1
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
2
|
Chen L, Lin X, Cai X, Zeng S, Yuan Y, Huang Z, Yan J, Li Y. The challenge of managing ischemic stroke in brucellosis: a case report. Front Immunol 2024; 15:1347216. [PMID: 38533516 PMCID: PMC10963473 DOI: 10.3389/fimmu.2024.1347216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A 64-year-old woman was admitted to the hospital for sudden weakness in one of her left limbs. The patient was diagnosed with acute ischemic stroke (IS) of undetermined cause and received intravenous thrombolysis. Following thrombolysis, the patient's left limb weakness improved, but she subsequently developed recurrent high fever and delirium. Further diagnostic tests revealed that she had been infected with Brucella melitensis. The patient showed significant improvement during anti-infection treatment for Brucellosis and secondary prevention treatment for IS. However, her condition unexpectedly worsened on the 44th day after admission due to a hemorrhagic stroke (HS), which required an urgent craniotomy. Immunohistochemical analysis of the hematoma sample collected during the operation showed the presence of CD4+ and CD8+ T lymphocytes surrounding the blood vessels. This case highlights the unique challenge of managing IS in brucellosis and sheds light on the potential role of T lymphocytes in the immune response related to stroke.
Collapse
Affiliation(s)
- Linfa Chen
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Xiaolong Lin
- Department of Pathology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Xiuqu Cai
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Shiting Zeng
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Yanquan Yuan
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Zhiyong Huang
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Jinjin Yan
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Yang X, Goodwin ZI, Bhagyaraj E, Hoffman C, Pascual DW. Parenteral Vaccination with a Live Brucella melitensis Mutant Protects against Wild-Type B. melitensis 16M Challenge. Microorganisms 2024; 12:169. [PMID: 38257995 PMCID: PMC10820470 DOI: 10.3390/microorganisms12010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Susceptibility to brucellosis remains prevalent, even in herds vaccinated with conventional vaccines. Efforts are underway to develop an improved brucellosis vaccine, and possibly a universal vaccine, given that Brucella species are highly homologous. To this end, two B. melitensis mutants were developed, znBM-lacZ (znBMZ) and znBM-mCherry (znBM-mC), and were tested for their ability to confer systemic immunity against virulent B. melitensis challenge. To assess the extent of their attenuation, bone-marrow-derived macrophages and human TF-1 myeloid cells were infected with both mutants, and the inability to replicate within these cells was noted. Mice infected with varying doses of znBM-mC cleared the brucellae within 6-10 weeks. To test for efficacy against systemic disease, groups of mice were vaccinated once by the intraperitoneal route with either znBMZ or B. abortus S19 vaccine. Relative to the PBS-dosed mice, znBMZ vaccination greatly reduced splenic brucellae colonization by ~25,000-fold compared to 700-fold for S19-vaccinated mice. Not surprisingly, both znBMZ and S19 strains induced IFN-γ+ CD4+ T cells, yet only znBMZ induced IFN-γ+ CD8+ T cells. While both strains induced CD4+ effector memory T cells (Tems), only znBMZ induced CD8+ Tems. Thus, these results show that the described znBM mutants are safe, able to elicit CD4+ and CD8+ T cell immunity without a boost, and highly effective, rendering them promising vaccine candidates for livestock.
Collapse
Affiliation(s)
| | | | | | | | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (X.Y.); (Z.I.G.); (E.B.); (C.H.)
| |
Collapse
|
4
|
Akgul A, Freguia CF, Maddaloni M, Hoffman C, Voigt A, Nguyen CQ, Fanger NA, Fanger GR, Pascual DW. Treatment with a Lactococcus lactis that chromosomally express E. coli cfaI mitigates salivary flow loss in a Sjögren's syndrome-like disease. Sci Rep 2023; 13:19489. [PMID: 37945636 PMCID: PMC10636062 DOI: 10.1038/s41598-023-46557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-β+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | | | - David W Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Abushahba MF, Dadelahi AS, Lemoine EL, Skyberg JA, Vyas S, Dhoble S, Ghodake V, Patravale VB, Adamovicz JJ. Safe Subunit Green Vaccines Confer Robust Immunity and Protection against Mucosal Brucella Infection in Mice. Vaccines (Basel) 2023; 11:vaccines11030546. [PMID: 36992130 DOI: 10.3390/vaccines11030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Brucellosis is a zoonotic disease that causes significant negative impacts on the animal industry and affects over half a million people worldwide every year. The limited safety and efficacy of current animal brucellosis vaccines, combined with the lack of a licensed human brucellosis vaccine, have led researchers to search for new vaccine strategies to combat the disease. To this end, the present research aimed to evaluate the safety and efficacy of a green vaccine candidate that combines Brucella abortus S19 smooth lipopolysaccharide (sLPS) with Quillaja saponin (QS) or QS-Xyloglucan mix (QS-X) against mucosal brucellosis in BALB/C mice. The results of the study indicate that administering two doses of either sLPS-QS or sLPS-QS-X was safe for the animals, triggered a robust immune response, and enhanced protection following intranasal challenge with S19. Specifically, the vaccine combinations led to the secretion of IgA and IgG1 in the BALF of the immunized mice. We also found a mixed IgG1/IgG2a systemic response indicating evidence of both Th1 and Th2 activation, with a predominance of the IgG1 over the IgG2a. These candidates resulted in significant reductions in the bioburden of lung, liver, and spleen tissue compared to the PBS control group. The sLPS-QS vaccination had conferred the greatest protection, with a 130-fold reduction in Brucella burdens in lung and a 55.74-fold reduction in the spleen compared to PBS controls. Vaccination with sLPS-QS-X resulted in the highest reduction in splenic Brucella loads, with a 364.6-fold decrease in bacterial titer compared to non-vaccinated animals. The study suggests that the tested vaccine candidates are safe and effective in increasing the animals’ ability to respond to brucellosis via mucosal challenge. It also supports the use of the S19 challenge strain as a safe and cost-effective method for testing Brucella vaccine candidates under BSL-2 containment conditions.
Collapse
Affiliation(s)
- Mostafa F Abushahba
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Emily L Lemoine
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Swati Vyas
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vinod Ghodake
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Jeffrey J Adamovicz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|