1
|
Katoh Y, Sato A, Takahashi N, Nishioka Y, Shimizu-Endo N, Ito T, Ohnuma-Koyama A, Shiga A, Yoshida T, Aoyama H. Junctional Epidermolysis Bullosa in Sprague Dawley Rats Caused by a Frameshift Mutation of Col17a1 Gene. J Transl Med 2024; 104:102132. [PMID: 39265891 DOI: 10.1016/j.labinv.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Junctional epidermolysis bullosa is an intractable cutaneous disorder in humans causing skin fragility and blistering due to mutations in genes encoding essential molecules adhering epidermis and dermis including collagen XVII. However, the pathogenesis still remains to be not fully understood perhaps because of a lack of appropriate animal models. In this study, we report novel mutant rats experiencing junctional epidermolysis bullosa, which was confirmed to be caused by a frameshift mutation of Col17a1 gene, as a rat model for investigating the underlying mechanism of pathogenesis. The mutant rats completely lacked the expression of collagen XVII and had blisters leading to infantile deaths as a homozygous condition, although their skin was apparently normal at birth by light microscopic evaluation except that immunohistochemical examination could not detect collagen XVII in any organs. These observations suggest that collagen XVII is not essential for the development of skin during the prenatal period but is indispensable for keeping epidermal-dermal connections stable after birth. Subsequent electron microscopic examinations further revealed an absence of hemidesmosomal inner plaques being composed of BP230, a binding partner of collagen XVII, and plectin in Col17a1-null newborns, albeit mRNA expressions of these molecules seemed to be unaffected at least during the fetal period. These results suggest that the lack of collagen XVII induces attenuation of hemidesmosomal inner plaques, which in turn destabilizes the epidermis-dermis connection and results in deterioration of epidermal physiology with formation of blisters after birth.
Collapse
Affiliation(s)
- Yoshitaka Katoh
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Akira Sato
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naofumi Takahashi
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Yasushi Nishioka
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naoko Shimizu-Endo
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Tsuyoshi Ito
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Aya Ohnuma-Koyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Atsushi Shiga
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan.
| |
Collapse
|
2
|
Sayar SB, Has C. Strategy for the Optimization of Read-Through Therapy for Junctional Epidermolysis Bullosa with COL17A1 Nonsense Mutation. J Invest Dermatol 2024; 144:2221-2229.e1. [PMID: 38522573 DOI: 10.1016/j.jid.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Read-through therapy suppresses premature termination codons and induces read-through activity, consequently restoring missing proteins. Aminoglycosides are widely studied as read-through drugs in different human genetic disorders, including hereditary skin diseases. Our previous work revealed that aminoglycosides affect COL17A1 nonsense mutations and represent a therapeutic option to alleviate disease severity. However, the amount of restored type XVII collagen (C17) in C17-deficient junctional epidermolysis bullosa keratinocytes was <1% relative to that in normal keratinocytes and was achieved only after high-dose gentamicin treatment, which induced deep transcriptional changes. Therefore, in this study, we designed a strategy combining aminoglycosides with compounds known to reduce their side effects. We developed translational read-through-inducing drug cocktail, version 5 containing low dosage of aminoglycosides, CC-90009, NMDI-14, melatonin, and apocynin that was able to induce about 20% of missing C17 without cell toxicity or an effect on in vitro wound closure. Translational read-through-inducing drugs cocktail, version 5 significantly induced COL17A1 expression and reverted the proinflammatory phenotype of C17-deficient junctional epidermolysis bullosa keratinocytes. Evaluation of this drug cocktail regarding its stability, penetration, and efficacy as a topical treatment remains to be determined. Translational read-through-inducing drug cocktail, version 5 might represent an improved therapeutic strategy for junctional epidermolysis bullosa and for other genetic skin disorders.
