1
|
Agrawal S, Kasarpalkar N, Ghosh S, Paradkar G, Daund V, Bhowmick S, Chitalia V, Rao P, Sankpal A, Kalsurkar V, Shah K, Khan S, Patil A, Jagtap D, Khandkar O, Kaneria M, Mahale SD, Sachdeva G, Bhor VM, Shastri J, Patel V. Integrated viral and immune monitoring in a prospective COVID-19 cohort from India. J Leukoc Biol 2024; 116:1568-1577. [PMID: 39219468 DOI: 10.1093/jleuko/qiae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, we report on longitudinal kinetics of cellular immune subsets following SARS-CoV-2 infection in a cohort of hospitalized individuals and evaluate the interplay of these profiles with infecting viral variants, humoral immunity including neutralizing responses, vaccination history, and clinical outcomes. A cohort of 121 SARS-CoV-2-infected individuals exhibiting varying disease states were prospectively evaluated for lymphopenic profiles, antiviral humoral responses and infecting viral variants for a period of up to 90 d spanning the period of February 2021 to January 2022 (second and third waves of infection). A total of 51 participants received at least 1 vaccine dose of indigenous vaccines (Covishield or Covaxin) prior to recruitment. When stratified in terms of mortality, B and natural killer cells, in contrast to the T cell compartment, did not recover from nadir levels in nonsurvivors who were largely unvaccinated. No discriminatory signature was identified for nonsurvivors in terms of anti-nucleocapsid or anti-S1-RBD IgG chemiluminescent immunoassay profiles including GenScript S1-RBD assays. Evaluation of sVCAM and sMAdCAM revealed opposing dynamics that correlated with disease severity and convalescence respectively. Viral variant analysis revealed Delta and Omicron variants to comprise the majority of the infections, which reflected national transmission kinetics during the period of recruitment. Our results demonstrate the importance of monitoring circulating biomarkers for convalescence as well as mortality in COVID-19 progression. Delta variants of SARS-CoV-2 clearly demonstrated increased pathogenicity and warrants sustained viral surveillance for re-emergence of these strains. Our findings with respect to vaccination advocate for continued vaccine development and administration of COVID-19 vaccines.
Collapse
Affiliation(s)
- Sachee Agrawal
- Department of Microbiology, B.Y.L. Nair Charitable Hospital, Mumbai 400008, India
| | - Nandini Kasarpalkar
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Sayantani Ghosh
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Gaurav Paradkar
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Vaibhav Daund
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Shilpa Bhowmick
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Vidushi Chitalia
- Viral Research and Diagnostic Laboratory, Kasturba Hospital for Infectious Diseases, Mumbai 400011, India
| | - Priyanka Rao
- Topiwala National Medical College and B.Y.L. Nair Charitable Hospital, Mumbai 400008, India
| | - Ashwini Sankpal
- Topiwala National Medical College and B.Y.L. Nair Charitable Hospital, Mumbai 400008, India
| | - Varsha Kalsurkar
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Karan Shah
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Sameen Khan
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Ashwini Patil
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Dhanashree Jagtap
- Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Omkar Khandkar
- Topiwala National Medical College and B.Y.L. Nair Charitable Hospital, Mumbai 400008, India
| | - Mala Kaneria
- Topiwala National Medical College and B.Y.L. Nair Charitable Hospital, Mumbai 400008, India
| | - Smita D Mahale
- Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Geetanjali Sachdeva
- Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Jayanthi Shastri
- Topiwala National Medical College and B.Y.L. Nair Charitable Hospital, Mumbai 400008, India
- Viral Research and Diagnostic Laboratory, Kasturba Hospital for Infectious Diseases, Mumbai 400011, India
| | - Vainav Patel
- Viral Immunopathogenesis Lab, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| |
Collapse
|
2
|
Mai W, Shen J, Ma F, Zhu J, Chen L, Lei Y, Yu P, Niu C, Wang F, Yan S, Mai X, He P, Liao L, Xiong X, Zheng Y, Liu Q, Huang Y, Wang Q, Liang J, Ji T. Specific humoral immune response and XBB variants re-infection risk of hemodialysis patients after Omicron BA.5 infection in China. Vaccine 2024; 42:126108. [PMID: 39048466 DOI: 10.1016/j.vaccine.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/08/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Currently, there is limited understanding of the specific humoral immune response in BA.5-infected hemodialysis patients (BA.5-CHDPs) with previous COVID-19 vaccination. Additionally, the relevant risk factors for reinfection with XBB variants in BA.5-CHDPs have yet to be elucidated. METHOD A total of 178 BA.5-CHDPs were enrolled in this study among 53 patients who had previous vaccination. To compare hemodialysis patients in both unvaccinated and vaccinated for their immune response to the BA.5 subtype infection, we assessed serum levels of anti-ancestral-S1-IgG, anti-BA.5-receptor binding domain (RBD)-IgG, and anti-XBB.1.16-RBD-IgG using enzyme-linked immunosorbent assay, the neutralizing antibody titer against BA.5 and XBB.1.16 was determined using pseudovirus neutralization assays. