1
|
Wang X, Qu Y, Li Z, Xia Q. Histone crotonylation in tumors (Review). Mol Clin Oncol 2025; 22:39. [PMID: 40160299 PMCID: PMC11948463 DOI: 10.3892/mco.2025.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Lysine crotonylation (Kcr) refers to a type of modification in which crotonyl groups are transferred to lysine residues by histone crotonyltransferase (HCT) using crotonyl-coenzyme A (CoA) as a substrate. Kcr is distributed in core histones and in some nonhistone proteins. Histone crotonylation is a newly discovered epigenetic modification with a significant ability to regulate gene expression. Crotonylation occurs on the ε-amino group of lysine residues and results in a modification of the histone charge. Similar to acetylation, the substrate for crotonylation is a donor molecule, crotonyl-CoA, which is linked to the sulfhydryl group of CoA by a thioester bond. Crotonylation is involved in regulating a wide range of biological processes and diseases. With advances in detection technologies, the impact of histone crotonylation on tumors has been revealed. The present review examines the recent discoveries of histone crotonylation, its function in tumors and its regulatory mechanism, which will aid in elucidating the mechanisms of malignant tumor development and provide a theoretical foundation for the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252004, P.R. China
| | - Yu Qu
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, P.R. China
- Department of Pediatric Surgery, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
2
|
Zhang H, Liu Y, Li X, Ding C, Xia C, Huang H, Liu H, Chen J. A novel lactylation-related gene signature to predict prognosis and treatment response in lung adenocarcinoma. Front Oncol 2025; 15:1549724. [PMID: 40161374 PMCID: PMC11949803 DOI: 10.3389/fonc.2025.1549724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Background Lactylation, a novel post-translational modification, has emerged as a critical regulatory mechanism in various biological processes, including tumor progression. However, its role and associated gene signatures in lung adenocarcinoma (LUAD) remain unclear. Methods RNA sequencing data of LUAD patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Unsupervised clustering was used to identify lactylation-related genes. A risk prognostic model was constructed using least absolute shrinkage and selection operator regression analysis and subsequently validated. A nomogram was then employed to optimize the clinical applicability of the risk score. Additionally, various algorithms were used to explore the relationship between the risk score and immune infiltration levels, with model genes analyzed based on single-cell sequencing. The effects of RCCD1 knockdown on LUAD cell proliferation and migration were evaluated through CCK8 and transwell assays. Results Higher risk scores were associated with poorer overall survival prognosis. Immune analysis revealed that the risk score may play a role in regulating the tumor microenvironment. Additionally, these risk scores were found to be associated with chemotherapy drug sensitivity. A series of experiments further demonstrated that RCCD1 promotes LUAD cell proliferation and migration in vitro. Conclusion This study highlights the critical role of lactylation-related gene signatures in LUAD and their association with immune cell infiltration, providing insights into potential therapeutic targets and biomarkers for clinical application.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunqiu Xia
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Wu X, Liu C, Zhang C, Kuai L, Hu S, Jia N, Song J, Jiang W, Chen Q, Li B. The Role of Lactate and Lactylation in the Dysregulation of Immune Responses in Psoriasis. Clin Rev Allergy Immunol 2025; 68:28. [PMID: 40080284 DOI: 10.1007/s12016-025-09037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Historically, lactate has been considered merely a metabolic byproduct. However, recent studies have revealed that lactate plays a much more dynamic role, acting as an immune signaling molecule that influences cellular communication, through the process of "lactate shuttling." Lactylation, a novel post-translational modification, is directly derived from lactate and represents an emerging mechanism through which lactate exerts its effects on cellular function. It has been shown to directly affect immune cells by modulating the activation of pro-inflammatory and anti-inflammatory pathways. This modification influences the expression of key immune-related genes, thereby impacting immune cell differentiation, cytokine production, and overall immune response. In this review, we focused on the role of lactate and lactylation in the dysregulation of immune responses in psoriasis and its relapse. Additionally, we discuss the potential applications of targeting lactate metabolism and lactylation modifications in the treatment of psoriasis, alongside the investigation of artificial intelligence applications in advancing lactate and lactylation-focused drug development, identifying therapeutic targets, and enabling personalized medical decision-making. The significance of this review lies in its comprehensive exploration of how lactate and lactylation contribute to immune dysregulation, offering a novel perspective for understanding the metabolic and epigenetic changes associated with psoriasis. By identifying the roles of these pathways in modulating immune responses, this review provides a foundation for the development of new therapeutic strategies that target these mechanisms.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Caiyun Zhang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