Collapse
Affiliation(s)
- Saliha Beyza Sayar
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
4
|
Hany U, Watson CM, Liu L, Smith CEL, Harfoush A, Poulter JA, Nikolopoulos G, Balmer R, Brown CJ, Patel A, Simmonds J, Charlton R, Acosta de Camargo MG, Rodd HD, Jafri H, Antanaviciute A, Moffat M, Al-Jawad M, Inglehearn CF, Mighell AJ. Heterozygous COL17A1 variants are a frequent cause of amelogenesis imperfecta. J Med Genet 2024; 61:347-355. [PMID: 37979963 PMCID: PMC10982616 DOI: 10.1136/jmg-2023-109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.
Collapse
Affiliation(s)
- Ummey Hany
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Christopher M Watson
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Lu Liu
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Claire E L Smith
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Asmaa Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Georgios Nikolopoulos
- Institute for Fundamental Biomedical Research, B.S.R.C. 'Alexander Fleming', Vari, Attica, Greece
| | - Richard Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Catriona J Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - Anesha Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Vincent Drive, Edgbaston, Birmingham, UK
| | - Jenny Simmonds
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | - Ruth Charlton
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James's University Hospital, Leeds, UK
| | | | - Helen D Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Hussain Jafri
- Fatima Jinnah Medical University, Punjab Thalassaemia and Other Genetic Disorders Prevention and Research Institute, Lahore, Pakistan
| | | | - Michelle Moffat
- Paediatric Dentistry, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Maisoon Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
| | - Alan J Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024:10.1007/s13353-024-00839-2. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
7
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
8
|
Zhang L, Wang S, Chen Q, Xiang L. A case of junctional epidermolysis bullosa intermediate with collagen XVII deficiency treated with dupilumab. J DERMATOL TREAT 2023; 34:2253943. [PMID: 37968922 DOI: 10.1080/09546634.2023.2253943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 11/17/2023]
Abstract
Inherited epidermolysis bullosa is a heterogeneous group of hereditary skin diseases characterized by skin (mucosa) fragility, which leads to blistering. Junctional epidermolysis bullosa is associated with mutations in genes expressing proteins of the dermo-epidermal junction. Dupilumab, an antibody that directly targets interleukin (IL)-4 receptor alpha, may be an effective treatment for dystrophic epidermolysis bullosa. We describe a case of junctional epidermolysis bullosa that improved with dupilumab.
Collapse
Affiliation(s)
- Li Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Qinyi Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
9
|
Kotalevskaya YY, Stepanov VA. Molecular genetic basis of epidermolysis bullosa. Vavilovskii Zhurnal Genet Selektsii 2023; 27:18-27. [PMID: 36923479 PMCID: PMC10009482 DOI: 10.18699/vjgb-23-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 03/11/2023] Open
Abstract
Epidermolysis bullosa (EB) is an inherited disorder of skin fragility, caused by mutations in a large number of genes associated with skin integrity and dermal-epidermal adhesion. Skin fragility is manifested by a decrease in resistance to external mechanical influences, the clinical signs of which are the formation of blisters, erosions and wounds on the skin and mucous membranes. EB is a multisystemic disease and characterized by a wide phenotypic spectrum with extracutaneous complications in severe types, besides the skin and mucous membranes, with high mortality. More than 30 clinical subtypes have been identified, which are grouped into four main types: simplex EB, junctional EB, dystrophic EB and Kindler syndrome. To date, pathogenic variants in 16 different genes are associated with EB and encode proteins that are part of the skin anchoring structures or are signaling proteins. Genetic mutations cause dysfunction of cellular structures, differentiation, proliferation and apoptosis of cells, leading to mechanical instability of the skin. The formation of reduced proteins or decrease in their level leads mainly to functional disorders, forming mild or intermediate severe phenotypes. Absent protein expression is a result of null genetic variants and leads to structural abnormalities, causing a severe clinical phenotype. For most of the genes involved in the pathogenesis of EB, certain relationships have been established between the type and position of genetic variant and the severity of the clinical manifestations of the disease. Establishing an accurate diagnosis depends on the correlation of clinical, genealogical and immunohistological data in combination with molecular genetic testing. In general, the study of clinical, genetic and ultrastructural changes in EB has significantly expanded the understanding of the natural history of the disease and supplemented the data on genotype-phenotype correlations, promotes the search and study of epigenetic and non-genetic disease modifier factors, and also allows developing approaches to radical treatment of the disease. New advances of sequencing technologies have made it possible to describe new phenotypes and study their genetic and molecular mechanisms. This article describes the pathogenetic aspects and genes that cause main and rare syndromic subtypes of EB.
