1
|
Ozturk RY, Cakir R. In vitro anticancer efficacy of Calendula Officinalis extract-loaded chitosan nanoparticles against gastric and colon cancer cells. Drug Dev Ind Pharm 2024:1-15. [PMID: 39269335 DOI: 10.1080/03639045.2024.2404143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE This study assessed the anticancer activities of calendula officinalis-loaded chitosan nanoparticles in gastric and colon cancer cells compared to fibroblast cells and examined the balance between ROS and antioxidants. METHODS Considering this information, we synthesized Calendula officinalis-loaded chitosan nanoparticles (CO-CSNPs) via the ionic gelation method. Their characterizations were carried out with ZetaSizer, UV-Vis, FTIR and SEM devices including size, morphology and surface zeta potential analysis, loading capacity, encapsulation efficiency, in vitro drug release, and chemical interactions. The anticancer activities of CO, CSNPs, and CO-CSNPs were tested against AGS, Caco-2, and normal NIH-3T3 cells using an XTT assay. The anticancer effects were evaluated with the DAPI staining, scratch assay, reactive oxygen species (ROS) detection and CUPRAC method on cellular and non-cellular processes that promote anticancer mechanisms. RESULTS Results showed that CO and CO-CNPs exhibited anticancer activity against AGS and Caco-2. Further, the formulation of CO with CSNPs enhanced the anticancer activity of CO while having no cytotoxicity on NIH-3T3. DAPI staining, scratch assay, ROS, and CUPRAC method confirmed the anticancer activity of CO and CO-CSNPs, which resulted in a reduction in the number of apoptotic cells, inhibited migration, triggered apoptotic pathway via ROS, and higher antioxidant activity. CONCLUSIONS The results of the study indicate that CO-CSNPs are a promising therapeutic formulation for gastric and colon cancer treatment. We consider that this study will lead to the investigation of molecular mechanisms of CO-CSNPs in cancer treatment and their investigation in clinical studies.
Collapse
Affiliation(s)
- Rabia Yilmaz Ozturk
- Department of Bioengineering, Graduate School Of Science And Engineering, Yildiz Technical University, Istanbul 34220, Turkey
- Turkey Biotechnology Institute, Health Institutes of Turkey (TUSEB), Istanbul 34718, Turkey
| | - Rabia Cakir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
- Turkey Biotechnology Institute, Health Institutes of Turkey (TUSEB), Istanbul 34718, Turkey
| |
Collapse
|
2
|
Pi T, Sun L, Li W, Wang W, Dong M, Xu X, Xu H, Zhao Y. Preparation and characterization of kelp polysaccharide and its research on anti-influenza a virus activity. Int J Biol Macromol 2024; 280:135506. [PMID: 39260640 DOI: 10.1016/j.ijbiomac.2024.135506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The beneficial effects of kelp polysaccharide (KPS) have recently attracted attention. In this study, KPS was extracted from kelp using the enzyme hydrolysis combined with freeze-drying, namely, KPS-EF. The structural characterization showed that KPS-EF was a highly sulfated macromolecule with the Mw of 764.2 kDa and the sulfate content of 23.49 %. The antiviral activity of KPS-EF in vitro was verified, and the IC50 value of KPS against the PR8 virus was 0.58 mg/mL. Intranasal administration of KPS-EF significantly inhibited death and weight loss in IAV-infected mice and alleviated virus-induced pneumonia symptoms, meanwhile, KPS-EF (10 mg/kg/day) significantly decreased the production levels of chemokines (CXCL1, RANTES) and inflammatory cytokines (IL-6, TNF-α) in lungs (p < 0.05). KPS-EF could downregulate the activity of viral neuraminidase (NA) primarily in the late stage of viral adsorption with an IC50 value of 0.29 mg/mL. This study provides a theoretical basis for the using KPS as a supplement to NA inhibitors or anti-influenza drugs.
