1
|
Cui YH, Wu CR, Huang LO, Xu D, Tang JG. Identification of immune-related mitochondrial metabolic disorder genes in septic shock using bioinformatics and machine learning. Hereditas 2024; 161:49. [PMID: 39609718 PMCID: PMC11603897 DOI: 10.1186/s41065-024-00350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Mitochondria are involved in septic shock and inflammatory response syndrome, which severely affects the life security of patients. It is necessary to recognize and explore the immune-mitochondrial genes in septic shock. METHODS The GSE57065 dataset was acquired from the Gene Expression Omnibus (GEO) database and filtered by limma and the weighted correlation network analysis (WGCNA) to identify mitochondrial-related differentially expressed genes (MitoDEGs) in septic shock. The function of MitoDEGs was analyzed using the Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), respectively. The Protein-Protein Interaction (PPI) network composed of MitoDEGs was established using Cytoscape. Support Vector Machine Recursive Feature Elimination (SVM-RFE), Random Forest (RF), and Least Absolute Shrinkage and Selection Operator (LASSO) were used to identify diagnostic MitoDEGs, which were validated using receiver operating characteristic (ROC) analysis and Quantitative Real-time Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Furthermore, the infiltration of immunocytes was analyzed using CIBERSORT, and the correlation between diagnostic MitoDEGs and immunocytes was explored using Spearman. RESULTS A total of 44 MitoDEGs were filtered, and functional enrichment analysis showed they were associated with mitochondrial function, and the PPI network had 457 nodes and 547 edges. Four diagnostic genes, MitoDEGs, PGS1, C6orf136, THEM4, and EPHX2, were identified by three machine learning algorithms, and qRT-PCR results obtained similar expression levels as bioinformatics analysis. Furthermore, the diagnostic model constructed by the diagnostic genes had fine diagnostic efficacy. Immunocyte infiltration analysis showed that activated immunocytes were abundant and correlated with hub genes, with neutrophils accounting for the largest proportion in septic shock. CONCLUSIONS In this study, we recognized four immune-mitochondrial key genes (PGS1, C6orf136, THEM4, and EPHX2) in septic shock and designed a novel gene diagnosis model that provided a new and meaningful way for the diagnosis of septic shock.
Collapse
Affiliation(s)
- Yu-Hui Cui
- Department of Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, No.801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Chun-Rong Wu
- Department of Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, No.801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Li-Ou Huang
- Department of Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, No.801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Dan Xu
- Department of Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, No.801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Jian-Guo Tang
- Department of Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, No.801 Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
2
|
Ma Z, Liu X, Zhang X, Li S, An J, Luo Z. Research progress on long non‑coding RNAs in non‑infectious spinal diseases (Review). Mol Med Rep 2024; 30:164. [PMID: 38994759 PMCID: PMC11267249 DOI: 10.3892/mmr.2024.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Spinal diseases, including intervertebral disc degeneration (IDD), ankylosing spondylitis, spinal cord injury and other non‑infectious spinal diseases, severely affect the quality of life of patients. Current treatments for IDD and other spinal diseases can only relieve symptoms and do not completely cure the disease. Therefore, there is an urgent need to explore the causes of these diseases and develop new treatment approaches. Long non‑coding RNA (lncRNA), a form of non‑coding RNA, is abundant in diverse sources, has numerous functions, and plays an important role in the occurrence and development of spinal diseases such as IDD. However, the mechanism of action of lncRNAs has not been fully elucidated, and significant challenges remain in the use of lncRNAs as new therapeutic targets. The present article reviews the sources, classification and functions of lncRNAs, and introduces the role of lncRNAs in spinal diseases, such as IDD, and their therapeutic potential.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Wang C, Gao X, Li Y, Li C, Ma Z, Sun D, Liang X, Zhang X. A molecular subtyping associated with the cGAS-STING pathway provides novel perspectives on the treatment of ulcerative colitis. Sci Rep 2024; 14:12683. [PMID: 38831059 PMCID: PMC11148070 DOI: 10.1038/s41598-024-63695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xin Gao
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanchen Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chenyang Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhimin Ma
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Department of Respirology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Donglei Sun
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaonan Liang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
4
|
Xia Q, Zhao Y, Dong H, Mao Q, Zhu L, Xia J, Weng Z, Liao W, Hu Z, Yi J, Feng S, Jiang Y, Xin Z. Progress in the study of molecular mechanisms of intervertebral disc degeneration. Biomed Pharmacother 2024; 174:116593. [PMID: 38626521 DOI: 10.1016/j.biopha.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.
