1
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
2
|
Lotze MT, Olejniczak SH, Skokos D. CD28 co-stimulation: novel insights and applications in cancer immunotherapy. Nat Rev Immunol 2024; 24:878-895. [PMID: 39054343 PMCID: PMC11598642 DOI: 10.1038/s41577-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Substantial progress in understanding T cell signalling, particularly with respect to T cell co-receptors such as the co-stimulatory receptor CD28, has been made in recent years. This knowledge has been instrumental in the development of innovative immunotherapies for patients with cancer, including immune checkpoint blockade antibodies, adoptive cell therapies, tumour-targeted immunostimulatory antibodies, and immunostimulatory small-molecule drugs that regulate T cell activation. Following the failed clinical trial of a CD28 superagonist antibody in 2006, targeted CD28 agonism has re-emerged as a technologically viable and clinically promising strategy for cancer immunotherapy. In this Review, we explore recent insights into the molecular functions and regulation of CD28. We describe how CD28 is central to the success of current cancer immunotherapies and examine how new questions arising from studies of CD28 as a clinical target have enhanced our understanding of its biological role and may guide the development of future therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Michael T Lotze
- Department of Surgery, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | | |
Collapse
|
3
|
Rahbech A, Kurzay A, Fresnillo Saló S, Seremet T, Debets R, Met Ö, Peeters MJW, Straten PT. MerTK Signaling in Human Primary T cells Modulates Memory Potential and Improves Recall response. J Leukoc Biol 2024:qiae226. [PMID: 39422252 DOI: 10.1093/jleuko/qiae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immune therapy using checkpoint inhibitors or adoptive cell transfer has revolutionized the treatment of several types of cancers. However, response to treatment is currently limited to a fraction of patients. Elucidation of immune modulatory mechanisms might optimize patient selection and present ways to modify anti-cancer immune responses. We recently discovered the expression and an important costimulatory role of TAM receptor MerTK signaling on activated human primary CD8+ T cells. Here we extend our study of the costimulatory role of MerTK expression in human CD8+ T cells. We uncover a clear link between MerTK expression and less differentiated Central Memory T cells based on an increased expression of CCR7, CD45RO, CD28, CD62L, and an altered metabolic profile. In addition, we observe an improved proliferative capacity and elevated expression of effector molecule IFNγ upon recall responses of MerTK-expressing cells in vitro. Finally, using gp100TCR-transduced T cells, we demonstrate how PROS1 treatment results in improved cytotoxicity and killing of tumors. Our findings describe a role of MerTK expression in T cells, which could be exploited in the search for improving immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anne Rahbech
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Annina Kurzay
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Sara Fresnillo Saló
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Tina Seremet
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, Netherlands
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
5
|
Chen J, Su B, Zhang X, Gao C, Ji Y, Xue X. Mendelian randomization suggests causal correlations between inflammatory cytokines and immune cells with mastitis. Front Immunol 2024; 15:1409545. [PMID: 39399489 PMCID: PMC11466835 DOI: 10.3389/fimmu.2024.1409545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Previous studies have reported that immunoinflammatory responses have associations with mastitis. Here, we aimed to further figure out whether circulating inflammatory cytokines and immune cells causally impact mastitis liability. Methods The two-sample Mendelian randomization made use of genetic variances of 91 inflammatory cytokines from a large publicly available genome-wide association study (GWAS) containing 14,824 participants, 731 immunophenotypes data from 3,757 individuals as exposures separately, and mastitis from a GWAS summary (1880 cases and 211699 controls of European ancestry) as outcome. The primary analysis applied the inverse-variance weighted (IVW) method to estimate causal influences, with MR-Egger, weighted median, weighted mode and simple mode as supplementary approaches. Heterogeneity and pleiotropy were evaluated by the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO global test. Results The results indicated that CX3CL1 may be suggestively relevant to the risk of mastitis (odds ratio, OR = 1.434, 95% CI = 1.142~1.800, p = 0.002). Moreover, three immunophenotypes were identified as having a potential causal link to mastitis (p < 0.05). Significantly, CD28- CD8dim %CD8dim (OR = 1.058, 95% CI = 1.024 ~ 1.093, p = 0.0006) and CD45 on CD33br HLA DR+ (OR = 1.097, 95% CI = 1.039 ~ 1.157, p = 0.0008) were found to induce mastitis possibly. Conversely, CD39+ secreting Treg AC (OR = 0.929, 95% CI = 0.884~ 0.978, p = 0.005) pertained to protective factors of mastitis. Cochran's Q test and MR-Egger intercept test indicated no significant heterogeneity (p > 0.05) or pleiotropy (p > 0.05), supporting the robustness and reliability of our findings. Conclusion Our study adds to current knowledge on the causal roles of inflammatory cytokines and immune cells on mastitis by genetic means, thus guiding future clinical research.