Collapse
Affiliation(s)
- Yu Yu Kotalevskaya
- Moscow Regional Research and Clinical Institute, Moscow, Russia Charitable Foundation "BELA. Butterfly Children", Moscow, Russia
| | - V A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Wang W, Guo Q, Chen J, Zhang X, Li C, Li S, Liang J, Hao C, Wang J. Identification of a novel homozygous LAMB3 mutation in a Chinese male with junctional epidermolysis bullosa and severe urethra stenosis: A case report. Front Genet 2022; 13:965375. [PMID: 36246619 PMCID: PMC9561087 DOI: 10.3389/fgene.2022.965375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Epidermolysis bullosa (EB) is a skin fragility disorder that is caused by molecular aberrations in the epidermal basement membrane zone. Based primarily on the cleavage plane within the skin, EB is classified into four major subtypes: EB simplex; junctional EB (JEB); dystrophic EB; and Kindler EB. The junctional form (JEB) can lead to blistering and a variety of extracutaneous complications, including genitourinary tract involvement. Despite therapeutic progress, treatment modalities for urological complications of JEB are currently limited. Results: We present the case of a Chinese male with intermediate JEB and profound urinary tract stenosis. Due to the progression of the urinary tract stenosis, he presented with repeated urological symptoms, such as high frequency of urination, painful urination, and difficult voiding. After birth, multiple blisters on the fingers, feet, and limbs, as well as nail dystrophies and spare hair were noted. Mutation analysis revealed that the patient carried a homozygous frameshift mutation in the LAMB3 gene [c.1172_1179delinsTGTGTGTGCAAGGAG/p. (P391Lfs*23)]. After receiving treatment for urethral dilatation, lingual mucosa for anterior urethroplasty, and repair of urethral stricture using a ventral onlay penile skin flap, the patient still experienced a relapse of urinary tract stenosis. Finally, the patient underwent perineal urethrostomy. In contrast, his older brother with similar urological symptoms received regular urethral dilatation, and the curative effect was positive. Conclusion: Here we report on a case with a novel LAMB3 mutation that led to JEB with profound urinary tract stenosis, which has expanded our experience in the treatment of EB urological complications.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Guo
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinshan Chen
- The Second Medicine College, Shanxi Medical University, Taiyuan, China
| | - Xi Zhang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chengyong Li
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuangping Li
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jialin Liang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Hao
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chuan Hao, ; Jingqi Wang,
| | - Jingqi Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chuan Hao, ; Jingqi Wang,
| |
Collapse
|
11
|
Epidermolysis Bullosa—A Different Genetic Approach in Correlation with Genetic Heterogeneity. Diagnostics (Basel) 2022; 12:diagnostics12061325. [PMID: 35741135 PMCID: PMC9222206 DOI: 10.3390/diagnostics12061325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epidermolysis bullosa is a heterogeneous group of rare genetic disorders characterized by mucocutaneous fragility and blister formation after minor friction or trauma. There are four major epidermolysis bullosa types based on the ultrastructural level of tissue cleavage: simplex, junctional, dystrophic, and Kindler epidermolysis bullosa. They are caused by mutations in genes that encode the proteins that are part of the hemidesmosomes and focal adhesion complex. Some of these disorders can be associated with extracutaneous manifestations, which are sometimes fatal. They are inherited in an autosomal recessive or autosomal dominant manner. This review is focused on the phenomena of heterogeneity (locus, allelic, mutational, and clinical) in epidermolysis bullosa, and on the correlation genotype–phenotype.