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with severe infection, the magnitude of specific humoral immunity and susceptibility to XBB variants reinfection. RESULT Our findings indicate that BA.5-CHDPs with full or booster vaccinations have higher levels of anti-ancestral-S1-IgG than unvaccinated individuals. However, levels of anti-BA.5-RBD-IgG and anti-XBB.1.16-RBD-IgG are much lower. Booster-vaccinated BA.5-CHDPs have significantly higher levels of BA.5 and XBB.1.16 specific antibodies and neutralizing antibodies than unvaccinated patients. Low globulin levels and shorter hemodialysis duration are independent risk factors for XBB reinfection in BA.5-CHDPs. CONCLUSION Although XBB.1.16 specific neutralizing antibody levels were low in BA.5-CHDPs, these levels cannot predict the risk of reinfection; other potential risk factors need to be investigated in the future.
Collapse
Affiliation(s)
- Weikang Mai
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Jinwei Shen
- Nephrology Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Feifei Ma
- Obstetrical Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Jinhong Zhu
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Lu Chen
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yu Lei
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Pei Yu
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Chanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510535, PR China
| | - Feng Wang
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Shuo Yan
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Xiaorui Mai
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Peng He
- Microbiology Detection Department, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Longhao Liao
- Department of Medical Laboratory, Guangdong Lingnan Institute of Technology, Guangzhou 510663, PR China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510535, PR China
| | - Yu Zheng
- Urology Surgery Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Qiliang Liu
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, PR China
| | - Ying Huang
- Nephrology Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Qian Wang
- Guangzhou Laboratory, Guangzhou 510005, PR China.
| | - Jianbo Liang
- Nephrology Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Tianxing Ji
- State Key Laboratory of Respiratory Disease, Clinical Laboratory Medicine Department, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, PR China.
| |
Collapse
|
3
|
Nascimento RR, Aquino CC, Sousa JK, Gadelha KL, Cajado AG, Schiebel CS, Dooley SA, Sousa PA, Rocha JA, Medeiros JR, Magalhães PC, Maria-Ferreira D, Gois MB, C P Lima-Junior R, V T Wong D, Lima AM, Engevik AC, Nicolau LD, Vale ML. SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to innermost layers: From basic science to clinical relevance. Mucosal Immunol 2024; 17:565-583. [PMID: 38555027 DOI: 10.1016/j.mucimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1β, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.
Collapse
Affiliation(s)
- Renata R Nascimento
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristhyane C Aquino
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - José K Sousa
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kalinne L Gadelha
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aurilene G Cajado
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carolina S Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paulo A Sousa
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jefferson A Rocha
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jand R Medeiros
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Pedro C Magalhães
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Marcelo B Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Roberto C P Lima-Junior
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Deysi V T Wong
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aldo M Lima
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas D Nicolau
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil; Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil.
| | - Mariana L Vale
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Volcic M, Nchioua R, Pastorio C, Zech F, Haußmann I, Sauter D, Read C, Walther P, Kirchhoff F. Attenuated replication and damaging effects of SARS-CoV-2 Omicron variants in an intestinal epithelial barrier model. J Med Virol 2024; 96:e29783. [PMID: 38965890 DOI: 10.1002/jmv.29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.