Collapse
Affiliation(s)
- Jiaying Chen
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Breast Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ben Su
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Department of Breast Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Gao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Breast Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yajie Ji
- Department of Breast Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohong Xue
- Department of Breast Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Fang CH, Cheng YF, Lin SR, Lai WY, Liao LR, Chiu YL, Lee JM. Establishment of a protocol for rapidly expanding Epstein-Barr-virus-specific cytotoxic T cells with enhanced cytotoxicity. BMC Cancer 2024; 24:980. [PMID: 39118069 PMCID: PMC11312821 DOI: 10.1186/s12885-024-12707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.
Collapse
Affiliation(s)
- Chih-Hao Fang
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Ya Fang Cheng
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Shian-Ren Lin
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Wan-Yu Lai
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Li-Ren Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, No. 121, Sec. 2, Nanya S. Rd., Banqiao Dist., New Taipei City, 220216, Taiwan.
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, 320315, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100233, Taiwan.
| | - Jan-Mou Lee
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan.
| |
Collapse
|
7
|
Zheng X, Wang Y, Wang Y, Wang X, Pei L, Zhao S, Gong F, Li R, Liu H, Liu W, Mao E, Yang Z, Chen E, Chen Y. Dissecting the mediating role of cytokines in the interaction between immune traits and sepsis: insights from comprehensive mendelian randomization. Front Immunol 2024; 15:1417716. [PMID: 39076981 PMCID: PMC11284126 DOI: 10.3389/fimmu.2024.1417716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infection, yet the potential causal relationship between the immunophenotype and sepsis remains unclear. Methods Genetic variants associated with the immunophenotype served as instrumental variables (IVs) in Mendelian randomization (MR) to elucidate the causal impact of the immunophenotype on three sepsis outcomes. Additionally, a two-step MR analysis was conducted to identify significant potential mediators between the immunophenotype and three sepsis outcomes. Results Our MR analysis demonstrated a significant association between the immunophenotype and sepsis outcome, with 36, 36, and 45 the immunophenotype associated with the susceptibility, severity, and mortality of sepsis, respectively. Specifically, our analysis highlighted the CD14+ CD16+ monocyte phenotype as a significant factor across all three sepsis outcomes, with odds ratios (ORs) and corresponding confidence intervals (CIs) indicating its impact on sepsis (OR = 1.047, CI: 1.001-1.096), sepsis in Critical Care Units (OR = 1.139, CI: 1.014-1.279), and sepsis-related 28-day mortality (OR = 1.218, CI: 1.104-1.334). Mediation analyses identified seven cytokines as significant mediators among 91 potential cytokines, including interleukin-5 (IL-5), S100A12, TNF-related apoptosis-inducing ligand (TRAIL), T-cell surface glycoprotein CD6 isoform, cystatin D, interleukin-18 (IL-18), and urokinase-type plasminogen activator (uPA). Furthermore, reverse MR analysis revealed no causal effect of sepsis outcomes on the immunophenotype. Conclusion Our MR study suggests that the immunophenotype is significantly associated with the susceptibility, severity, and mortality of patient with sepsis, providing, for the first time, robust evidence of significant associations between immune traits and their potential risks. This information is invaluable for clinicians and patients in making informed decisions and merits further attention.