Collapse
Affiliation(s)
- Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, Hubei Province 443003, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
5
|
Gan L, Li Y. Clinical Efficacy and Mechanism of Vitamin D2 in Treating Hashimoto's Thyroiditis. J Inflamm Res 2024; 17:1193-1210. [PMID: 38410421 PMCID: PMC10896103 DOI: 10.2147/jir.s441120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Hashimoto's thyroiditis (HT) is one of the most common autoimmune diseases, with the highest incidence rate among autoimmune thyroid disorders. Vitamin D2 may have therapeutic effects on HT. This study aimed to elucidate the molecular mechanisms underlying vitamin D2 therapy for HT. Methods Differentially expressed genes (DEGs) associated with vitamin D2-treated HT were identified, and the DEG-associated gene enrichment pathway was explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The correlation between the hub genes and infiltrating immune cells was investigated, and the interactions among the hub genes and target drug and competing endogenous RNA (ceRNA; long non-coding RNA [lncRNA]-microRNA [miRNA]-messenger RNA [mRNA]) regulatory networks were determined. Results GO and KEGG enrichment analyses identified a total of 102 DEGs (6 upregulated and 96 downregulated) in the vitamin D2-treated group samples. The area under the curve values of the identified 10 hub genes was as follows: CCR1(0.920), CXCL1 (0.960), CXCL8 (0.960), EGR1 (0.960), FCGR3B (0.920), FOS (1.000), FPR1 (0.840), MMP9 (0.720), PTGS2 (0.960), and TREM1 (1.000). The immune enrichment scores of the mast cell (P = 0.008), neutrophil (P = 0.016), and plasmacytoid dendritic cell (P = 0.016) were significantly decreased in the vitamin D2-treated group (P < 0.05). The hub gene/drug regulatory network included 8 hub genes, 108 molecular drugs, and 114 interaction relationship pairs. The ceRNA regulatory network included 129 lncRNAs, 145 miRNAs, mRNAs (hub genes), and 324 interaction relationship pairs. Conclusion Vitamin D2 may play an immunomodulatory role by regulating the aforementioned immune-related molecules and immune cells, thereby improving its therapeutic effects on HT.
Collapse
Affiliation(s)
- Lu Gan
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan City, 750000, People's Republic of China
| | - Yuqi Li
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan City, 750000, People's Republic of China
| |
Collapse
|
6
|
Wang N, Mi Z, Chen S, Fang X, Xi Z, Xu W, Xie L. Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: A bibliometric study. Hum Vaccin Immunother 2023; 19:2274220. [PMID: 37941392 PMCID: PMC10760394 DOI: 10.1080/21645515.2023.2274220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Intervertebral disc degeneration is an important pathological basis for spinal degenerative diseases. The imbalance of the immune microenvironment and the involvement of immune cells has been shown to lead to nucleus pulposus cells death. This article presents a bibliometric analysis of studies on immune cells in IDD in order to clarify the current status and hotspots. We searched the WOSCC, Scopus and PubMed databases from 01/01/2001 to 08/03/2023. We analyzed and visualized the content using software such as Citespace, Vosviewer and the bibliometrix. This study found that the number of annual publications is increasing year on year. The journal study found that Spine had the highest number of articles and citations. The country/regions analysis showed that China had the highest number of publications, the USA had the highest number of citations and total link strength. The institutional analysis found that Shanghai Jiao Tong University and Huazhong University of Science Technology had the highest number of publications, Tokai University had the highest citations, and the University of Bern had the highest total link strength. Sakai D and Risbud MV had the highest number of publications. Sakai D had the highest total link strength, and Risbud MV had the highest number of citations. The results of the keyword analysis suggested that the current research hotspots and future directions continue to be the study of the mechanisms of immune cells in IDD, the therapeutic role of immune cells in IDD and the role of immune cells in tissue engineering for IDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Xiaoyang Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Wenqiang Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|