4
|
Zhang P, Wang D, Zhou G, Jiang S, Zhang G, Zhang L, Zhang Z. Novel post-translational modification learning signature reveals B4GALT2 as an immune exclusion regulator in lung adenocarcinoma. J Immunother Cancer 2025; 13:e010787. [PMID: 40010763 DOI: 10.1136/jitc-2024-010787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) presents significant challenges in prognosis and treatment efficacy evaluation. While post-translational modifications are known to influence tumor progression, their prognostic value in LUAD remains largely unexplored. METHODS We developed a post-translational modification learning signature (PTMLS) using machine learning techniques, analyzing data from 1231 LUAD patients across seven global cohorts. The signature's efficacy in predicting immunotherapy response was evaluated using 12 immunotherapy cohorts spanning multiple cancer types (n=1201). An in-house LUAD tissue cohort (n=171) was used to validate beta-1,4-galactosyltransferase 2's (B4GALT2's) prognostic significance. The role of B4GALT2 in immune exclusion was investigated through in vivo and in vitro experiments. RESULTS The established PTMLS exhibited exceptional predictive capabilities in LUAD patient outcomes, surpassing the efficacy of 98 existing LUAD prognostic indicators. The system's predictive value was validated across diverse malignancy categories for immunotherapeutic response assessment. From a biological perspective, significant correlations were observed between PTMLS and immunological parameters, whereby elevated PTMLS levels were characterized by attenuated immune responses and immunologically cold neoplastic features. Within the PTMLS framework, B4GALT2 was identified as a crucial molecular component (r=0.82, p<0.05), and its heightened expression was linked to unfavorable clinical outcomes in LUAD cases, particularly in specimens exhibiting CD8-depleted phenotypes. The spatial distribution patterns between B4GALT2 and immune cell populations, specifically CD8+ T lymphocytes and CD20+ B lymphocytes, were elucidated through multiplexed immunofluorescence analysis. Laboratory investigations subsequently established B4GALT2's regulatory influence on LUAD cellular expansion in both laboratory cultures and animal models. Significantly, suppression of B4GALT2 was found to enhance CD8+ T lymphocyte populations and their functional status, thereby potentiating anti-programmed cell death protein 1 immunotherapeutic efficacy in animal studies. This phenomenon was characterized by reduced CD62L+CD8 T lymphocyte levels alongside elevated GZMB+/CD44+/CD69+CD8 T cell populations. CONCLUSION The developed PTMLS system represents an effective instrument for individualized prognostic evaluation and immunotherapy stratification in both LUAD and diverse cancer populations. The identification of B4GALT2 as a previously unrecognized oncogenic factor involved in immune exclusion presents a novel therapeutic avenue for LUAD treatment and immunotherapy optimization.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuai Jiang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
5
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
6
|
Long D, Ding Y, Wang P, Wei L, Ma K. Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma. Int J Mol Sci 2025; 26:1066. [PMID: 39940833 PMCID: PMC11817228 DOI: 10.3390/ijms26031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protein phosphorylation is a dynamic and reversible modification involved in almost all cellular processes. Numerous investigations have shown that protein phosphorylation modification enzymes (PPMEs) that regulate protein phosphorylation play an important role in the occurrence and treatment of tumors. However, there is still a lack of effective insights into the value of PPMEs in the classification and treatment of patients with lung adenocarcinoma (LUAD). Here, four topological algorithms identified 15 hub PPMEs from a protein-protein interaction (PPI) network. This PPI network was constructed using 124 PPMEs significantly correlated with 35 cancer hallmark-related pathways. Our study illustrates that these hub PPMEs can affect the survival of patients with LUAD in the form of somatic mutation or expression perturbation. Consistency clustering based on hub PPMEs recognized two phosphorylation modification subtypes (namely cluster1 and cluster2) from LUAD. Compared with patients in cluster1, the survival prognosis of patients in cluster2 is worse. This disparity is probably attributed to the higher tumor mutation burden, the higher male proportion, and the more significant expression disturbance in patients in cluster2. Moreover, phosphorylation modification subtypes also have different characteristics in terms of immune activity, immune infiltration level, immunotherapy response, and drug sensitivity. We constructed a PSig scoring system by using a principal component analysis algorithm to estimate the level of phosphorylation modification in individual LUAD patients. Patients in the high and low PSig score groups demonstrated different characteristics in terms of survival rate, tumor mutation burden, somatic gene mutation rate, immune cell abundance, and sensitivity to immunotherapy and drug treatment. This work reveals that phosphorylation plays a non-negligible role in the tumor microenvironment and immunotherapy of LUAD. Evaluating the phosphorylation status of individual LUAD patients by the PSig score can contribute to enhancing our cognition of the tumor microenvironment and guiding the formulation of more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Deyu Long