Collapse
Affiliation(s)
- Tianxiang Pi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lishan Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Li
- Department of General Surgery, The District Hospital of Qingdao West Coast New Area, Qingdao 266400, China
| | - Wei Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghui Dong
- Zhongxin Anderson (Guangdong) Biotechnology Co., Ltd., Guangzhou 510000, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Liu QH, Tang JW, Ma ZW, Hong YX, Yuan Q, Chen J, Wen XR, Tang YR, Wang L. Rapid discrimination between wild and cultivated Ophiocordyceps sinensis through comparative analysis of label-free SERS technique and mass spectrometry. Curr Res Food Sci 2024; 9:100820. [PMID: 39263205 PMCID: PMC11387260 DOI: 10.1016/j.crfs.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Ophiocordyceps sinensis is a genus of ascomycete fungi that has been widely used as a valuable tonic or medicine. However, due to over-exploitation and the destruction of natural ecosystems, the shortage of wild O. sinensis resources has led to an increase in artificially cultivated O. sinensis. To rapidly and accurately identify the molecular differences between cultivated and wild O. sinensis, this study employs surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms to distinguish the two O. sinensis categories. Specifically, we collected SERS spectra for wild and cultivated O. sinensis and validated the metabolic profiles of SERS spectra using Ultra-Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS). Subsequently, we constructed machine learning classifiers to mine potential information from the spectral data, and the spectral feature importance map is determined through an optimized algorithm. The results indicate that the representative characteristic peaks in the SERS spectra are consistent with the metabolites identified through metabolomics analysis, confirming the feasibility of the SERS method. The optimized support vector machine (SVM) model achieved the most accurate and efficient capacity in discriminating between wild and cultivated O. sinensis (accuracy = 98.95%, 5-fold cross-validation = 98.38%, time = 0.89s). The spectral feature importance map revealed subtle compositional differences between wild and cultivated O. sinensis. Taken together, these results are expected to enable the application of SERS in the quality control of O. sinensis raw materials, providing a foundation for the efficient and rapid identification of their quality and origin.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhang-Wen Ma
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yong-Xuan Hong
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin-Ru Wen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yu-Rong Tang
- Department of Laboratory Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Division of Microbiology and Immunology, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Shi H, Zhang S, Zhu M, Li X, Jie W, Kan L. Extraction Optimization, Structural Analysis, and Potential Bioactivities of a Novel Polysaccharide from Sporisorium reilianum. Antioxidants (Basel) 2024; 13:965. [PMID: 39199211 PMCID: PMC11352142 DOI: 10.3390/antiox13080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Sporisorium reilianum is an important biotrophic pathogen that causes head smut disease. Polysaccharides extracted from diseased sorghum heads by Sporisorium reilianum exhibit significant medicinal and edible value. However, the structure and biological activities of these novel polysaccharides have not been explored. In this study, a novel polysaccharide (WM-NP'-60) was isolated and purified from the fruit bodies of S. reilianum and aimed to explore the structural characteristics and substantial antioxidant and antitumor properties of WM-NP'-60. Monosaccharide composition determination, periodate oxidation-Smith degradation, 1D/2D-NMR analysis, and methylation analysis revealed that WM-NP'-60 consisted mainly of β-1,6-D-Glcp, β-1,3-D-Glcp, and β-1,3,6-D-Glcp linkages. The antioxidant assays demonstrated that WM-NP'-60 exhibited great activities, including scavenging free radicals, chelating ferrous ions, and eliminating reactive oxygen species (ROS) within cells. The HepG2, SGC7901, and HCT116 cells examined by transmission electron microscopy (TEM) revealed typical apoptotic bodies. Therefore, a novel fungal polysaccharide (WM-NP'-60) was discovered, extracted, and purified in this experiment, with the aim of providing a reference for the development of a new generation of food and nutraceutical products suitable for human consumption.
Collapse
Affiliation(s)
- He Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Siyi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Mandi Zhu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Xiaoyan Li
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China;
| | - Weiguang Jie
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| | - Lianbao Kan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (H.S.); (S.Z.); (M.Z.)
| |
Collapse
|
5
|
Huang HC, Shi YJ, Vo TLT, Hsu TH, Song TY. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. J Fungi (Basel) 2024; 10:523. [PMID: 39194849 DOI: 10.3390/jof10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The pharmacological effects of the fruiting body of Ophiocordyceps sinensis (O. sinensis) such as antioxidant, anti-virus, and immunomodulatory activities have already been described, whereas the anti-inflammatory effects and active components of the submerged culture of O. sinesis (SCOS) still need to be further verified. This study aimed to investigate the active compounds in the fermented liquid (FLOS), hot water (WEOS), and 50-95% (EEOS-50, EEOS-95) ethanol extracts of SCOS and their anti-inflammatory effects and potential mechanisms in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. The results demonstrated that all of the SCOS extracts could inhibit NO production in BV2 cells. EEOS-95 exhibited the strongest inhibitory effects (71% inhibitory ability at 500 µg/mL), and its ergosterol, γ-aminobutyric acid (GABA), total phenolic, and total flavonoid contents were significantly higher than those of the other extracts (18.60, 18.60, 2.28, and 2.14 mg/g, p < 0.05, respectively). EEOS-95 also has a strong inhibitory ability against IL-6, IL-1β, and TNF-α with an IC50 of 617, 277, and 507 µg/mL, respectively, which is higher than that of 1 mM melatonin. The anti-inflammatory mechanism of EEOS-95 seems to be associated with the up-regulation of PPAR-γ/Nrf-2/HO-1 antioxidant-related expression and the down-regulation of NF-κB/COX-2/iNOS pro-inflammatory expression signaling. In summary, we demonstrated that EEOS-95 exhibits neuroinflammation-mediated neurodegenerative disorder activities in LPS-induced inflammation in brain microglial cells.
Collapse
Affiliation(s)
- Hsien-Chi Huang
- PhD Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Yu-Juan Shi
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Thuy-Lan-Thi Vo
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
6
|
Song M, Wang J, Bao K, Sun C, Cheng X, Li T, Wang S, Wang S, Wen T, Zhu Z. Isolation, structural characterization and immunomodulatory activity on RAW264.7 cells of a novel exopolysaccharide of Dictyophora rubrovalvata. Int J Biol Macromol 2024; 270:132222. [PMID: 38729468 DOI: 10.1016/j.ijbiomac.2024.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 μg/mL) promoted NO production up to 30.66 μmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 μg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.
