1
|
Wang YG, Wang DH, Wei WH, Xiong X, Wu JJ, Han ZY, Cheng LX. Myeloid-derived suppressor cells alleviate adverse ventricular remodeling after acute myocardial infarction. Mol Cell Biochem 2024:10.1007/s11010-024-05112-y. [PMID: 39264395 DOI: 10.1007/s11010-024-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
The fundamental pathophysiological mechanism in the progression of chronic heart failure following acute myocardial infarction (AMI) is ventricular remodeling, in which innate and adaptive immunity both play critical roles. Myeloid-derived suppressor cells (MDSCs) have been demonstrated to function in a range of pathological conditions, such as infections, inflammation, autoimmune diseases, and tumors. However, it is unclear how MDSCs contribute to cardiac remodeling following AMI. This study aimed to identify the function and underlying mechanism of MDSCs in controlling cardiac remodeling following AMI. Following AMI in mice, MDSCs frequencies changed dynamically, considerably increased on day 7 in blood, spleens, lymph nodes and hearts, and decreased afterwards. Consistently, mice with AMI displayed enhanced cardiac function on day 14 post-AMI, reduced infract size and higher survival rates on day 28 post-AMI following the adoptive transfer of MDSCs. Furthermore, MDSCs inhibited the inflammatory response by decreasing pro-inflammatory cytokine (TNF-α, IL-17, Cxcl-1, and Cxcl-2) expression, up-regulating anti-inflammatory cytokine (TGF-β1, IL-10, IL-4, and IL-13) expression, reducing CD3+ T cell infiltration in the infarcted heart and enhancing M2 macrophage polarization. Mechanistically, MDSCs improved the release of anti-inflammatory factors (TGF-β1 and IL-10) and decreased the injury of LPS-induced cardiomyocytes in vitro in a manner dependent on cell-cell contact. Importantly, blockade of IL-10 partially abolished the cardioprotective role of MDSCs. This study found that MDSCs contributed to the restoration of cardiac function and alleviation of adverse cardiac remodeling after AMI possibly by inhibiting inflammation.
Collapse
Affiliation(s)
- Yan-Ge Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, China.
| | - Ding-Hang Wang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Hui Wei
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China
| | - Zhan-Ying Han
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, China
| | - Long-Xian Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jie-Fang Avenue 1277#, Wuhan, China.
| |
Collapse
|
2
|
Cao W, Wang K, Wang J, Chen Y, Gong H, Xiao L, Pan W. Causal relationship between immune cells and risk of myocardial infarction: evidence from a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416112. [PMID: 39257847 PMCID: PMC11384581 DOI: 10.3389/fcvm.2024.1416112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hanxian Gong
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Lei Xiao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
3
|
Huang XD, Jiang DS, Feng X, Fang ZM. The benefits of oral glucose-lowering agents: GLP-1 receptor agonists, DPP-4 and SGLT-2 inhibitors on myocardial ischaemia/reperfusion injury. Eur J Pharmacol 2024; 976:176698. [PMID: 38821168 DOI: 10.1016/j.ejphar.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.
Collapse
Affiliation(s)
- Xu-Dong Huang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Liu G, Wang M, Lv X, Guan Y, Li J, Xie J. Identification of mitochondria-related gene biomarkers associated with immune infiltration in acute myocardial infarction. iScience 2024; 27:110275. [PMID: 39040073 PMCID: PMC11261152 DOI: 10.1016/j.isci.2024.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Mitochondrial dysfunction has been known to contribute to the worsening of acute myocardial infarction (AMI). We screened differentially expressed genes (DEGs) between AMI and healthy individuals based on the GSE66360 dataset. We took the intersection of the obtained DEGs with 1,136 mitochondria-related genes. Finally, we screened out mitochondria-related DEGs (MitoDEGs). Eight MitoDEGs were identified as hub genes based on the random forest algorithm. Two mitochondria-related robust molecular clusters were identified by consensus clustering. Immune infiltration analysis showed that immune cell infiltration was significantly increased in the high-expression group of MitoDEGs. We obtained the potential drugs targeted at ALDH2, PMAIP1, and BCL2A1, such as disulfiram, obatoclax mesylate, and bortezomib. Quantitative reverse-transcription polymerase chain reaction further validated the expression of the MitoDEGs in the cell model of AMI. These findings reveal the potential role of MitoDEGs in AMI and provide new insights into risk stratification and individualized treatment of AMI patients.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Min Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Xiangwen Lv
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuting Guan
- Guangxi Medical University, Nanning, Guangxi, China
| | - Jingqi Li
- Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| |
Collapse
|
5
|
Huang Z, Qian C, Zhang Z, Nian W, Xu Q, Cao Y, Fu C. Ticagrelor regulates the differentiation of MDSCs after acute myocardial infarction to reduce cardiac injury. Biomed Pharmacother 2024; 172:116209. [PMID: 38308966 DOI: 10.1016/j.biopha.2024.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are important participants after acute myocardial infarction (AMI), but the role of their different subtypes in AMI remains controversial. The anti-inflammatory effect of ticagrelor in AMI has been discovered. However, the detailed anti-inflammatory mechanism has not been fully demonstrated. In this study, we aimed to determine whether ticagrelor can regulate the differentiation of MDSCs into anti-inflammatory subgroups to exert anti-inflammatory effects after AMI. In vitro experiments revealed no difference in the mRNA and protein expression of P2Y12 receptors on MDSCs and macrophages. Ticagrelor promotes the differentiation of in vitro cultured MDSCs to monocytic-MDSCs (M-MDSCs). A mouse AMI model was established to investigate the anti-inflammatory effects of ticagrelor in vivo after AMI by interfering with the differentiation of MDSCs. On the first day after AMI, spleen-derived polymorphonuclear-MDSCs (PMN-MDSCs) were predominant in the circulation and infarcted heart. Ticagrelor increased the percentage of M-MDSCs in the circulation and infarcted heart of AMI mice in a dose-dependent manner, attenuated cardiac inflammation and increased cardiac contractile function. M-MDSC injection significantly decreased cardiac inflammation levels and improved cardiac function in splenectomized AMI mice compared with PMN-MDSC injection. These data point to a novel anti-inflammatory role for ticagrelor after AMI by interfering with the differentiation of MDSCs.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wan Nan Medical College, Wuhu, China; Anesthesia Laboratory and Training Center, Wan Nan Medical College, Wuhu, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| | - Chenhuiyu Qian
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wan Nan Medical College, Wuhu, China; Anesthesia Laboratory and Training Center, Wan Nan Medical College, Wuhu, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| | - Zekang Zhang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wan Nan Medical College, Wuhu, China; Anesthesia Laboratory and Training Center, Wan Nan Medical College, Wuhu, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| | - Wenjian Nian
- Department of Clinical Medicine, Wan Nan Medical College, Wuhu, China
| | - Qiancheng Xu
- Department of Critical Care Medicine, Yi Ji Shan Hospital Affiliated to Wan Nan Medical College, Anhui, China; Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Yuhan Cao
- Anesthesia Laboratory and Training Center, Wan Nan Medical College, Wuhu, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China; Department of Nephrology, Yi Ji Shan Hospital Affiliated to Wan Nan Medical College, Anhui, China.
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wan Nan Medical College, Wuhu, China; Anesthesia Laboratory and Training Center, Wan Nan Medical College, Wuhu, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China.
| |
Collapse
|