1
|
Gopalaswamy R, Aravindhan V, Subbian S. The Ambivalence of Post COVID-19 Vaccination Responses in Humans. Biomolecules 2024; 14:1320. [PMID: 39456253 PMCID: PMC11506738 DOI: 10.3390/biom14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19's severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625021, India;
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Taramani, Chennai 600005, India;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Rzymski P, Jibril AT, Rahmah L, Abarikwu SO, Hashem F, Lawati AA, Morrison FMM, Marquez LP, Mohamed K, Khan A, Mushtaq S, Minakova K, Poniedziałek B, Zarębska-Michaluk D, Flisiak R. Is there still hope for the prophylactic hepatitis C vaccine? A review of different approaches. J Med Virol 2024; 96:e29900. [PMID: 39234788 DOI: 10.1002/jmv.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Despite remarkable progress in the treatment of hepatitis C virus (HCV) infection, it remains a significant global health burden, necessitating the development of an effective prophylactic vaccine. This review paper presents the current landscape of HCV vaccine candidates and approaches, including more traditional, based on inactivated virus, and more modern, such as subunit protein, vectored, based on nucleic acids (DNA and mRNA) and virus-like particles. The concept of the HCV vaccine is first put in the context of viral genetic diversity and adaptive responses to HCV infection, an understanding of which is crucial in guiding the development of an effective vaccine against such a complex virus. Because ethical dimensions are also significant in vaccine research, development, and potential deployment, we also address them in this paper. The road to a safe and effective vaccine to prevent HCV infection remains bumpy due to the genetic variation of HCV and its ability to evade immune responses. The progress in cell-culture systems allowed for the production of an inactivated HCV vaccine candidate, which can induce cross-neutralizing antibodies in vitro, but whether this could prevent infection in humans is unknown. Subunit protein vaccine candidates that entered clinical trials elicited HCV-specific humoral and cellular responses, though it remains to be shown whether they translate into effective prevention of HCV infection or progression of infection to a chronic state. Such responses were also induced by a clinically tested vector-based vaccine candidate, which decreased the viral HCV load but did not prevent chronic HCV infection. These disappointments were not readily predicted from preclinical animal studies. The vaccine platforms employing virus-like particles, DNA, and mRNA provide opportunities for the HCV vaccine, but their potential in this context has yet to be shown. Ensuring the designed vaccine is based on conserved epitope(s) and elicits broadly neutralizing immune responses is also essential. Given failures in developing a prophylactic HCV vaccine, it is crucial to continue supporting national strategies, including funding for screening and treatment programs. However, these actions are likely insufficient to permanently control the HCV burden, encouraging further mobilization of significant resources for HCV vaccine research as a missing element in the elimination of viral hepatitis as a global public health.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Universal Scientific Education and Research Network (USERN)
| | - Aliyu Tijani Jibril
- Universal Scientific Education and Research Network (USERN)
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Rahmah
- Universal Scientific Education and Research Network (USERN)
- Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sunny O Abarikwu
- Universal Scientific Education and Research Network (USERN)
- Department of Biochemistry, University of Port Harcourt, Choba, PMB, Port Harcourt, Rivers State, Nigeria
| | - Fareeda Hashem
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Al Lawati
- Universal Scientific Education and Research Network (USERN)
- Sultan Qaboos University Hospital, Al Khoud, Muscat, Oman
| | | | - Leander Penaso Marquez
- Universal Scientific Education and Research Network (USERN)
- University of the Philippines Diliman, Quezon City, Philippines
| | - Kawthar Mohamed
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amjad Khan
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Mushtaq
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Kseniia Minakova
- Universal Scientific Education and Research Network (USERN)
- Micro- and Nanoelectronics Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
3
|
Padilla‐Flores T, Sampieri A, Vaca L. Incidence and management of the main serious adverse events reported after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1224. [PMID: 38864106 PMCID: PMC11167235 DOI: 10.1002/prp2.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2n first appeared in Wuhan, China in 2019. Soon after, it was declared a pandemic by the World Health Organization. The health crisis imposed by a new virus and its rapid spread worldwide prompted the fast development of vaccines. For the first time in human history, two vaccines based on recombinant genetic material technology were approved for human use. These mRNA vaccines were applied in massive immunization programs around the world, followed by other vaccines based on more traditional approaches. Even though all vaccines were tested in clinical trials prior to their general administration, serious adverse events, usually of very low incidence, were mostly identified after application of millions of doses. Establishing a direct correlation (the cause-effect paradigm) between vaccination and the appearance of adverse effects has proven challenging. This review focuses on the main adverse effects observed after vaccination, including anaphylaxis, myocarditis, vaccine-induced thrombotic thrombocytopenia, Guillain-Barré syndrome, and transverse myelitis reported in the context of COVID-19 vaccination. We highlight the symptoms, laboratory tests required for an adequate diagnosis, and briefly outline the recommended treatments for these adverse effects. The aim of this work is to increase awareness among healthcare personnel about the serious adverse events that may arise post-vaccination. Regardless of the ongoing discussion about the safety of COVID-19 vaccination, these adverse effects must be identified promptly and treated effectively to reduce the risk of complications.