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lili Wei
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi 832000, China
| |
Collapse
|
7
|
Wang W, Lokman NA, Barry SC, Oehler MK, Ricciardelli C. LGR5: An emerging therapeutic target for cancer metastasis and chemotherapy resistance. Cancer Metastasis Rev 2025; 44:23. [PMID: 39821694 PMCID: PMC11742290 DOI: 10.1007/s10555-024-10239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Cancer stem cells play an important role in tumor progression and chemotherapy resistance. Leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) has been identified as a cancer stem cell marker in several cancer types. LGR5 is involved in cancer development and progression via several pathways including WNT/β-catenin signaling pathway. LGR5 plays a role in tumor progression by promoting cancer cell migration, invasion, metastasis, and angiogenesis in many cancers including colorectal, brain, gastric, and ovarian cancer. This review summarises the current knowledge on the expression and functional role of LGR5 in cancers, the molecular mechanisms regulated by LGR5, and the relationship between LGR5 and chemotherapy resistance. The review also includes highlights potential strategies to inhibit LGR5 expression and function. The majority of functional studies have shown that LGR5 plays an important role in promoting cancer progression, metastasis and chemotherapy resistance however, in some contexts LGR5 can also activate tumor-suppressive pathways and LGR5 negative cells can also promote cancer progression. The review highlights that targeting LGR5 is a promising anti-cancer treatment but the functional effect of LGR5 on tumor cells is complex may be dependent on cancer type, tumor microenvironment and cross-talk with other molecules in the LGR5 signaling pathway.
Collapse
Affiliation(s)
- Wanqi Wang
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
| | - Simon C Barry
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, 5005, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
8
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhang L, Wang W, Yang Y, Li P, Liu X, Zhu W, Yang W, Wang S, Lin Y, Liu X. Expression and immobilization of novel N-glycan-binding protein for highly efficient purification and enrichment of N-glycans, N-glycopeptides, and N-glycoproteins. Anal Bioanal Chem 2024; 416:6859-6868. [PMID: 39412696 DOI: 10.1007/s00216-024-05583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024]
Abstract
Comprehensive and selective enrichment of N-glycans, N-glycopeptides, and N-glycoproteins prior to analysis is of great significance in N-glycomics research, reducing sample complexity, removing impurity interference, increasing sample abundance and enhancing signal intensity. However, only an Fbs1 (F-box protein that recognizes sugar chain 1) GYR variant (Fg) can enrich these N-glycomolecules solely due to its substantial binding affinity for the core pentasaccharide motif of N-glycans. Stationary phase separation is commonly used to enrich N-glycomolecules efficiently. Herein, DNA encoding the Fg was cloned into pGEX-4T-1, and the protein was expressed with a GST tag, which facilitates the convenient and efficient immobilization of recombinant GST-tagged Fg to GSH agarose resin. The yield of the GST-tagged Fg reached to 0.05 g/L after optimization of the induction condition, and the purified protein exhibited good identification ability and excellent stability for months. In particular, the immobilized GST-tagged Fg can enrich N-glycans released by PNGase F and capture derivatized N-glycans possessing an intact terminal N-acetyl glucosamine (GlcNAc). Validation of immobilized GST-tagged Fg with standard N-glycopeptides and N-glycoproteins revealed its high loading capacity, sensitivity, and selectivity. The novel immobilized GST-tagged Fg is a convenient and efficient enrichment material specific for N-glycans, N-glycopeptides, and N-glycoproteins, suggesting excellent performance and prospects for industrial application.