ching Lee
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei 100210, Taiwan
- Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Kaun-Wen Chen
- Molecular Science and Digital Innovation Center, Genetics Generation Advancement Corporation, Taipei 11949, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
40
|
Hayama M, Riches JC. Taking the Next Step in Double Refractory Disease: Current and Future Treatment Strategies for Chronic Lymphocytic Leukemia. Onco Targets Ther 2024; 17:181-198. [PMID: 38476308 PMCID: PMC10929554 DOI: 10.2147/ott.s443924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a monoclonal B-cell lymphoproliferative disease with a high annual incidence in Western countries. As B-cell receptor (BCR) signaling and intrinsic apoptotic resistance play critical roles in the development and survival of CLL cells, therapeutic approaches targeting these pathways have been extensively investigated to tackle this incurable disease. Over the last decade, several Phase 3 trials have confirmed the superior efficacy of covalent Bruton tyrosine kinase inhibitors (cBTKis) and venetoclax, a selective B-cell lymphoma 2 (BCL2) inhibitor, over chemoimmunotherapy. This has been demonstrated in both the treatment-naïve and relapsed/refractory (RR) settings and includes patients with high-risk molecular features. However, these drugs are not curative, with patients continuing to relapse after treatment with both cBTKis and BCL2is, and the optimal treatment strategy for these patients has not been defined. Several novel agents with distinct mechanisms have recently been developed for CLL which have demonstrated efficacy in patients who have previously received cBTKis and BCL2i. In particular, novel BCR-signaling targeting agents have shown promising efficacy in early-phase clinical trials for RR-CLL. Furthermore, cancer immunotherapies such as bispecific antibodies and chimeric antigen receptor T-cells have also shown anti-tumor activity in patients with heavily pretreated RR-CLL. Personalised approaches with these novel agents and combination strategies based on the understanding of resistance mechanisms have the potential to overcome the clinical challenge of what to do next for a patient who has already had a cBTKi and venetoclax.
Collapse
Affiliation(s)
- Manabu Hayama
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - John C Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
41
|
Popovich SM, Vetter TR. Preoperative Management of the Adult Oncology Patient. Anesthesiol Clin 2024; 42:145-158. [PMID: 38278586 DOI: 10.1016/j.anclin.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Anesthesiologists are experiencing first-hand the aging population, given older patients more frequently presenting for surgery, often with geriatric syndromes influencing their anesthetic management. The overall incidence and health burden of cancer morbidity and mortality are also rapidly increasing worldwide. This growth in the cancer population, along with the associated risk factors and comorbidities often accompanying a cancer diagnosis, underscores the need for anesthesiologists to become well versed in the preoperative evaluation and management of the adult patient with cancer. This article will focus on the unique challenges and opportunities for the anesthesiologist caring for the adult oncology patient presenting for surgery.
Collapse
Affiliation(s)
- Shannon M Popovich
- Department of Anesthesiology and Perioperative Medicine, Division of Anesthesiology, Critical Care Medicine and Pain Medicine, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Thomas R Vetter
- Department of Surgery and Perioperative Care, Dell Medical School at The University of Texas at Austin, Health Discovery Building, Room 6.812, 1701 Trinity Street, Austin, TX 78712-1875, USA.
| |
Collapse
|
42
|
Jiang S, Li W, Yang J, Zhang T, Zhang Y, Xu L, Hu B, Li Z, Gao H, Huang Y, Ruan S. Cathepsin B-Responsive Programmed Brain Targeted Delivery System for Chemo-Immunotherapy Combination Therapy of Glioblastoma. ACS NANO 2024; 18:6445-6462. [PMID: 38358804 DOI: 10.1021/acsnano.3c11958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Tumor-associated macrophages (TAMs) are closely related to the progression of glioblastoma multiform (GBM) and its development of therapeutic resistance to conventional chemotherapy. TAM-targeted therapy combined with conventional chemotherapy has emerged as a promising strategy to combat GBM. However, the presence of the blood-brain barrier (BBB) severely limits the therapeutic efficacy. Meanwhile, the lack of ability to distinguish different targeted cells also poses a challenge for precise therapy. Herein, we propose a cathepsin B (CTSB)-responsive programmed brain-targeted delivery system (D&R-HM-MCA) for simultaneous TAM-targeted and GBM-targeted delivery. D&R-HM-MCA could cross the BBB via low density lipoprotein receptor-associated protein 1 (LRP1)-mediated transcytosis. Upon reaching the GBM site, the outer angiopep-2 modification could be detached from D&R-HM-MCA via cleavage of the CTSB-responsive peptide, which could circumvent abluminal LRP1-mediated efflux. The exposed p-aminophenyl-α-d-mannopyranoside (MAN) modification could further recognize glucose transporter-1 (GLUT1) on GBM and macrophage mannose receptor (MMR) on TAMs. D&R-HM-MCA could achieve chemotherapeutic killing of GBM and simultaneously induce TAM polarization from anti-inflammatory M2 phenotype to pro-inflammatory M1 phenotype, thus resensitizing the chemotherapeutic response and improving anti-GBM immune response. This CTSB-responsive brain-targeted delivery system not only can improve brain delivery efficiency, but also can enable the combination of chemo-immunotherapy against GBM. The effectiveness of this strategy may provide thinking for designing more functional brain-targeted delivery systems and more effective therapeutic regimens.