Collapse
Affiliation(s)
- Teresa Padilla‐Flores
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Luis Vaca
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
4
|
Rzymski P, Gwenzi W. Respiratory syncytial virus immunoprophylaxis: Novel opportunities and a call for equity. J Med Virol 2024; 96:e29453. [PMID: 38305000 DOI: 10.1002/jmv.29453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
With the approval of the first vaccines against respiratory syncytial virus (RSV) and a novel RSV-neutralizing antibody, 2023 has been perceived as a game-changing year in preventing severe outcomes of RSV infections in infants and the elderly. However, the costs of these pharmaceuticals are high, while RSV disproportionately impacts populations of low-to-middle-income regions, which may continue to suffer from a lack of pharmaceutical measures for RSV prevention under health and socioeconomic disparities. This paper presents an overview of the characteristics, clinical results, and approval status of various RSV vaccines and anti-RSV antibodies. It posits that wealthy nations cannot monopolize RSV immunoprophylaxis and should work jointly to make it available to lower-income countries. An approach toward RSV immunoprophylaxis equity based on five points is offered: (1) integration of RSV vaccines and antibodies into the existing global humanitarian distribution systems, (2) using affordable RSV vaccine pricing models, (3) enforcing equity as a part of national and global public health strategy, (4) implementing equitable allocation frameworks for RSV immunoprophylaxis, and (5) promoting local manufacturing. Such a plan needs to be put into action as soon as possible to avoid delays in serving the populations with the highest needs related to RSV burden.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Willis Gwenzi
- Biosystems and Environmental Enginering Research Group, Harare, Zimbabwe
- Alexander von Humboldt Fellow and Guest Professor at Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany
| |
Collapse
|
5
|
Cervantes-Torres J, Cabello-Gutiérrez C, Ayón-Núñez DA, Soldevila G, Olguin-Alor R, Diaz G, Acero G, Segura-Velázquez R, Huerta L, Gracia-Mora I, Cobos L, Pérez-Tapia M, Almagro JC, Suárez-Güemes F, Bobes RJ, Fragoso G, Sciutto E, Laclette JP. Caveats of chimpanzee ChAdOx1 adenovirus-vectored vaccines to boost anti-SARS-CoV-2 protective immunity in mice. Appl Microbiol Biotechnol 2024; 108:179. [PMID: 38280035 PMCID: PMC10821985 DOI: 10.1007/s00253-023-12927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/29/2024]
Abstract
Several COVID-19 vaccines use adenovirus vectors to deliver the SARS-CoV-2 spike (S) protein. Immunization with these vaccines promotes immunity against the S protein, but against also the adenovirus itself. This could interfere with the entry of the vaccine into the cell, reducing its efficacy. Herein, we evaluate the efficiency of an adenovirus-vectored vaccine (chimpanzee ChAdOx1 adenovirus, AZD1222) in boosting the specific immunity compared to that induced by a recombinant receptor-binding domain (RBD)-based vaccine without viral vector. Mice immunized with the AZD1222 human vaccine were given a booster 6 months later, with either the homologous vaccine or a recombinant vaccine based on RBD of the delta variant, which was prevalent at the start of this study. A significant increase in anti-RBD antibody levels was observed in rRBD-boosted mice (31-61%) compared to those receiving two doses of AZD1222 (0%). Significantly higher rates of PepMix™- or RBD-elicited proliferation were also observed in IFNγ-producing CD4 and CD8 cells from mice boosted with one or two doses of RBD, respectively. The lower efficiency of the ChAdOx1-S vaccine in boosting specific immunity could be the result of a pre-existing anti-vector immunity, induced by increased levels of anti-adenovirus antibodies found both in mice and humans. Taken together, these results point to the importance of avoiding the recurrent use of the same adenovirus vector in individuals with immunity and memory against them. It also illustrates the disadvantages of ChAdOx1 adenovirus-vectored vaccine with respect to recombinant protein vaccines, which can be used without restriction in vaccine-booster programs. KEY POINTS: • ChAdOx1 adenovirus vaccine (AZD1222) may not be effective in boosting anti-SARS-CoV-2 immunity • A recombinant RBD protein vaccine is effective in boosting anti-SARS-CoV-2 immunity in mice • Antibodies elicited by the rRBD-delta vaccine persisted for up to 3 months in mice.