Collapse
Affiliation(s)
- Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuming Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Tahir A, Shinkafi SH, Alshrari AS, Yunusa A, Umar MT, Hudu SA, Jimoh AO. A Comprehensive Review of Hepatitis B Vaccine Nonresponse and Associated Risk Factors. Vaccines (Basel) 2024; 12:710. [PMID: 39066348 PMCID: PMC11281605 DOI: 10.3390/vaccines12070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a significant global health concern worldwide, contributing to high rates of mortality and morbidity, including chronic hepatitis B, cirrhosis, and hepatocellular carcinoma (HCC). Universal vaccination programs have significantly reduced the rate of HBV transmission; however, a subset of individuals fail to develop a protective immune response following vaccination and are termed nonresponders. A comprehensive search strategy using the PubMed, Google Scholar, and Web of Science databases was employed to search for relevant studies using keywords including "hepatitis B vaccine", "vaccine nonresponse", "immunogenicity", "immune response to the hepatitis B vaccine", and "associated risk factors". Factors influencing the vaccine's response include demographic factors, such as age and sex, with increased nonresponse rates being observed in older adults and males. Obesity, smoking, and alcohol consumption are lifestyle factors that decrease the vaccine response. Medical conditions, including diabetes, chronic kidney and liver diseases, HIV, celiac disease, and inflammatory bowel disease, affect the vaccine response. Major histocompatibility complex (MHC) haplotypes and genetic polymorphisms linked to immune regulation are genetic factors that further influence the vaccine's effectiveness. To reduce the global burden of hepatitis B infection, it is essential to understand these factors to improve vaccine effectiveness and develop individualized vaccination strategies.
Collapse
Affiliation(s)
- Albashir Tahir
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria; (A.T.); (A.Y.); (M.T.U.)
- Department of Pharmacology, Faculty of Basic Medical Sciences, Bauchi State University, Gadau 751105, Nigeria
| | - Sa’adatu Haruna Shinkafi
- Department of Microbiology and Parasitology, Usmanu Danfodiyo University Teaching Hospital, Sokoto 23270, Nigeria
| | - Ahmed Subeh Alshrari
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, Northern Border University, Arar 91431, Saudi Arabia;
| | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria; (A.T.); (A.Y.); (M.T.U.)
| | - Muhammad Tukur Umar
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria; (A.T.); (A.Y.); (M.T.U.)
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840232, Nigeria
| | - Abdulgafar Olayiwola Jimoh
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria; (A.T.); (A.Y.); (M.T.U.)
| |
Collapse
|
9
|
Zhang Y, Huang Y, Hong Y, Lin Z, Zha J, Zhu Y, Li Z, Wang C, Fang Z, Zhou Z, Peng Y, Yu X, Liu L, Xu B. Lactate acid promotes PD-1 + Tregs accumulation in the bone marrow with high tumor burden of Acute myeloid leukemia. Int Immunopharmacol 2024; 130:111765. [PMID: 38447414 DOI: 10.1016/j.intimp.2024.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) displayed poor response to programmed death-1 (PD-1) blockade therapy. Regulatory T cells (Tregs) was one of major immunosuppressive components in Tumor microenvironment and plays a vital role in the resistance of immunotherapy. Coinhibitory receptors regulate function of regulatory Tregs and are associated with resistance of PD-1 blockade. However, the coinhibitory receptors expression and differentiated status of Tregs in AML patients remain to be unclear. METHODS Phenotypic determination of Tregs and CD8+ T cells in bone marrow of healthy donors and AML patients was performed by flow cytometry. Coculture experiments of AML and Tregs in vitro were performed and the concentrations of lactate acid (LA) in the supernatant were examined by ELISA. RESULTS More Tregs differentiated into effector subsets in AML patients. However, PD-1 and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression on Tregs were comparable in healthy donors and AML patients. Further analysis showed that PD-1+ and PD-1+TIGIT+Tregs are more abundant in the bone marrow of patients with higher leukemic load. Moreover, PD-1+ Tregs accumulation was associated with higher level of senescent CD4+ T cells and increased frequencies of exhausted CD4+ as well as CD8+ T cells. Notably, neither Tregs nor their effector subsets were decreased among patients in complete remission. PD-1 expression was significantly downregulated in Tregs after achieving complete remission. Mechanistically, both AML cell line (KG-1α) and primary AML blasts produced high concentration of LA. Blockade of LA by lactate transporter inhibitor abrogated the upregulation of PD-1 by AML cells. CONCLUSION PD-1+ Tregs accumulation in bone marrow in higher leukemic burden setting was linked to lactate acid secreted by AML blasts and decreased after disease remission. Our findings provided a novel insight into Tregs in AML and possible mechanism for resistance of PD-1 blockade in AML.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yueting Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yan Hong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Zhijuan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yuwen Zhu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Caiyan Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Ziwei Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xingxing Yu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China.
