1
|
Chen Y, Ouyang L, Yang X, Wu B, Meng L, Gu J, Wang Y, Li J, Zhang J, Jing X, Lu S, Liu L, Fu S. Electroacupuncture Promotes the Generation of Intestinal Treg Cells After Ischemic Stroke by Foxp3 Acetylation Regulation. Mol Neurobiol 2025; 62:3697-3711. [PMID: 39322831 DOI: 10.1007/s12035-024-04500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electroacupuncture (EA) has been shown to ameliorate brain injury and protect against intestinal injury after ischemic stroke. These protective effects are closely associated with the enhancement of regulatory T (Treg) cell numbers and function in the intestine, as well as the inhibition of intestinal γδ T cell production and their migration to the brain. This study aimed to elucidate the potential mechanism by which EA regulates intestinal Treg cell differentiation after stroke. Sprague-Dawley rats were divided into three groups: the sham group, the middle cerebral artery occlusion (MCAO) group, and the MCAO plus EA (MEA) group. The MCAO model was generated by occluding the middle cerebral artery. EA was applied to Baihui (GV20) acupoint once daily. Samples were collected 3 days after reperfusion. Our results showed that EA reduced the inflammatory response in the brain and intestine after ischemic stroke. EA treatment increased the percentage of Treg cells in the small intestine of rats. EA increased the levels of SCFAs, while also inhibiting histone deacetylase activity (HDAC). Additionally, acetylated Foxp3 protein in the small intestine was increased after EA treatment. These results suggest that EA at GV20 alleviates brain and intestinal inflammatory injury in stroke rats, potentially through the enhancement of SCFA-mediated Foxp3 acetylation in Treg cells.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Ling Ouyang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bufan Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jialin Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lanying Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhao J, Nie Z, Miao H, Wu F, Ma T. Electroacupuncture reduces cerebral ischemia-induced neuronal damage in the hippocampal CA1 region in rats by inhibiting HMGB1 and p-JNK overexpression. Int J Neurosci 2025; 135:132-139. [PMID: 37999988 DOI: 10.1080/00207454.2023.2288541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The cornu ammonis 1 (CA1) region of the hippocampus is a sensitive area that is susceptible to injury caused by cerebral ischemia. High-mobility group box 1 (HMGB1) and phosphorylated c-Jun N-terminal kinase (p-JNK) play important roles in mediating cerebral ischemic injury. OBJECTIVE To elucidate the mechanism through which electroacupuncture (EA) via the Baihui (GV20) and Zusanli (ST36) acupoints protects neurons. METHODS A rat model of permanent middle cerebral artery occlusion (pMCAO) was established. Sprague-Dawley rats were divided into four groups: sham-operated control, pMCAO control, EA, and sham-EA (SEA). In the EA and SEA groups, the GV20 and ST36 acupoints were selected for treatment. However, the SEA group was treated only by superficial pricking of the skin at the two acupoints without the application of electricity. Neurological function was assessed using the neurological deficit function score, and neuronal damage was detected through Nissl staining. HMGB1 and p-JNK expression was evaluated using immunohistochemical staining and western blot assays. RESULTS The behavioural experiments showed that the EA treatment improved the neurological deficits in the pMCAO rats. The Nissl staining results revealed that EA reduced neural tissue damage. The immunohistochemical staining and western blot results showed that EA inhibited HMGB1 and p-JNK overexpression. By contrast, none of these EA effects were observed in the SEA group. CONCLUSION EA may reduce ischemia-induced neuronal damage in the hippocampal CA1 region by inhibiting the overexpression of both HMGB1 and p-JNK.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| | - Tongjun Ma
- Department of Human Anatomy, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Ye HM, Li ZY, Zhang P, Kang Z, Zhou DS. Exploring Mechanism of Electroacupuncture in Modulating Neuroinflammation Based on Intestinal Flora and Its Metabolites. Chin J Integr Med 2025; 31:183-192. [PMID: 39039343 DOI: 10.1007/s11655-024-3766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
Neuroinflammatory responses play an important role in the pathogenesis of various diseases, particularly those affecting the central nervous system. Inhibition of neuroinflammation is a crucial therapeutic strategy for the management of central nervous system disorders. The intestinal microbial-gut-brain axis serves as a key regulatory pathway that modulates neuroinflammatory processes. Intestinal flora metabolites such as short-chain fatty acids, indoles and their derivatives, lipopolysaccharides, trimethylamine oxide, and secondary bile acids exert direct or indirect effects on neuroinflammation. Studies have shown that electroacupuncture (EA) modulates the composition of the intestinal microbiota and its metabolites, while also suppressing neuroinflammation by targeting the TLR4/NF- κ B, NLRP3/caspase-1, and microglial cell M2-type transformation pathways. This review discusses the mechanisms by which EA regulates neuroinflammation via intestinal microbiota and its metabolites, providing information and a foundation for further investigation of the precise therapeutic mechanisms of EA in neurological disorders.