Collapse
Affiliation(s)
- Jacquelynne Cervantes-Torres
- School of Veterinary Medicine, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Carlos Cabello-Gutiérrez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, CDMX, Mexico
| | - Dolores-Adriana Ayón-Núñez
- School of Veterinary Medicine, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Gloria Soldevila
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Roxana Olguin-Alor
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
- Laboratorio Nacional de Citometría de Flujo, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Georgina Diaz
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Gonzalo Acero
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - René Segura-Velázquez
- School of Veterinary Medicine, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Leonor Huerta
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Isabel Gracia-Mora
- Unidad de Experimentación Preclínica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Laura Cobos
- School of Veterinary Medicine, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapeúticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Juan C Almagro
- Unidad de Desarrollo e Investigación en Bioterapeúticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Francisco Suárez-Güemes
- School of Veterinary Medicine, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Raúl J Bobes
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Gladis Fragoso
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | - Edda Sciutto
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico.
| | - Juan Pedro Laclette
- Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Takizawa T, Ihara K, Uno S, Ohtani S, Watanabe N, Imai N, Nakahara J, Hori S, Garcia-Azorin D, Martelletti P. Metabolic and toxicological considerations regarding CGRP mAbs and CGRP antagonists to treat migraine in COVID-19 patients: a narrative review. Expert Opin Drug Metab Toxicol 2023; 19:951-967. [PMID: 37925645 DOI: 10.1080/17425255.2023.2280221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Migraine pharmacological therapies targeting calcitonin gene-related peptide (CGRP), including monoclonal antibodies and gepants, have shown clinical effect and optimal tolerability. Interactions between treatments of COVID-19 and CGRP-related drugs have not been reviewed. AREAS COVERED An overview of CGRP, a description of the characteristics of each CGRP-related drug and its response predictors, COVID-19 and its treatment, the interactions between CGRP-related drugs and COVID-19 treatment, COVID-19 and vaccination-induced headache, and the neurological consequences of Covid-19. EXPERT OPINION Clinicians should be careful about using gepants for COVID-19 patients, due to the potential drug interactions with drugs metabolized via CYP3A4 cytochrome. In particular, COVID-19 treatment (especially nirmatrelvir packaged with ritonavir, as Paxlovid) should be considered cautiously. It is advisable to stop or adjust the dose (10 mg atogepant when used for episodic migraine) of gepants when using Paxlovid (except for zavegepant). CGRP moncolconal antibodies (CGRP-mAbs) do not have drug - drug interactions, but a few days' interval between a COVID-19 vaccination and the use of CGRP mAbs is recommended to allow the accurate identification of the possible adverse effects, such as injection site reaction. Covid-19- and vaccination-related headache are known to occur. Whether CGRP-related drugs would be of benefit in these circumstances is not yet known.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Japanese Red Cross Ashikaga Hospital, Ashikaga, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Ohtani
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Narumi Watanabe
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Noboru Imai
- Department of Neurology, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Satoko Hori
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - David Garcia-Azorin
- Headache Unit, Department of Neurology, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Paolo Martelletti
- School of Health Sciences, Unitelma Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Perera DJ, Domenech P, Babuadze GG, Naghibosadat M, Alvarez F, Koger-Pease C, Labrie L, Stuible M, Durocher Y, Piccirillo CA, Lametti A, Fiset PO, Elahi SM, Kobinger GP, Gilbert R, Olivier M, Kozak R, Reed MB, Ndao M. BCG administration promotes the long-term protection afforded by a single-dose intranasal adenovirus-based SARS-CoV-2 vaccine. iScience 2023; 26:107612. [PMID: 37670783 PMCID: PMC10475483 DOI: 10.1016/j.isci.2023.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Pilar Domenech
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - George Giorgi Babuadze
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maedeh Naghibosadat
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fernando Alvarez
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Lydia Labrie
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Matthew Stuible
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - André Lametti
- Department of Pathology, McGill University, Montréal, QC, Canada
| | | | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Gary P. Kobinger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Martin Olivier
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Robert Kozak
- Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael B. Reed
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill International TB Centre, McGill University, Montréal, QC, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- National Reference Centre for Parasitology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|