Collapse
Affiliation(s)
- Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenpei Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Xu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaobo Ruan
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
43
|
Rastin F, Oryani MA, Iranpour S, Javid H, Hashemzadeh A, Karimi-Shahri M. A new era in cancer treatment: harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery. J Mater Chem B 2024; 12:872-894. [PMID: 38193564 DOI: 10.1039/d3tb02471g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This review delves into the potential of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles in augmenting the efficacy of cancer immunotherapy, with a special focus on the delivery of programmed cell death receptor 1 (PD-1) inhibitors. The multifunctional nature of ZIF-8 nanoparticles as drug carriers is emphasized, with their ability to encapsulate a range of therapeutic agents, including PD-1 inhibitors, and facilitate their targeted delivery to tumor locations. By manipulating the pore size and surface characteristics of ZIF-8 nanoparticles, controlled drug release can be realized. The strategic use of ZIF-8 nanoparticles to deliver PD-1 inhibitors presents a precise and targeted modality for cancer treatment, reducing off-target impacts and enhancing therapeutic effectiveness. This combined strategy addresses the existing challenges and constraints of current immunotherapy techniques, with the ultimate goal of enhancing patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sonia Iranpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
44
|
Verma N, Renauer PA, Dong C, Xin S, Lin Q, Zhang F, Glazer PM, Chen S. Genome scale CRISPR screens identify actin capping proteins as key modulators of therapeutic responses to radiation and immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575614. [PMID: 38293095 PMCID: PMC10827061 DOI: 10.1101/2024.01.14.575614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Radiotherapy (RT), is a fundamental treatment for malignant tumors and is used in over half of cancer patients. As radiation can promote anti-tumor immune effects, a promising therapeutic strategy is to combine radiation with immune checkpoint inhibitors (ICIs). However, the genetic determinants that impact therapeutic response in the context of combination therapy with radiation and ICI have not been systematically investigated. To unbiasedly identify the tumor intrinsic genetic factors governing such responses, we perform a set of genome-scale CRISPR screens in melanoma cells for cancer survival in response to low-dose genotoxic radiation treatment, in the context of CD8 T cell co-culture and with anti-PD1 checkpoint blockade antibody. Two actin capping proteins, Capza3 and Capg, emerge as top hits that upon inactivation promote the survival of melanoma cells in such settings. Capza3 and Capg knockouts (KOs) in mouse and human cancer cells display persistent DNA damage due to impaired homology directed repair (HDR); along with increased radiation, chemotherapy, and DNA repair inhibitor sensitivity. However, when cancer cells with these genes inactivated were exposed to sublethal radiation, inactivation of such actin capping protein promotes activation of the STING pathway, induction of inhibitory CEACAM1 ligand expression and resistance to CD8 T cell killing. Patient cancer genomics analysis reveals an increased mutational burden in patients with inactivating mutations in CAPG and/or CAPZA3, at levels comparable to other HDR associated genes. There is also a positive correlation between CAPG expression and activation of immune related pathways and CD8 T cell tumor infiltration. Our results unveil the critical roles of actin binding proteins for efficient HDR within cancer cells and demonstrate a previously unrecognized regulatory mechanism of therapeutic response to radiation and immunotherapy.