| | - Long Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China; Key laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancies, Xiamen, 361003, China.
| |
Collapse
|
10
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
11
|
Wu X, Wu Z, Deng W, Xu R, Ban C, Sun X, Zhao Q. Spatiotemporal evolution of AML immune microenvironment remodeling and RNF149-driven drug resistance through single-cell multidimensional analysis. J Transl Med 2023; 21:760. [PMID: 37891580 PMCID: PMC10612211 DOI: 10.1186/s12967-023-04579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The composition of the bone marrow immune microenvironment in patients with acute myeloid leukaemia (AML) was analysed by single-cell sequencing and the evolutionary role of different subpopulations of T cells in the development of AML and in driving drug resistance was explored in conjunction with E3 ubiquitin ligase-related genes. METHODS To elucidate the mechanisms underlying AML-NR and Ara-C resistance, we analyzed the bone marrow immune microenvironment of AML patients by integrating multiple single-cell RNA sequencing datasets. When compared to the AML disease remission (AML-CR) cohort, AML-NR displayed distinct cellular interactions and alterations in the ratios of CD4+T, Treg, and CD8+T cell populations. RESULTS Our findings indicate that the E3 ubiquitin ligase RNF149 accelerates AML progression, modifies the AML immune milieu, triggers CD8+T cell dysfunction, and influences the transformation of CD8+ Navie.T cells to CD8+TExh, culminating in diminished AML responsiveness to chemotherapeutic agents. Experiments both in vivo and in vitro revealed RNF149's role in enhancing AML drug-resistant cell line proliferation and in apoptotic inhibition, fostering resistance to Ara-C. CONCLUSION In essence, the immune microenvironments of AML-CR and AML-NR diverge considerably, spotlighting RNF149's tumorigenic function in AML and cementing its status as a potential prognostic indicator and innovative therapeutic avenue for countering AML resistance.
Collapse
Affiliation(s)
- Xin Wu
- Department of spine surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhongguang Wu
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, Guangdong, P.R. China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Rong Xu
- Department of Pathology, The First People's Hospital of Changde City, Changde, 415003, Hunan, China
| | - Chunmei Ban
- Department of Hematology, The People's Hospital of Liuzhou City, Guangxi, 545026, People's Republic of China
| | - Xiaoying Sun
- The First Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- School of Nursing, Sun Yat-sen University, Guangzhou, 528406, China.
| | - Qiangqiang Zhao
- Department of Hematology, The People's Hospital of Liuzhou City, Guangxi, 545026, People's Republic of China.
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China.
| |
Collapse
|
12
|
Li F, Chen D, Zeng Q, Du Y. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms 2023; 11:2640. [PMID: 38004652 PMCID: PMC10672989 DOI: 10.3390/microorganisms11112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). In lymphopenia, T cells are typically characterized by progressive loss and a decrease in their count results. Lymphopenia can hinder immune responses and lead to systemic immunosuppression, which is strongly associated with mortality. Lymphopenia is a significant immunological abnormality in the majority of patients with severe and advanced TB, and its severity is linked to disease outcomes. However, the underlying mechanism remains unclear. Currently, the research on the pathogenesis of lymphopenia during M. tuberculosis infection mainly focuses on how it affects lymphocyte production, survival, or tissue redistribution. This includes impairing hematopoiesis, inhibiting T-cell proliferation, and inducing lymphocyte apoptosis. In this study, we have compiled the latest research on the possible mechanisms that may cause lymphopenia during M. tuberculosis infection. Lymphopenia may have serious consequences in severe TB patients. Additionally, we discuss in detail potential intervention strategies to prevent lymphopenia, which could help understand TB immunopathogenesis and achieve the goal of preventing and treating severe TB.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (D.C.); (Q.Z.); (Y.D.)
| | | | | | | |
Collapse
|