Collapse
|
12
|
Chakravarti S, Enzo E, de Barros MRM, Maffezzoni MBR, Pellegrini G. Genetic Disorders of the Extracellular Matrix: From Cell and Gene Therapy to Future Applications in Regenerative Medicine. Annu Rev Genomics Hum Genet 2022; 23:193-222. [PMID: 35537467 DOI: 10.1146/annurev-genom-083117-021702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell-cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examine genetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix-related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shukti Chakravarti
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | | | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| |
Collapse
|
13
|
Harvey N, Youssefian L, Saeidian AH, Vahidnezhad H, Uitto J. Pathomechanisms of epidermolysis bullosa: Beyond structural proteins. Matrix Biol 2022; 110:91-105. [DOI: 10.1016/j.matbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
14
|
Has C, Sayar SB, Zheng S, Chacón-Solano E, Condrat I, Yadav A, Roberge M, Larcher Laguzzi F. Read-Through for Nonsense Mutations in Type XVII Collagen‒Deficient Junctional Epidermolysis Bullosa. J Invest Dermatol 2022; 142:1227-1230.e4. [PMID: 34673051 DOI: 10.1016/j.jid.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Saliha Beyza Sayar
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shuangshuang Zheng
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esteban Chacón-Solano
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Irina Condrat
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ayushi Yadav
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Roberge
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Larcher Laguzzi
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
15
|
Medek K, Klausegger A, Ude-Schoder K, Prodinger C, Breitenbach-Koller H, Bauer JW, Laimer M. Phenotypic alleviation in LAMB3-mutated severe junctional epidermolysis bullosa. J Eur Acad Dermatol Venereol 2022; 36:e631-e634. [PMID: 35305048 DOI: 10.1111/jdv.18091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K Medek
- Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - A Klausegger
- EB House Austria, University Hospital of Dermatology of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - K Ude-Schoder
- EB House Austria, University Hospital of Dermatology of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - C Prodinger
- Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | | | - J W Bauer
- Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - M Laimer
- Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
16
|
Reduced expression of Collagen 17A1 in naturally aged, photoaged, and UV-irradiated human skin in vivo: Potential links to epidermal aging. J Cell Commun Signal 2022; 16:421-432. [DOI: 10.1007/s12079-021-00654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
|
17
|
Morren MA, Legius E, Giuliano F, Hadj-Rabia S, Hohl D, Bodemer C. Challenges in Treating Genodermatoses: New Therapies at the Horizon. Front Pharmacol 2022; 12:746664. [PMID: 35069188 PMCID: PMC8766835 DOI: 10.3389/fphar.2021.746664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Departments of Dermatology and Venereology and Pediatrics, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, ERN Genturis and ERN Skin, Leuven, Belgium
| | - Fabienne Giuliano
- Department of Medical Genetics, University Hospital Lausanne, Lausanne, Switzerland
| | - Smail Hadj-Rabia
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| | - Daniel Hohl
- Department of Dermatology and Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Bodemer
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| |
Collapse
|
18
|
Tuusa J, Kokkonen N, Tasanen K. BP180/Collagen XVII: A Molecular View. Int J Mol Sci 2021; 22:12233. [PMID: 34830116 PMCID: PMC8623354 DOI: 10.3390/ijms222212233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BP180 is a type II collagenous transmembrane protein and is best known as the major autoantigen in the blistering skin disease bullous pemphigoid (BP). The BP180 trimer is a central component in type I hemidesmosomes (HD), which cause the adhesion between epidermal keratinocytes and the basal lamina, but BP180 is also expressed in several non-HD locations, where its functions are poorly characterized. The immunological roles of intact and proteolytically processed BP180, relevant in BP, have been subject to intensive research, but novel functions in cell proliferation, differentiation, and aging have also recently been described. To better understand the multiple physiological functions of BP180, the focus should return to the protein itself. Here, we comprehensively review the properties of the BP180 molecule, present new data on the biochemical features of its intracellular domain, and discuss their significance with regard to BP180 folding and protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (J.T.); (N.K.)