Collapse
Affiliation(s)
- Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Isabell Haußmann
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Beloglazov VA, Yatskov IA, Useinova RK. Low-grade inflammation in the post-COVID period as a strategic goal of treatment and rehabilitation. ACTA BIOMEDICA SCIENTIFICA 2024; 9:24-34. [DOI: 10.29413/abs.2024-9.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
As of the beginning of 2023, there are more than 660 million convalescents of a new coronavirus infection in the world, however, even despite successful treatment of the acute period of the disease, such patients have a high risk of developing long-term complications in the post-COVID period, primarily cardiovascular events. One factor that seriously increases the risk of these complications is the state of lowgrade systemic inflammation (LGSI). LGSI is not a clinical diagnosis, it is characterized by a level of C-reactive protein in peripheral blood in the range of 3–10 mg/l and is most often detected during routine examination of patients, who in most cases have no clinical symptoms. In this regard, the condition of LGSI most often remains unnoticed and unreasonably ignored, despite quite extensive literature data on the effect of LGSI on the pathogenesis of many cardiovascular diseases. The development of drug therapy for LGSI is complicated by the multifactorial etiology of this condition. The causes of LGSI can be both genetic factors, which are practically impossible to correct, and conditions that are amenable to drug and non-drug treatment, such as, for example, increased intestinal permeability to pro-inflammatory agents, including lipopolysaccharide of gram-negative flora, the presence of a chronic untreated infection site and endocrine pathology (obesity and type 2 diabetes). This review presents the main information to date on the state of LGSI in patients who had a new coronavirus infection, including the results of our own observations of patients who have undergone a course of rehabilitation measures, as well as the most significant, in our opinion, factors predisposing to the development of LGSI in such patients.
Collapse
Affiliation(s)
- V. A. Beloglazov
- Medical Institute named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University
| | - I. A. Yatskov
- Medical Institute named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University
| | - R. Kh. Useinova
- Medical Institute named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University
| |
Collapse
|
6
|
Shi FS, Xie YH, Yang YL, Xu LD, Li JJ, Wang X, Zhu LY, Wang WW, Shen PL, Huang YW, Li XQ. Fucoidan from Ascophyllum nodosum and Undaria pinnatifida attenuate SARS-CoV-2 infection in vitro and in vivo by suppressing ACE2 and alleviating inflammation. Carbohydr Polym 2024; 332:121884. [PMID: 38431405 DOI: 10.1016/j.carbpol.2024.121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
The global healthcare challenge posed by COVID-19 necessitates the continuous exploration for novel antiviral agents. Fucoidans have demonstrated antiviral activity. However, the underlying structure-activity mechanism responsible for the inhibitory activity of fucoidans from Ascophyllum nodosum (FUCA) and Undaria pinnatifida (FUCU) against SARS-CoV-2 remains unclear. FUCA was characterized as a homopolymer with a backbone structure of repeating (1 → 3) and (1 → 4) linked α-l-fucopyranose residues, whereas FUCU was a heteropolysaccharide composed of Fuc1-3Gal1-6 repeats. Furthermore, FUCA demonstrated significantly higher anti-SARS-CoV-2 activity than FUCU (EC50: 48.66 vs 69.52 μg/mL), suggesting the degree of branching rather than sulfate content affected the antiviral activity. Additionally, FUCA exhibited a dose-dependent inhibitory effect on ACE2, surpassing the inhibitory activity of FUCU. In vitro, both FUCA and FUCU treatments downregulated the expression of pro-inflammatory cytokines (IL-6, IFN-α, IFN-γ, and TNF-α) and anti-inflammatory cytokines (IL-10 and IFN-β) induced by viral infection. In hamsters, FUCA demonstrated greater effectiveness in attenuating lung and gastrointestinal injury and reducing ACE2 expression, compared to FUCU. Analysis of the 16S rRNA gene sequencing revealed that only FUCU partially alleviated the gut microbiota dysbiosis caused by SARS-CoV-2. Consequently, our study provides a scientific basis for considering fucoidans as poteintial prophylactic food components against SARS-CoV-2.
Collapse
Affiliation(s)
- Fang-Shu Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou 310028, China
| | - Yv-Hao Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yong-Le Yang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310028, China
| | - Ling-Dong Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310028, China
| | - Jin-Jun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei-Wei Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Pei-Li Shen
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, Shandong, China
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Department of Veterinary Medicine, Zhejiang University, Hangzhou 310028, China.