Collapse
Affiliation(s)
- Hai-Min Ye
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Neurology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Zhuo-Yan Li
- Neurology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Peng Zhang
- Acupuncture and Moxibustion Massage Rehabilitation Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Zhen Kang
- Acupuncture and Moxibustion Massage Rehabilitation Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - De-Sheng Zhou
- Neurology Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410011, China.
| |
Collapse
|
4
|
Ren Y, Chen G, Hong Y, Wang Q, Lan B, Huang Z. Novel Insight into the Modulatory Effect of Traditional Chinese Medicine on Cerebral Ischemia-Reperfusion Injury by Targeting Gut Microbiota: A Review. Drug Des Devel Ther 2025; 19:185-200. [PMID: 39810832 PMCID: PMC11731027 DOI: 10.2147/dddt.s500505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is clinically characterized by high rates of morbidity, disability, mortality, and recurrence as well as high economic burden. The clinical manifestations of CIRI are often accompanied by gastrointestinal symptoms such as intestinal bacterial dysbiosis and gastrointestinal bleeding. Gut microbiota plays an important role in the pathogenesis of CIRI, and its potential biological effects have received extensive attention. The gut microbiota not only affects intestinal barrier function but also regulates gastrointestinal immunity and host homeostasis. Traditional Chinese medicine (TCM), a multi-component and multi-targeted drug, has shown remarkable effects and few adverse reactions in the prevention and treatment of CIRI. Notably, the effect of TCM on CIRI by regulating gut microbiota and maintaining gastrointestinal homeostasis has gradually become a hot topic. This review summarizes the functional role of the gut microbiota in the development and progression of CIRI and the therapeutic effects of TCM on CIRI by improving gut microbiota dysbiosis, affecting gut microbiota metabolism, and maintaining host immunity. The active ingredients of TCM used for the treatment of CIRI in relevant studies were saponins, triterpenoids, phenolics, and alkaloids. In addition, the clinical effects of TCM used to treat CIRI were briefly discussed. This review established the clinical significance and development prospects of TCM-based CIRI treatments and provided the necessary theoretical support for the further development of TCM resources for the treatment of CIRI.
Collapse
Affiliation(s)
- Yisong Ren
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Gang Chen
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Ying Hong
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Qianying Wang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Bo Lan
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Zhaozhao Huang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| |
Collapse
|
5
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
7
|
Song J, Zhou D, Cui L, Wu C, Jia L, Wang M, Li J, Ya J, Ji X, Meng R. Advancing stroke therapy: innovative approaches with stem cell-derived extracellular vesicles. Cell Commun Signal 2024; 22:369. [PMID: 39039539 PMCID: PMC11265156 DOI: 10.1186/s12964-024-01752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Stroke is a leading cause of mortality and long-term disability globally, with acute ischemic stroke (AIS) being the most common subtype. Despite significant advances in reperfusion therapies, their limited time window and associated risks underscore the necessity for novel treatment strategies. Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic approach due to their ability to modulate the post-stroke microenvironment and facilitate neuroprotection and neurorestoration. This review synthesizes current research on the therapeutic potential of stem cell-derived EVs in AIS, focusing on their origin, biogenesis, mechanisms of action, and strategies for enhancing their targeting capacity and therapeutic efficacy. Additionally, we explore innovative combination therapies and discuss both the challenges and prospects of EV-based treatments. Our findings reveal that stem cell-derived EVs exhibit diverse therapeutic effects in AIS, such as promoting neuronal survival, diminishing neuroinflammation, protecting the blood-brain barrier, and enhancing angiogenesis and neurogenesis. Various strategies, including targeting modifications and cargo modifications, have been developed to improve the efficacy of EVs. Combining EVs with other treatments, such as reperfusion therapy, stem cell transplantation, nanomedicine, and gut microbiome modulation, holds great promise for improving stroke outcomes. However, challenges such as the heterogeneity of EVs and the need for standardized protocols for EV production and quality control remain to be addressed. Stem cell-derived EVs represent a novel therapeutic avenue for AIS, offering the potential to address the limitations of current treatments. Further research is needed to optimize EV-based therapies and translate their benefits to clinical practice, with an emphasis on ensuring safety, overcoming regulatory hurdles, and enhancing the specificity and efficacy of EV delivery to target tissues.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, England
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Mao Z, Zhang J, Guo L, Wang X, Zhu Z, Miao M. Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:321-328. [PMID: 39364121 PMCID: PMC11444859 DOI: 10.12938/bmfh.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024]
Abstract
Ischemic stroke (IS) is the predominant form of stroke pathology, and its clinical management remains constrained by therapeutic time frame. The gut microbiota (GM), comprising a multitude of bacterial and archaeal cells, surpasses the human cell count by approximately tenfold and significantly contributes to the human organism's growth, development, and overall well-being. The microbiota-gut-brain axis (MGBA) in recent years has established a strong association between gut microbes and the brain, demonstrating their intricate involvement in the progression of IS. The regulation of IS by the GM, encompassing changes in composition, abundance, and distribution, is multifaceted, involving neurological, endocrine, immunological, and metabolic mechanisms. This comprehensive understanding offers novel insights into the therapeutic approaches for IS. The objective of this paper is to examine the mechanisms of interaction between the GM and IS in recent years, assess the therapeutic effects of the GM on IS through various interventions, such as dietary modifications, probiotics, fecal microbiota transplantation, and antibiotics, and offer insights into the potential clinical application of the GM in stroke treatment.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Jinying Zhang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Xiaoran Wang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Zhengwang Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