| |
Collapse
|
19
|
A Review of Acquired Autoimmune Blistering Diseases in Inherited Epidermolysis Bullosa: Implications for the Future of Gene Therapy. Antibodies (Basel) 2021; 10:antib10020019. [PMID: 34067512 PMCID: PMC8161452 DOI: 10.3390/antib10020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapy serves as a promising therapy in the pipeline for treatment of epidermolysis bullosa (EB). However, with great promise, the risk of autoimmunity must be considered. While EB is a group of inherited blistering disorders caused by mutations in various skin proteins, autoimmune blistering diseases (AIBD) have a similar clinical phenotype and are caused by autoantibodies targeting skin antigens. Often, AIBD and EB have the same protein targeted through antibody or mutation, respectively. Moreover, EB patients are also reported to carry anti-skin antibodies of questionable pathogenicity. It has been speculated that activation of autoimmunity is both a consequence and cause of further skin deterioration in EB due to a state of chronic inflammation. Herein, we review the factors that facilitate the initiation of autoimmune and inflammatory responses to help understand the pathogenesis and therapeutic implications of the overlap between EB and AIBD. These may also help explain whether corrections of highly immunogenic portions of protein through gene therapy confers a greater risk towards developing AIBD.
Collapse
|
20
|
Hérissé AL, Charlesworth A, Bellon N, Leclerc-Mercier S, Bourrat E, Hadj-Rabia S, Bodemer C, Lacour JP, Chiaverini C. Genotypic and phenotypic analysis of 34 cases of inherited junctional epidermolysis bullosa caused by COL17A1 mutations. Br J Dermatol 2021; 184:960-962. [PMID: 33393081 DOI: 10.1111/bjd.19752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022]
Affiliation(s)
- A L Hérissé
- Departments of Dermatology, Referral Center for Genodermatoses, Department of Dermatology, Referral Center for Genodermatoses, Centre Hospitalier Universitaire de Nice, Nice
| | - A Charlesworth
- Departments of Dermatology, Referral Center for Genodermatoses, Department of Dermatology, Referral Center for Genodermatoses, Centre Hospitalier Universitaire de Nice, Nice
| | - N Bellon
- Department of Dermatology, Referral Center for Genodermatoses, Necker Enfants Malades Hospital, Paris
| | - S Leclerc-Mercier
- Department of Dermatology, Referral Center for Genodermatoses, Necker Enfants Malades Hospital, Paris
| | - E Bourrat
- Department of Dermatology, Referral Center for Genodermatoses, Saint Louis Hospital, APHP Paris, France
| | - S Hadj-Rabia
- Department of Dermatology, Referral Center for Genodermatoses, Necker Enfants Malades Hospital, Paris
| | - C Bodemer
- Department of Dermatology, Referral Center for Genodermatoses, Necker Enfants Malades Hospital, Paris
| | - J P Lacour
- Departments of Dermatology, Referral Center for Genodermatoses, Department of Dermatology, Referral Center for Genodermatoses, Centre Hospitalier Universitaire de Nice, Nice
| | - C Chiaverini
- Departments of Dermatology, Referral Center for Genodermatoses, Department of Dermatology, Referral Center for Genodermatoses, Centre Hospitalier Universitaire de Nice, Nice
| |
Collapse
|
21
|
Rossi S, Castiglia D, Pisaneschi E, Diociaiuti A, Stracuzzi A, Cesario C, Mariani R, Floriddia G, Zambruno G, Boldrini R, Abeni D, Novelli A, Alaggio R, El Hachem M. Immunofluorescence mapping, electron microscopy and genetics in the diagnosis and sub-classification of inherited epidermolysis bullosa: a single-centre retrospective comparative study of 87 cases with long-term follow-up. J Eur Acad Dermatol Venereol 2021; 35:1007-1016. [PMID: 33274474 DOI: 10.1111/jdv.17060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epidermolysis bullosa (EB) comprises a heterogeneous group of skin fragility disorders, classified in four major types based on skin cleavage level, i.e. EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), Kindler EB, and in more than 30 subtypes defined by the combination of laboratory and clinical data, including disease course. OBJECTIVES Our aims were to address whether, in the age of genomics, electron microscopy (TEM) has still