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Wenhui Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Pengjie Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenjie Zhu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Yang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Yawei Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Yao Z, Han J, Wu J, Li M, Chen R, Jian M, Yang Z, Wang X, Zhang Y, Hu J, Jiang L. Deciphering the multidimensional impact of IGFBP1 expression on cancer prognosis, genetic alterations, and cellular functionality: A comprehensive Pan-cancer analysis. Heliyon 2024; 10:e37402. [PMID: 39309809 PMCID: PMC11416238 DOI: 10.1016/j.heliyon.2024.e37402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives IGF-binding protein 1 (IGFBP1) is a key regulator of insulin-like growth factors, impacting biological processes, including cancer progression and prognosis. Materials and methods This study investigates genetic alterations affecting IGFBP1 expression in tumors using data from The Cancer Genome Atlas (TCGA) PanCancer Atlas via cBioPortal. We analyzed samples from 32 cancer types for mutation sites, including deep deletions, amplifications, and mutations. RNA-seq data were normalized using log2(value + 1). Statistical analyses, including survival outcomes, were conducted using R packages like ggplot2, stats, and car. Kaplan-Meier survival curves and log-rank tests assessed overall survival (OS) and progression-free survival (PFS). Univariate Cox regression was used to develop nomogram models for OS. Functional consequences of IGFBP1 mutations were explored through protein structure, stability, and IGF interaction analyses. Protein-protein interaction networks and functional enrichment were analyzed using GEPIA2, STRING, and Cytoscape. Gene Ontology (GO), KEGG, and Gene Set Enrichment Analysis (GSEA) provided insights into affected biological pathways. Results Pan-cancer analysis revealed diverse expression patterns, including significant upregulation in cutaneous melanoma (SKCM) and downregulation in lung adenocarcinoma (LUAD) and stomach adenocarcinoma (STAD). Specifically, elevated IGFBP1 expression in SKCM patients led to a 25 % improvement in 5-year survival. In contrast, higher IGFBP1 levels in LUAD and OV patients resulted in a 30 % and 20 % decrease in survival, respectively. Elevated IGFBP1 levels are significantly linked to advanced tumor stage and grade in OV and LUAD, affecting prognostic outcomes. Nomogram models for OV, SKCM, LUAD, and STAD showed IGFBP1's predictive strength with AUC values ranging from 0.70 to 0.85, indicating its diagnostic potential. Genetic analyses revealed mutations in IGFBP1 in 12 % of STAD cases and 10 % of UCEC cases, indicating significant genetic variation. Immune analysis showed that high IGFBP1 expression significantly influenced immune cell infiltration, particularly macrophages and CD8+ T cells, thereby affecting survival in LUAD and OV. Functional enrichment and gene set enrichment analysis identified IGFBP1 involvement in crucial pathways, such as cell cycle regulation, immune response, and PD-1 signaling, highlighting its biological impact. Additionally, IGFBP1 expression delineates distinct molecular and immune subtypes, correlating with specific cancer behaviors and immune patterns. Conclusions These findings highlight IGFBP1's potential as a biomarker and therapeutic target, particularly for immunoregulation and cancer subtype stratification.
Collapse
Affiliation(s)
- Zengwu Yao
- Yantai Yuhuangding Hospital, Shandong University, Shandong, China
- Yantai Yuhuangding Hospital, Shandong, China
| | - Junping Han
- Yantai Yuhuangding Hospital, Shandong, China
| | - Jinhui Wu
- Yantai Yuhuangding Hospital, Shandong, China
| | - Miaomiao Li
- Yantai Yuhuangding Hospital, Shandong, China
| | - Ruyue Chen
- Yantai Yuhuangding Hospital, Shandong, China
- Qingdao Medical College, Qingdao University, Shandong, China
| | - Mi Jian
- Yantai Yuhuangding Hospital, Shandong, China
| | - Zhensong Yang
- Yantai Yuhuangding Hospital, Shandong, China
- Qingdao Medical College, Qingdao University, Shandong, China
| | - Xixun Wang
- Yantai Yuhuangding Hospital, Shandong, China
| | - Yifei Zhang
- Yantai Yuhuangding Hospital, Shandong, China
| | - Jinchen Hu
- Yantai Yuhuangding Hospital, Shandong, China
| | - Lixin Jiang
- Yantai Yuhuangding Hospital, Shandong University, Shandong, China
- Yantai Yuhuangding Hospital, Shandong, China
- Yantai Yeda Hospital, Shandong, China
| |
Collapse
|
11
|
Qiu F, Li Y, Zhou L, Wu Y, Wu Y, Fan Z, Wang Y, Qin D, Li C. Mapping and visualization of global research progress on deubiquitinases in ovarian cancer: a bibliometric analysis. Front Pharmacol 2024; 15:1445037. [PMID: 39329115 PMCID: PMC11424541 DOI: 10.3389/fphar.2024.1445037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background Ovarian cancer is a highly aggressive malignancy with limited therapeutic options and a poor prognosis. Deubiquitinating enzymes (DUBs) have emerged as critical regulators of protein ubiquitination and proteasomal degradation, influencing various cellular processes relevant to cancer pathogenesis. In this study, the research progress between ovarian cancer and DUBs was mapped and visualized using bibliometrics, and the expression patterns and biological roles of DUBs in ovarian cancer were summarized. Methods Studies related to DUBs in ovarian cancer were extracted from the Web of Science Core Collection (WoSCC) database. VOSviewer 1.6.20, CiteSpace 6.3.R1, and R4.3.3 were used for bibliometric analysis and visualization. Results For analysis 243 articles were included in this study. The number of publications on DUBs in ovarian cancer has gradually increased each year. China, the United States, and the United Kingdom are at the center of this field of research. The Johns Hopkins University, Genentech, and Roche Holding are