Collapse
Affiliation(s)
- Mingyang Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiawen Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kaisheng Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaolei Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tengda Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shanshan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Siqiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingchi Wen
- Guizhou Panzheng Agriculture Ltd., PR China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Guizhou Panzheng Agriculture Ltd., PR China.
| |
Collapse
|
7
|
Xu C, Wang F, Guan S, Wang L. β-Glucans obtained from fungus for wound healing: A review. Carbohydr Polym 2024; 327:121662. [PMID: 38171680 DOI: 10.1016/j.carbpol.2023.121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The cell surface of fungus contains a large number of β-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal β-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal β-glucans have been investigated in animals and clinical trials. Studies have proved that fungal β-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal β-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of β-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal β-glucans with wound healing ability are summarized. Researches about fungal β-glucan-containing biomaterials and structurally modified β-glucans for wound healing are also involved.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Fengxia Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China.
| |
Collapse
|
8
|
Srivastava M, Singh K, Kumar S, Hasan SM, Mujeeb S, Kushwaha SP, Husen A. In silico Approaches for Exploring the Pharmacological Activities of Benzimidazole Derivatives: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1481-1495. [PMID: 38288816 DOI: 10.2174/0113895575287322240115115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND This article reviews computational research on benzimidazole derivatives. Cytotoxicity for all compounds against cancer cell lines was measured and the results revealed that many compounds exhibited high inhibitions. This research examines the varied pharmacological properties like anticancer, antibacterial, antioxidant, anti-inflammatory and anticonvulsant activities of benzimidazole derivatives. The suggested method summarises In silico research for each activity. This review examines benzimidazole derivative structure-activity relationships and pharmacological effects. In silico investigations can anticipate structural alterations and their effects on these derivative's pharmacological characteristics and efficacy through many computational methods. Molecular docking, molecular dynamics simulations and virtual screening help anticipate pharmacological effects and optimize chemical design. These trials will improve lead optimization, target selection, and ADMET property prediction in drug development. In silico benzimidazole derivative studies will be assessed for gaps and future research. Prospective studies might include empirical verification, pharmacodynamic analysis, and computational methodology improvement. OBJECTIVES This review discusses benzimidazole derivative In silico research to understand their specific pharmacological effects. This will help scientists design new drugs and guide future research. METHODS Latest, authentic and published reports on various benzimidazole derivatives and their activities are being thoroughly studied and analyzed. RESULT The overview of benzimidazole derivatives is more comprehensive, highlighting their structural diversity, synthetic strategies, mechanisms of action, and the computational tools used to study them. CONCLUSION In silico studies help to understand the structure-activity relationship (SAR) of benzimidazole derivatives. Through meticulous alterations of substituents, ring modifications, and linker groups, this study identified the structural factors influencing the pharmacological activity of benzimidazole derivatives. These findings enable the rational design and optimization of more potent and selective compounds.
Collapse
Affiliation(s)
- Manisha Srivastava
- Reseach scholar, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Samar Mujeeb
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| | | | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Tang C, Li X, Wang T, Wang J, Xiao M, He M, Chang X, Fan Y, Li Y. Characterization of Metabolite Landscape Distinguishes Medicinal Fungus Cordyceps sinensis and other Cordyceps by UHPLC-Q Exactive HF-X Untargeted Metabolomics. Molecules 2023; 28:7745. [PMID: 38067475 PMCID: PMC10708286 DOI: 10.3390/molecules28237745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cordyceps represent a valuable class of medicinal fungi with potential utilization. The overexploitation and resource scarcity of Cordyceps sinensis (CS) have led to the emergence of Cordyceps such as Cordyceps militaris (CM) and Cordyceps cicadae (CC) as substitutes. The medicinal value of CS is often considered superior to other Cordyceps, potentially owing to differences in active ingredients. This study aimed to evaluate the differences in the composition and abundance of the primary and secondary metabolites of CS and its substitutes by untargeted metabolomics. A total of 4671 metabolites from 18 superclasses were detected. CS and its substitutes were rich in amino acids, lipids, organic acids, and their derivatives. We statistically analyzed the metabolites and found a total of 285 differential metabolites (3'-Adenylic acid, O-Adipoylcarnitine, L-Dopachrome, etc.) between CS and CC, CS and CM, and CM and CC, which are potential biomarkers. L-glutamate and glycerophospholipids were differential metabolites. A KEGG enrichment analysis indicated that the tyrosine metabolic pathway and tryptophan metabolism pathway are the most differentially expressed pathways among the three Cordyceps. In contrast, CS was enriched in a higher abundance of most lipid metabolites when compared to CM and CC, which may be an indispensable foundation for the pharmacological functions of CS. In conclusion, systematic, untargeted metabolomics analyses for CS and other Cordyceps have delivered a precious resource for insights into metabolite landscapes and predicted potential components of disease therapeutics.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Jie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Xiyun Chang
- Qinghai Institute of Health Sciences, Xining 810000, China;
| | - Yuejun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| |
Collapse
|