| | - Xiao-Qiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Zou Y, Pan M, Zhou T, Yan L, Chen Y, Yun J, Wang Z, Guo H, Zhang K, Xiong W. Critical COVID-19, Victivallaceae abundance, and celiac disease: A mediation Mendelian randomization study. PLoS One 2024; 19:e0301998. [PMID: 38701071 PMCID: PMC11068179 DOI: 10.1371/journal.pone.0301998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Celiac disease exhibits a higher prevalence among patients with coronavirus disease 2019. However, the potential influence of COVID-19 on celiac disease remains uncertain. Considering the significant association between gut microbiota alterations, COVID-19 and celiac disease, the two-step Mendelian randomization method was employed to investigate the genetic causality between COVID-19 and celiac disease, with gut microbiota as the potential mediators. We employed the genome-wide association study to select genetic instrumental variables associated with the exposure. Subsequently, these variables were utilized to evaluate the impact of COVID-19 on the risk of celiac disease and its potential influence on gut microbiota. Employing a two-step Mendelian randomization approach enabled the examination of potential causal relationships, encompassing: 1) the effects of COVID-19 infection, hospitalized COVID-19 and critical COVID-19 on the risk of celiac disease; 2) the influence of gut microbiota on celiac disease; and 3) the mediating impact of the gut microbiota between COVID-19 and the risk of celiac disease. Our findings revealed a significant association between critical COVID-19 and an elevated risk of celiac disease (inverse variance weighted [IVW]: P = 0.035). Furthermore, we observed an inverse correlation between critical COVID-19 and the abundance of Victivallaceae (IVW: P = 0.045). Notably, an increased Victivallaceae abundance exhibits a protective effect against the risk of celiac disease (IVW: P = 0.016). In conclusion, our analysis provides genetic evidence supporting the causal connection between critical COVID-19 and lower Victivallaceae abundance, thereby increasing the risk of celiac disease.
Collapse
Affiliation(s)
- Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manyi Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntian Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Yun
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Department of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Hua S, Latha K, Marlin R, Benmeziane K, Bossevot L, Langlois S, Relouzat F, Dereuddre-Bosquet N, Le Grand R, Cavarelli M. Intestinal immunological events of acute and resolved SARS-CoV-2 infection in non-human primates. Mucosal Immunol 2024; 17:25-40. [PMID: 37827377 DOI: 10.1016/j.mucimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Collapse
Affiliation(s)
- Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Krishna Latha
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Keltouma Benmeziane
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
10
|
Yu L, Gao Y, Aaron N, Qiang L. A glimpse of the connection between PPARγ and macrophage. Front Pharmacol 2023; 14:1254317. [PMID: 37701041 PMCID: PMC10493289 DOI: 10.3389/fphar.2023.1254317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases. In this review, we focus on emerging evidence for the potential role of PPARγ in macrophage biology, which is the prior innate immune executive in metabolic and tissue homeostasis. We also discuss the role of PPARγ as a regulator of macrophage function in inflammatory diseases. Lastly, we discuss the possible application of PPARγ antagonists in metabolic pathologies.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yuen Gao
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, United States
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Li Z, Zhu G, Lei X, Tang L, Kong G, Shen M, Zhang L, Song L. Genetic support of the causal association between gut microbiome and COVID-19: a bidirectional Mendelian randomization study. Front Immunol 2023; 14:1217615. [PMID: 37483615 PMCID: PMC10360131 DOI: 10.3389/fimmu.2023.1217615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The association between gut microbiome and coronavirus disease 2019 (COVID-19) has attracted much attention, but its causality remains unclear and requires more direct evidence. Methods In this study, we conducted the bidirectional Mendelian randomization (MR) analysis to assess the causal association between gut microbiome and COVID-19 based on the summary statistics data of genome-wide association studies (GWASs). Over 1.8 million individuals with three COVID-19 phenotypes (severity, hospitalization and infection) were included. And 196 bacterial taxa from phylum to genus were analyzed. The inverse-variance weighted (IVW) analysis was chosen as the primary method. Besides, false discovery rate (FDR) correction of p-value was used. To test the robustness of the causal relationships with p-FDR < 0.05, sensitivity analyses including the secondary MR analyses, horizontal pleiotropy test, outliers test, and "leave-one-out" analysis were conducted. Results In the forward MR, we found that 3, 8, and 10 bacterial taxa had suggestive effects on COVID-19 severity, hospitalization and infection, respectively. The genus Alloprevotella [odds ratio (OR) = 1.67; 95% confidence interval (95% CI), 1.32-2.11; p = 1.69×10-5, p-FDR = 2.01×10-3] was causally associated with a higher COVID-19 severity risk. In the reverse MR, COVID-19 severity, hospitalization and infection had suggestive effects on the abundance of 4, 8 and 10 bacterial taxa, respectively. COVID-19 hospitalization causally increased the abundance of the phylum Bacteroidetes (OR = 1.13; 95% CI, 1.04-1.22; p = 3.02×10-3; p-FDR = 2.72×10-2). However, secondary MR analyses indicated that the result of COVID-19 hospitalization on the phylum Bacteroidetes required careful consideration. Conclusion Our study revealed the causal association between gut microbiome and COVID-19 and highlighted the role of "gut-lung axis" in the progression of COVID-19.
Collapse
Affiliation(s)
- Zengbin Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Guixian Zhu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiangye Lei
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Liqiong Tang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingwang Shen
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lei Zhang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Lingqin Song
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|