the main research institutions. David Komander, Zhihua Liu, and Richard Roden are the top authors in this field. The top five journals with the largest publication volumes in this field are Biochemical and Biophysical Research Communications, Journal of Biological Chemistry, PLOS One, Nature Communications, and Oncotarget. Keyword burst analysis identified five research areas: "deubiquitinating enzyme," "expression," "activation," "degradation," and "ubiquitin." In addition, we summarized the expression profiles and biological roles of DUBs in ovarian cancer, highlighting their roles in tumor initiation, growth, chemoresistance, and metastasis. Conclusion An overview of the research progress is provided in this study on DUBs in ovarian cancer over the last three decades. It offers insight into the most cited papers and authors, core journals, and identified new trends.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuntong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, London, United Kingdom
| | - Zhilei Fan
- School of Public Health, Fudan University, Shanghai, China
| | - Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongjun Qin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoqun Li
- Department of Histology and Embryology, Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Wang K, Chen X, Lin P, Wu J, Huang Q, Chen Z, Tian J, Wang H, Tian Y, Shi M, Qian M, Hui B, Zhu Y, Li L, Yao R, Bian H, Zhu P, Chen R, Chen L. CD147-K148me2-Driven Tumor Cell-Macrophage Crosstalk Provokes NSCLC Immunosuppression via the CCL5/CCR5 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400611. [PMID: 38873823 PMCID: PMC11304266 DOI: 10.1002/advs.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Indexed: 06/15/2024]
Abstract
Immunosuppression is a major hallmark of tumor progression in non-small cell lung cancer (NSCLC). Cluster of differentiation 147 (CD147), an important pro-tumorigenic factor, is closely linked to NSCLC immunosuppression. However, the role of CD147 di-methylation in the immunosuppressive tumor microenvironment (TME) remains unclear. Here, di-methylation of CD147 at Lys148 (CD147-K148me2) is identified as a common post-translational modification (PTM) in NSCLC that is significantly associated with unsatisfying survival outcomes among NSCLC sufferers, especially those in the advanced stages of the disease. The methyltransferase NSD2 catalyzes CD147 to generate CD147-K148me2. Further analysis demonstrates that CD147-K148me2 reestablishes the immunosuppressive TME and promotes NSCLC progression. Mechanistically, this modification promotes the interaction between cyclophilin A (CyPA) and CD147, and in turn, increases CCL5 gene transcription by activating p38-ZBTB32 signaling, leading to increased NSCLC cell-derived CCL5 secretion. Subsequently, CD147-K148me2-mediated CCL5 upregulation facilitates M2-like tumor-associated macrophage (TAM) infiltration in NSCLC tissues via CCL5/CCR5 axis-dependent intercellular crosstalk between tumor cells and macrophages, which is inhibited by blocking CD147-K148me2 with the targeted antibody 12C8. Overall, this study reveals the role of CD147-K148me2-driven intercellular crosstalk in the development of NSCLC immunosuppression, and provides a potential interventional strategy for PTM-targeted NSCLC therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Xiaohong Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Peng Lin
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Jiao Wu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Qiang Huang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
- School of MedicineShanghai UniversityShanghai200444China
| | - Zhi‐Nan Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Jiale Tian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Hao Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Ye Tian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Mingyan Shi
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Meirui Qian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Bengang Hui
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
- Department of Thoracic Surgery of Tangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Yumeng Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Ling Li
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Rui Yao
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Huijie Bian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Ping Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Ruo Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing HospitalFourth Military Medical UniversityXi'an710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
| | - Liang Chen
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesChina
- School of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
13
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
14
|
Del Puerto HL, Miranda APGS, Qutob D, Ferreira E, Silva FHS, Lima BM, Carvalho BA, Roque-Souza B, Gutseit E, Castro DC, Pozzolini ET, Duarte NO, Lopes TBG, Taborda DYO, Quirino SM, Elgerbi A, Choy JS, Underwood A. Clinical Correlation of Transcription Factor SOX3 in Cancer: Unveiling Its Role in Tumorigenesis. Genes (Basel) 2024; 15:777. [PMID: 38927713 PMCID: PMC11202618 DOI: 10.3390/genes15060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.