12
|
Zhou H, Chen Z, Li J, Wang R, Bu H, Ruan C. Dietary Supplementation with Nervonic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury by Modulating of Gut Microbiota Composition-Fecal Metabolites Interaction. Mol Nutr Food Res 2024:e2300671. [PMID: 38566522 DOI: 10.1002/mnfr.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/24/2024] [Indexed: 04/04/2024]
Abstract
SCOPE Cerebral ischemia-reperfusion (IR) injury stands as a prominent global contributor to disability and mortality. Nervonic acid (NA), a bioactive elongated monounsaturated fatty acid, holds pivotal significance in human physiological well-being. This research aims to explore the prophylactic effects and fundamental mechanisms of NA in a rat model of cerebral IR injury. METHODS AND RESULTS Through the induction of middle cerebral artery occlusion, this study establishes a rat model of cerebral IR injury and comprehensively assesses the pharmacodynamic impacts of NA pretreatment. This evaluation involves behavioral analyses, histopathological examinations, and quantification of serum markers. Detailed mechanisms of nervonic acid's prophylactic effects are revealed through fecal metabolomics and 16S rRNA sequencing analyses. Our findings robustly support nervonic acid's capacity to ameliorate neurological impairments in rats afflicted with cerebral IR injury. Beyond its neurological benefits, NA demonstrates its potential by rectifying metabolic perturbations across diverse pathways, particularly those pertinent to unsaturated fatty acid metabolism. Additionally, NA emerges as a modulator of gut microbiota composition, notably by selectively enhancing vital genera like Lactobacillus. CONCLUSION These comprehensive findings highlight the potential of incorporating NA as a functional component in dietary interventions aimed at targeting cerebral IR injury.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Jingbin Li
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Hongshi Bu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
13
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
14
|
Wen X, Dong H, Zou W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review. Front Neurosci 2024; 18:1346184. [PMID: 38449739 PMCID: PMC10915040 DOI: 10.3389/fnins.2024.1346184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Intracerebral hemorrhagic stroke, characterized by acute hemorrhage in the brain, has a significant clinical prevalence and poses a substantial threat to individuals' well-being and productivity. Recent research has elucidated the role of gut microorganisms and their metabolites in influencing brain function through the microbiota-gut-brain axis (MGBA). This article provides a comprehensive review of the current literature on the common metabolites, short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), produced by gut microbiota. These metabolites have demonstrated the potential to traverse the blood-brain barrier (BBB) and directly impact brain tissue. Additionally, these compounds have the potential to modulate the parasympathetic nervous system, thereby facilitating the release of pertinent substances, impeding the buildup of inflammatory agents within the brain, and manifesting anti-inflammatory properties. Furthermore, this scholarly analysis delves into the existing dearth of investigations concerning the influence of gut microorganisms and their metabolites on cerebral functions, while also highlighting prospective avenues for future research.
Collapse
Affiliation(s)
- Xin Wen
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Hao Dong
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Wang YY, Cheng J, Liu YD, Wang YP, Yang QW, Zhou N. Exosome-based regenerative rehabilitation: A novel ice breaker for neurological disorders. Biomed Pharmacother 2023; 169:115920. [PMID: 37995565 DOI: 10.1016/j.biopha.2023.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Neurological disorders affect a large population, often leading to different levels of disability and resulting in decreased quality of life. Due to the limited recovery obtained from surgical procedures and other medical approaches, a large number of patients with prolonged dysfunction receive neurorehabilitation protocols to improve their neural plasticity and regeneration. However, the poor neural regeneration ability cannot effectively rebuild the tissue integrity and neural functional networks; consequently, the prognoses of neurorehabilitation remain undetermined. To increase the chances of neural regeneration and functional recovery for patients with neurological disorders, regenerative rehabilitation was introduced with combined regenerative medicine and neurorehabilitation protocols to repair neural tissue damage and create an optimized biophysical microenvironment for neural regeneration potential. With the deepening of exosome research, an increasing number of studies have found that the systemic therapeutic effects of neurorehabilitation approaches are mediated by exosomes released by physically stimulated cells, which provides new insight into rehabilitative mechanisms. Meanwhile, exosome therapy also serves as an alternative cell-free therapy of regenerative medicine that is applied in partnership with neurorehabilitation approaches and formulates exosome-based neurological regenerative rehabilitation. In this study, we review the current state of exosome-associated neurorehabilitation. On the one hand, we focus on presenting the varied mediating effects of exosomes in neurorehabilitation protocols of specific neurological pathologies; on the other hand, we discuss the diverse combinations of exosome therapies and neurorehabilitation approaches in the field of neurological regenerative rehabilitation, aiming to increase the awareness of exosome research and applications in the rehabilitation of neurological disorders.