Collapse
Affiliation(s)
- Nipun Verma
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Immunobiology Program, Yale University, New Haven, Connecticut, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, Connecticut, USA
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
46
|
Laureano RS, Vanmeerbeek I, Sprooten J, Govaerts J, Naulaerts S, Garg AD. The cell stress and immunity cycle in cancer: Toward next generation of cancer immunotherapy. Immunol Rev 2024; 321:71-93. [PMID: 37937803 DOI: 10.1111/imr.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
The cellular stress and immunity cycle is a cornerstone of organismal homeostasis. Stress activates intracellular and intercellular communications within a tissue or organ to initiate adaptive responses aiming to resolve the origin of this stress. If such local measures are unable to ameliorate this stress, then intercellular communications expand toward immune activation with the aim of recruiting immune cells to effectively resolve the situation while executing tissue repair to ameliorate any damage and facilitate homeostasis. This cellular stress-immunity cycle is severely dysregulated in diseased contexts like cancer. On one hand, cancer cells dysregulate the normal cellular stress responses to reorient them toward upholding growth at all costs, even at the expense of organismal integrity and homeostasis. On the other hand, the tumors severely dysregulate or inhibit various components of organismal immunity, for example, by facilitating immunosuppressive tumor landscape, lowering antigenicity, and increasing T-cell dysfunction. In this review we aim to comprehensively discuss the basis behind tumoral dysregulation of cellular stress-immunity cycle. We also offer insights into current understanding of the regulators and deregulators of this cycle and how they can be targeted for conceptualizing successful cancer immunotherapy regimen.
Collapse
Affiliation(s)
- Raquel S Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Han L, Meng Y, Jianguo Z. Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Curr Cancer Drug Targets 2024; 24:1104-1115. [PMID: 38318829 DOI: 10.2174/0115680096278251240108152600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer significant advantages for the treatment of urologic tumors, enhancing the immune function of anti-tumor T cells by inhibiting PD-1 and PDL1 binding. They have been shown to be well tolerated and remarkably effective in clinical practice, offering hope to many patients who are not well treated with conventional drugs. Clinical trials in recent years have shown that anti-PD-1 and PD-L1 antibodies have good efficacy and safety in the treatment of urologic tumors. These antibodies can be applied to a variety of urologic tumors, such as bladder cancer, renal cell carcinoma, and prostate cancer. They have been approved for the first-line treatment or as an option for follow-up therapy. By blocking the PD-1/PD-L1 signaling pathway, ICIs can release immune functions that are suppressed by tumor cells and enhance T-cell killing, thereby inhibiting tumor growth and metastasis. This therapeutic approach has achieved encouraging efficacy and improved survival for many patients. Although ICIs have shown remarkable results in the treatment of urologic tumors, some problems remain, such as drug resistance and adverse effects in some patients. Therefore, further studies remain important to optimize treatment strategies and improve clinical response in patients. In conclusion, PD-1/PD-L1 signaling pathway blockers have important research advances for the treatment of urologic tumors. Their emergence brings new hope for patients who have poor outcomes with traditional drug therapy and provides new options for immunotherapy of urologic tumors. The purpose of this article is to review the research progress of PD-1 and PD-L1 signaling pathway blockers in urologic tumors in recent years.
Collapse
Affiliation(s)
- Lv Han
- Guizhou Medical University, Guiyang, 550000, China
| | - Yang Meng
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Zhu Jianguo
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| |
Collapse
|
48
|
Komatsuda H, Kono M, Wakisaka R, Sato R, Inoue T, Kumai T, Takahara M. Harnessing Immunity to Treat Advanced Thyroid Cancer. Vaccines (Basel) 2023; 12:45. [PMID: 38250858 PMCID: PMC10820966 DOI: 10.3390/vaccines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The incidence of thyroid cancer (TC) has increased over the past 30 years. Although differentiated thyroid cancer (DTC) has a good prognosis in most patients undergoing total thyroidectomy followed by radioiodine therapy (RAI), 5-10% of patients develop metastasis. Anaplastic thyroid cancer (ATC) has a low survival rate and few effective treatments have been available to date. Recently, tyrosine kinase inhibitors (TKIs) have been successfully applied to RAI-resistant or non-responsive TC to suppress the disease. However, TC eventually develops resistance to TKIs. Immunotherapy is a promising treatment for TC, the majority of which is considered an immune-hot malignancy. Immune suppression by TC cells and immune-suppressing cells, including tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, is complex and dynamic. Negative immune checkpoints, cytokines, vascular endothelial growth factors (VEGF), and indoleamine 2,3-dioxygenase 1 (IDO1) suppress antitumor T cells. Basic and translational advances in immune checkpoint inhibitors (ICIs), molecule-targeted therapy, tumor-specific immunotherapy, and their combinations have enabled us to overcome immune suppression and activate antitumor immune cells. This review summarizes current findings regarding the immune microenvironment, immunosuppression, immunological targets, and immunotherapy for TC and highlights the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