a role in diagnosing EB, and whether the genotype per se may be sufficient to sub-classify EB. METHODS A thoroughly characterized single-centre EB case series was retrospectively evaluated to compare the power of TEM with immunofluorescence mapping (IFM) in establishing the EB type, and the ability of TEM, IFM and genetics to predict selected EB subtypes, i.e. severe dominant EBS (DEBS), severe JEB, severe recessive DEB (RDEB) and DEB self-improving, using genetic and final diagnosis, respectively, as gold standard. RESULTS The series consisted of 87 patients, including 44 newborns, with a median follow-up of 54 months. Ninety-five mutations were identified in EB-associated genes, including 25 novel variants. Both IFM and TEM were diagnostic in about all cases of JEB (21/21 for both) and DEB (43/44 for IFM, 44/44 for TEM). TEM sensitivity was superior to IFM for EBS (19/20 vs. 16/19). As to EB subtyping, IFM performed better than genetics in identifying severe JEB cases due to laminin-332 defect (14/14 vs. 10/14) and severe RDEB (eight/nine vs. seven/nine). Genetics had no role in self-improving DEB diagnosis; it almost equalled TEM in predicting severe DEBS (eight/nine vs. nine/nine) and enabled to discriminate dominant from recessive non-severe DEB phenotypes and to identify special subtypes, e.g. DEBS with KLHL24 mutations. CONCLUSIONS Transmission electron microscopy remains relevant to the diagnosis of EBS. IFM and genetics are essential and complementary tools in the vast majority of EB cases.
Collapse
Affiliation(s)
- S Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - E Pisaneschi
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Diociaiuti
- Dermatology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Stracuzzi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C Cesario
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - R Mariani
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - G Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - R Boldrini
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - A Novelli
- Laboratory of Medical Genetics, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - R Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M El Hachem
- Dermatology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
22
|
Caputo V, Strafella C, Termine A, Dattola A, Mazzilli S, Lanna C, Cosio T, Campione E, Novelli G, Giardina E, Cascella R. Overview of the molecular determinants contributing to the expression of Psoriasis and Psoriatic Arthritis phenotypes. J Cell Mol Med 2020; 24:13554-13563. [PMID: 33128843 PMCID: PMC7754002 DOI: 10.1111/jcmm.15742] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Psoriasis and psoriatic arthritis are multifactorial chronic disorders whose etiopathogenesis essentially derives from the alteration of several signalling pathways and the co-occurrence of genetic, epigenetic and non-genetic susceptibility factors that altogether affect the functional and structural property of the skin. Although shared and differential susceptibility genes and molecular pathways are known to contribute to the onset of pathological phenotypes, further research is needed to dissect the molecular causes of psoriatic disease and its progression towards Psoriatic Arthritis. This review will therefore be addressed to explore differences and similarities in the etiopathogenesis and progression of both disorders, with a particular focus on genes involved in the maintenance of the skin structure and integrity (keratins and collagens), modulation of patterns of recognition (through Toll-like receptors and dectin-1) and immuno-inflammatory response (by NLRP3-dependent inflammasome) to microbial pathogens. In addition, special emphasis will be given to the contribution of epigenetic elements (methylation pattern, non-coding RNAs, chromatin modifiers and 3D genome organization) to the etiopathogenesis and progression of psoriasis and psoriatic arthritis. The evidence discussed in this review highlights how the knowledge of patients' clinical and (epi)genomic make-up could be helpful for improving the available therapeutic strategies for psoriasis and psoriatic arthritis treatment.