Collapse
Affiliation(s)
- Helen Lima Del Puerto
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ana Paula G. S. Miranda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Dinah Qutob
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Enio Ferreira
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Felipe H. S. Silva
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna M. Lima
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Barbara A. Carvalho
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna Roque-Souza
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Eduardo Gutseit
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Diego C. Castro
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Emanuele T. Pozzolini
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Nayara O. Duarte
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Thacyana B. G. Lopes
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Daiana Y. O. Taborda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Stella M. Quirino
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH 44720, USA;
| |
Collapse
|
15
|
Wang H, Zheng J, Ma Q, Zhang J, Li Y. GLT8D2 is a prognostic biomarker and regulator of immune cell infiltration in gastric cancer. Front Immunol 2024; 15:1370367. [PMID: 38840920 PMCID: PMC11150579 DOI: 10.3389/fimmu.2024.1370367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Because of the considerable tumor heterogeneity in gastric cancer (GC), only a limited group of patients experiences positive outcomes from immunotherapy. Herein, we aim to develop predictive models related to glycosylation genes to provide a more comprehensive understanding of immunotherapy for GC. RNA sequencing (RNA-seq) data and corresponding clinical outcomes were obtained from GEO and TCGA databases, and glycosylation-related genes were obtained from GlycoGene DataBase. We identified 48 differentially expressed glycosylation-related genes and established a prognostic model (seven prognosis genes including GLT8D2, GALNT6, ST3GAL6, GALNT15, GBGT1, FUT2, GXYLT2) based on these glycosylation-related genes using the results from Cox regression analysis. We found that these glycosylation-related genes revealed a robust correlation with the abundance of Tumor Infiltrating Lymphocytes (TILs), especially the GLT8D2 which is associated with many TILs. Finally, we employed immunohistochemistry and Multiplex Immunohistochemical to discover that GLT8D2 serves as a valuable prognostic biomarker in GC and is closely associated with macrophage-related markers. Collectively, we established a prognostic model based on glycosylation-related genes to provide a more comprehensive understanding of prediction for GC prognosis, and identified that GLT8D2 is closely correlated with adverse prognosis and may underscore its role in regulating immune cell infiltration in GC patients.
Collapse
Affiliation(s)
- Han Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingyang Ma
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junchang Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Iacobas DA, Iacobas S. Papillary Thyroid Cancer Remodels the Genetic Information Processing Pathways. Genes (Basel) 2024; 15:621. [PMID: 38790250 PMCID: PMC11120757 DOI: 10.3390/genes15050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity and the patient's unique set of favoring factors question the fit-for-all gene biomarkers. Publicly accessible gene expression profiles of the cancer nodule and the surrounding normal tissue from a surgically removed PTC tumor were re-analyzed to determine the cancer-induced alterations of the genomic fabrics responsible for major functional pathways. Tumor data were compared with those of standard papillary and anaplastic thyroid cancer cell lines. We found that PTC regulated numerous genes associated with DNA replication, repair, and transcription. Results further indicated that changes of the gene networking in functional pathways and the homeostatic control of transcript abundances also had major contributions to the PTC phenotype occurrence. The purpose to proliferate and invade the entire gland may explain the substantial transcriptomic differences we detected between the cells of the cancer nodule and those spread in homo-cellular cultures (where they need only to survive). In conclusion, the PTC etiology should include the complex molecular mechanisms involved in the remodeling of the genetic information processing pathways.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
17
|
Helms A, Brodbelt JS. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024; 13:394. [PMID: 38474358 PMCID: PMC10930906 DOI: 10.3390/cells13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in O-glycoproteomics, a field that lags behind N-glycoproteomics due to several unique challenges associated with the complexity of O-glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of O-glycoproteins.
Collapse
Affiliation(s)
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|