Collapse
Affiliation(s)
- Yuan-Yi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin Cheng
- Department of Sport Medicine, Peking University Third Hospital, Beijing, China
| | - Ya-Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi-Peng Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China.
| | - Qi-Wei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
| |
Collapse
|
16
|
Bai J, Wei JQ, Tian Q, Xue F, Zhang W, He H. The impact of electroacupuncture on anxiety-like behavior and gut microbiome in a mouse model of chronic restraint stress. Front Behav Neurosci 2023; 17:1292835. [PMID: 38033481 PMCID: PMC10687179 DOI: 10.3389/fnbeh.2023.1292835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Electroacupuncture (EA) is a beneficial physiotherapy approach for addressing neuropsychiatric disorders. Nevertheless, the impact of EA on the gut microbiome in relation to anxiety disorders remains poorly understood. Methods To address this gap, we conducted a study using a chronic restraint stress (CRS) mouse model to investigate the anti-anxiety outcome of EA and its influence on gut microbiota. Our research involved behavioral tests and comprehensive sequencing of full-length 16S rRNA microbiomes. Results Our findings revealed that CRS led to significant anxiety-like behaviors and an imbalance in the gut microbiota. Specifically, we identified 13 species that exhibited changes associated with anxiety-like behaviors. Furthermore, EA partially alleviated both behaviors related to anxiety and the dysbiosis induced by CRS. Discussion In summary, this study sheds light on the alterations in gut microbiota species resulting from CRS treatment and brings new light into the connection between EA's anti-anxiety effects and the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong He
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, China
| |
Collapse
|
17
|
Ma T, Li C, Nie Z, Miao H, Wu F. Regulatory Effect of Electroacupuncture on Hypothalamic Serotonin and its Receptor in Rats with Cerebral Ischemia. Curr Neurovasc Res 2023; 20:237-243. [PMID: 37309759 PMCID: PMC10556395 DOI: 10.2174/1567202620666230612110156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have shown that the neurological damage caused by middle cerebral artery occlusion (MCAO) is not only limited to local infarction but can also cause secondary damage in distant sites, such as the hypothalamus. 5-hydroxytryptamine (5-HT)/ 5-HT transporter (5-HTT) and 5-HT receptor 2A (5-HT2A) are important in the treatment of cerebrovascular diseases. OBJECTIVE This study aimed to study the effect of electroacupuncture (EA) on the expression of 5- HT, 5-HTT, and 5-HT2A in the hypothalamus of rats with ischemic brain injury and to explore the protective effect and potential mechanism of EA on the secondary injury of cerebral ischemia. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: sham group, model group, and EA group. The permanent middle cerebral artery occlusion (pMCAO) method was used to induce ischemic stroke in rats. In the EA group, the Baihui (GV20) and Zusanli (ST36) points were selected for treatment, which was administered once per day for two consecutive weeks. The neuroprotective effect of EA was evaluated by nerve defect function scores and Nissl staining. The content of 5-HT in hypothalamus was detected by enzyme linked immunosorbent assay (ELISA), and the expression of 5-HTT and 5-HT2A were detected by Western blot. RESULTS Compared with that in the sham group, the nerve defect function score in the model group rats was significantly increased, the hypothalamus tissue showed obvious nerve damage, the levels of 5-HT and the expression of 5-HTT were significantly reduced, and the expression of 5-HT2A was significantly increased. After 2 weeks of EA treatment, the nerve defect function scores of pMCAO rats were significantly reduced, the hypothalamic nerve injury was significantly reduced, the levels of 5-HT and the expression of 5-HTT were significantly increased, and the expression of 5-HT2A was significantly decreased. CONCLUSION EA has a certain therapeutic effect on hypothalamic injury secondary to permanent cerebral ischemia, and its potential mechanism may be closely related to the upregulation of 5-HT and 5-HTT expression and the downregulation of 5-HT2A expression.
Collapse
Affiliation(s)
- Tongjun Ma
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Chenyu Li
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| |
Collapse
|