Collapse
Affiliation(s)
- Valerio Caputo
- Medical Genetics LaboratoryDepartment of Biomedicine and PreventionTor Vergata UniversityRomeItaly
- Genomic Medicine Laboratory UILDMIRCCS Santa Lucia FoundationRomeItaly
| | - Claudia Strafella
- Medical Genetics LaboratoryDepartment of Biomedicine and PreventionTor Vergata UniversityRomeItaly
- Genomic Medicine Laboratory UILDMIRCCS Santa Lucia FoundationRomeItaly
| | - Andrea Termine
- Genomic Medicine Laboratory UILDMIRCCS Santa Lucia FoundationRomeItaly
| | - Annunziata Dattola
- Dermatologic ClinicDepartment of Systems MedicineTor Vergata UniversityRomeItaly
| | - Sara Mazzilli
- Dermatologic ClinicDepartment of Systems MedicineTor Vergata UniversityRomeItaly
| | - Caterina Lanna
- Dermatologic ClinicDepartment of Systems MedicineTor Vergata UniversityRomeItaly
| | - Terenzio Cosio
- Dermatologic ClinicDepartment of Systems MedicineTor Vergata UniversityRomeItaly
| | - Elena Campione
- Dermatologic ClinicDepartment of Systems MedicineTor Vergata UniversityRomeItaly
| | - Giuseppe Novelli
- Medical Genetics LaboratoryDepartment of Biomedicine and PreventionTor Vergata UniversityRomeItaly
- Neuromed Institute IRCCSPozzilliItaly
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDMIRCCS Santa Lucia FoundationRomeItaly
- Department of Biomedicine and PreventionUILDM Lazio Onlus FoundationTor Vergata UniversityRomeItaly
| | - Raffaella Cascella
- Medical Genetics LaboratoryDepartment of Biomedicine and PreventionTor Vergata UniversityRomeItaly
- Department of Biomedical SciencesCatholic University Our Lady of Good CounselTiranaAlbania
| |
Collapse
|
23
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
24
|
Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L, Diem A, Fine JD, Heagerty A, Hovnanian A, Marinkovich MP, Martinez AE, McGrath JA, Moss C, Murrell DF, Palisson F, Schwieger-Briel A, Sprecher E, Tamai K, Uitto J, Woodley DT, Zambruno G, Mellerio JE. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol 2020; 183:614-627. [PMID: 32017015 DOI: 10.1111/bjd.18921] [Citation(s) in RCA: 405] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several new genes and clinical subtypes have been identified since the publication in 2014 of the report of the last International Consensus Meeting on Epidermolysis Bullosa (EB). OBJECTIVES We sought to reclassify disorders with skin fragility, with a focus on EB, based on new clinical and molecular data. METHODS This was a consensus expert review. RESULTS In this latest consensus report, we introduce the concept of genetic disorders with skin fragility, of which classical EB represents the prototype. Other disorders with skin fragility, where blisters are a minor part of the clinical picture or are not seen because skin cleavage is very superficial, are classified as separate categories. These include peeling skin disorders, erosive disorders, hyperkeratotic disorders, and connective tissue disorders with skin fragility. Because of the common manifestation of skin fragility, these 'EB-related' disorders should be considered under the EB umbrella in terms of medical and socioeconomic provision of care. CONCLUSIONS The proposed classification scheme should be of value both to clinicians and researchers, emphasizing both clinical and genetic features of EB. What is already known about this topic? Epidermolysis bullosa (EB) is a group of genetic disorders with skin blistering. The last updated recommendations on diagnosis and classification were published in 2014. What does this study add? We introduce the concept of genetic disorders with skin fragility, of which classical EB represents the prototype. Clinical and genetic aspects, genotype-phenotype correlations, disease-modifying factors and natural history of EB are reviewed. Other disorders with skin fragility, e.g. peeling skin disorders, erosive disorders, hyperkeratotic disorders, and connective tissue disorders with skin fragility are classified as separate categories; these 'EB-related' disorders should be considered under the EB umbrella in terms of medical and socioeconomic provision of care. Linked Comment: Pope. Br J Dermatol 2020; 183:603.