49
|
Iglesias P. Aggressive and Metastatic Pituitary Neuroendocrine Tumors: Therapeutic Management and Off-Label Drug Use. J Clin Med 2023; 13:116. [PMID: 38202123 PMCID: PMC10779494 DOI: 10.3390/jcm13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common pituitary tumors and the second most common brain tumors. Although the vast majority (>90%) are benign, a small percentage (<2%) are aggressive. These aggressive PitNETs (AgPitNETs) are defined by the presence of radiological invasion, a high rate of cell proliferation, resistance to conventional treatments, and/or a high propensity for recurrence. Lastly, there are the rare pituitary carcinomas, also known as metastatic PitNETs (MetPitNETs), which account for only 0.2% of cases and are defined by the presence of craniospinal or distant metastases. At present, there are no definitive factors that allow us to predict with certainty the aggressive behavior of PitNETs, making the therapeutic management of AgPitNETs a real challenge. Surgery is considered the first-line treatment for AgPitNETs and MetPitNETs. Radiation therapy can be effective in controlling tumor growth and regulating hormone hypersecretion. Currently, there are no approved non-endocrine medical therapies for the management of AgPitNETs/MetPitNETs, mainly due to the lack of randomized controlled clinical trials. As a result, many of the medical therapies used are off-label drugs, and several are under investigation. Temozolomide (TMZ) is now recognized as the primary medical treatment following the failure of standard therapy (medical treatment, surgery, and radiotherapy) in AgPitNETs/MetPitNETs due to its ability to improve overall and progression-free survival rates in responding patients over 5 years. Other therapeutic options include pituitary-targeted therapies (dopamine agonists and somatostatin analogs), hormonal antisecretory drugs, non-hormonal targeted therapies, radionuclide treatments, and immunotherapy. However, the number of patients who have undergone these treatments is limited, and the results obtained to date have been inconsistent. As a result, it is imperative to expand the cohort of patients undergoing treatment to better determine the therapeutic efficacy and safety of these drugs for individuals with AgPitNETs/MetPitNETs.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), 28222 Madrid, Spain
| |
Collapse
|
50
|
Nishibata T, Amino N, Tanaka-Kado R, Tsujimoto S, Kawashima T, Konagai S, Suzuki T, Takeuchi M. Blockade of EP4 by ASP7657 Modulates Myeloid Cell Differentiation In Vivo and Enhances the Antitumor Effect of Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7133726. [PMID: 38058393 PMCID: PMC10697779 DOI: 10.1155/2023/7133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
The tumor microenvironment (TME) is thought to influence the antitumor efficacy of immuno-oncology agents through various products of both tumor and stromal cells. One immune-suppressive factor is prostaglandin E2 (PGE2), a lipid mediator whose biosynthesis is regulated by ubiquitously expressed cyclooxygenase- (COX-) 1 and inducible COX-2. By activating its receptors, PGE2 induces immune suppression to modulate differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) rather than dendritic cells (DCs). Pharmacological blockade of prostaglandin E receptor 4 (EP4) causes a decrease in MDSCs, reprogramming of macrophage polarization, and increase in tumor-infiltrated T cells, leading to enhancement of antitumor immunity in preclinical models. Here, we report the effects of the highly potent EP4 antagonist ASP7657 on the DC population in tumor and antitumor immune activation in an immunocompetent mouse tumor model. Oral administration of ASP7657 inhibited tumor growth, which was accompanied by an increase in intratumor DC and CD8+ T cell populations and a decrease in the M-MDSC population in a CT26 immunocompetent mouse model. The antitumor activity of ASP7657 was dependent on CD8+ T cells and enhanced when combined with an antiprogrammed cell death-1 (PD-1) antibody. Notably, ASP7657 also significantly enhanced the antitumor efficacy of radiotherapy in an anti-PD-1 antibody refractory model. These results indicate that the therapeutic potential of ASP7657 arises via upregulation of DCs and subsequent CD8+ T cell activation in addition to suppression of MDSCs in mouse models and that combining EP4 antagonists with radiotherapy or an anti-PD-1 antibody can improve antitumor efficacy.
Collapse
Affiliation(s)
- Toshihide Nishibata
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nobuaki Amino
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ruriko Tanaka-Kado
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Susumu Tsujimoto
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tomoko Kawashima
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Satoshi Konagai
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tomoyuki Suzuki
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masahiro Takeuchi
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|