Collapse
Affiliation(s)
- C Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - J W Bauer
- Department of Dermatology and Allergology and EB Haus Austria University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - C Bodemer
- Department of Dermatology, Necker Hospital des Enfants Malades, University Paris-Centre APHP 5, Paris, France
| | - M C Bolling
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - A Diem
- Department of Dermatology and Allergology and EB Haus Austria University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - J-D Fine
- Vanderbilt University School of Medicine, Nashville, TN, USA; National Epidermolysis Bullosa Registry, Nashville, TN, USA
| | - A Heagerty
- Heart of England Foundation Trust, Birmingham, UK
| | - A Hovnanian
- INSERM UMR1163, Imagine Institute, Department of Genetics, Necker hospital for sick children, Paris University, Paris, France
| | - M P Marinkovich
- Stanford University School of Medicine, Stanford, Palo Alto Veterans Affairs Medical Center CA, USA
| | - A E Martinez
- Dermatology Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - C Moss
- Birmingham Children's Hospital and University of Birmingham, UK
| | - D F Murrell
- St George Hospital and University of New South Wales, Sydney, Australia
| | - F Palisson
- DEBRA Chile, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - A Schwieger-Briel
- Department of Pediatric Dermatology, University Children's Hospital Zürich, Zürich, Switzerland
| | - E Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - K Tamai
- Dermatology Department, University of Osaka, Osaka, Japan
| | - J Uitto
- Thomas Jefferson University, Philadelphia, PA, USA
| | - D T Woodley
- University of Southern California, Los Angeles, CA, USA
| | - G Zambruno
- Dermatology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - J E Mellerio
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Fortugno P, Condorelli AG, Dellambra E, Guerra L, Cianfarani F, Tinaburri L, Proto V, De Luca N, Passarelli F, Ricci F, Zambruno G, Castiglia D. Multiple Skin Squamous Cell Carcinomas in Junctional Epidermolysis Bullosa Due to Altered Laminin-332 Function. Int J Mol Sci 2020; 21:E1426. [PMID: 32093196 PMCID: PMC7073068 DOI: 10.3390/ijms21041426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Variably reduced expression of the basement membrane component laminin-332 (α3aβ3γ2) causes junctional epidermolysis bullosa generalized intermediate (JEB-GI), a skin fragility disorder with an increased susceptibility to squamous cell carcinoma (SCC) development in adulthood. Laminin-332 is highly expressed in several types of epithelial tumors and is central to signaling pathways that promote SCC tumorigenesis. However, laminin-332 mutations and expression in individuals affected by JEB-GI and suffering from recurrent SCCs have been poorly characterized. We studied a JEB-GI patient who developed over a hundred primary cutaneous SCCs. Molecular analysis combined with gene expression studies in patient skin and primary keratinocytes revealed that the patient is a functional hemizygous for the p.Cys1171* mutant allele which is transcribed in a stable mRNA encoding for a β3 chain shortened of the last two C-terminal amino acids (Cys1171-Lys1172). The lack of the Cys1171 residue involved in the C-terminal disulphide bond to γ2 chain did not prevent assembly, secretion, and proteolytic processing of the heterotrimeric molecule. Immunohistochemistry of SCC specimens revealed accumulation of mutant laminin-332 at the epithelial-stromal interface of invasive front. We conclude that the C-terminal disulphide bond is a structural element crucial for laminin-332 adhesion function in-vivo. By saving laminin-332 amount, processing, and signaling role the p.Cys1171* mutation may allow intrinsic pro-tumorigenic properties of the protein to be conveyed, thus contributing to invasiveness and recurrence of SCCs in this patient.
Collapse
Affiliation(s)
- Paola Fortugno
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Angelo Giuseppe Condorelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, viale di San Paolo 15, 00146 Rome, Italy; (A.G.C.)
| | - Elena Dellambra
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Liliana Guerra
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Francesca Cianfarani
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Lavinia Tinaburri
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Vittoria Proto
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Naomi De Luca
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| | - Francesca Passarelli
- Pathology Unit, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.P.); (F.R.)
| | - Francesca Ricci
- Pathology Unit, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.P.); (F.R.)
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, viale di San Paolo 15, 00146 Rome, Italy; (A.G.C.)
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (P.F.); (E.D.); (L.G.); (F.C.); (L.T.); (V.P.); (N.D.L.)
| |
Collapse
|
26
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|