1
|
Chang K, Chen J, Rajagopalan A, Chen DF, Cho KS. Testing Visual Function by Assessment of the Optomotor Reflex in Glaucoma. Methods Mol Biol 2025; 2858:219-227. [PMID: 39433679 DOI: 10.1007/978-1-0716-4140-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Optomotor response/reflex (OMR) is a fast and efficient first-in-line visual screening method, especially for rodents. It has the potential to evaluate both the scotopic and photopic visions of nonrestrained animals through tracking head movement, providing a quantitative estimate of visual functions. In restrained animals, optokinetic response (OKR), compensatory eye movements for visual shifts in the surroundings, is utilized. Both OMR and OKR capitalize on an individual's innate reflex to stabilize images for the purpose of capturing clear vision. The two reflexes have similar reliability when evaluating stimulus luminance, contrast, spatial frequency, and velocity. They have emerged as powerful tools to evaluate the efficacy of pharmacological treatments and phenotypes of subjects undergoing study. With OMR and OKR accurately assessing visual acuity (VA) as well as contrast sensitivity (CS), the gold standards for measuring clinical vision, they provide reliable and easily accessible results that further eye and brain research. These methods of sight evaluation have been used in multiple animal models, particularly mice and zebrafish. Through OMR assays, these animal models have been utilized to investigate retinal degenerative diseases, helping researchers differentiate between worsening stages. Alongside tests such as optical coherence tomography (OCT), OMR provides confirmation of visual status, where increased OMR function often correlates with improved visual status. OMR has continued to be used outside of glaucoma in various retinal diseases, such as retinitis pigmentosa (RP), diabetic retinopathy, and age-related macular degeneration.In this chapter, we will introduce the concept and application of visual stimulus-induced head or eye reflex movement in different animal species and experimental models of eye diseases, such as glaucoma and other neurodegenerative disorders, and in patients with glaucoma.
Collapse
Affiliation(s)
- Karen Chang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Julie Chen
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Aishwarya Rajagopalan
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Dong Feng Chen
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
2
|
Cheng Y, Chen X, Zhu G, Li N, Sun Y, Luo S, Liu Y, Lu X. Erigeron breviscapus: A Promising Medication for Protecting the Optic Nerve in Glaucoma. PLANTA MEDICA 2024; 90:992-1004. [PMID: 39303747 DOI: 10.1055/a-2409-2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glaucoma is a common eye condition characterized by the loss of retinal ganglion cells and their axons, optic nerve damage, and visual field defects, which seriously affect a patient's quality of life. The pathogenesis of glaucoma is still unclear at present. It presents as damage to retinal ganglion cells, and the main treatment is primarily to reduce intraocular pressure by surgery or taking medication. However, even with well-controlled intraocular pressure, retinal ganglion cells still undergo degeneration, progressive apoptosis, and axonal loss. Therefore, protecting the optic nerve and inhibiting the apoptosis of retinal ganglion cells are the current hot topic for prevention and treatment of glaucoma. Recently, Erigeron breviscapus, originating from Yunnan province in China, has been shown to be a promising herb with neuroprotective effects to treat glaucoma. Therefore, the traditional usage, botanical characteristics, and phytochemical composition of E. breviscapus were explored through a literature review. Furthermore, we have summarized the pharmacological mechanisms of E. breviscapus and its active components in inhibiting the apoptosis of retinal ganglion cells. These research findings can not only provide guidance and recommendations for the protection of retinal ganglion cells but also further explore the potential of E. breviscapus in the treatment of glaucoma.
Collapse
Affiliation(s)
- Yuxin Cheng
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Xuanyi Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangyu Zhu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Sun
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Shichun Luo
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Yujie Liu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| | - Xuejing Lu
- Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Kapic A, Zaman K, Nguyen V, Neagu GC, Sumien N, Prokai L, Prokai-Tatrai K. The Prodrug DHED Delivers 17β-Estradiol into the Retina for Protection of Retinal Ganglion Cells and Preservation of Visual Function in an Animal Model of Glaucoma. Cells 2024; 13:1126. [PMID: 38994978 PMCID: PMC11240555 DOI: 10.3390/cells13131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
We report a three-pronged phenotypic evaluation of the bioprecursor prodrug 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED) that selectively produces 17β-estradiol (E2) in the retina after topical administration and halts glaucomatous neurodegeneration in a male rat model of the disease. Ocular hypertension (OHT) was induced by hyperosmotic saline injection into an episcleral vein of the eye. Animals received daily DHED eye drops for 12 weeks. Deterioration of visual acuity and contrast sensitivity by OHT in these animals were markedly prevented by the DHED-derived E2 with concomitant preservation of retinal ganglion cells and their axons. In addition, we utilized targeted retina proteomics and a previously established panel of proteins as preclinical biomarkers in the context of OHT-induced neurodegeneration as a characteristic process of the disease. The prodrug treatment provided retina-targeted remediation against the glaucomatous dysregulations of these surrogate endpoints without increasing circulating E2 levels. Collectively, the demonstrated significant neuroprotective effect by the DHED-derived E2 in the selected animal model of glaucoma supports the translational potential of our presented ocular neuroprotective approach owing to its inherent therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Ammar Kapic
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Vien Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - George C Neagu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Xie Y, Sun G, Tao Y, Zhang W, Yang S, Zhang L, Lu Y, Du G. Current advances on the therapeutic potential of scutellarin: an updated review. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:20. [PMID: 38436812 PMCID: PMC10912075 DOI: 10.1007/s13659-024-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.
Collapse
Affiliation(s)
- Yifei Xie
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Guotong Sun
- Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Yue Tao
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Ma D, Deng W, Khera Z, Sajitha TA, Wang X, Wollstein G, Schuman JS, Lee S, Shi H, Ju MJ, Matsubara J, Beg MF, Sarunic M, Sappington RM, Chan KC. Early inner plexiform layer thinning and retinal nerve fiber layer thickening in excitotoxic retinal injury using deep learning-assisted optical coherence tomography. Acta Neuropathol Commun 2024; 12:19. [PMID: 38303097 PMCID: PMC10835918 DOI: 10.1186/s40478-024-01732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.
Collapse
Affiliation(s)
- Da Ma
- Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.
- Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Wenyu Deng
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Zain Khera
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Thajunnisa A Sajitha
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Xinlei Wang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA
- Wills Eye Hospital, Philadelphia, PA, USA
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Haolun Shi
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Marinko Sarunic
- Institute of Ophthalmology, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Rebecca M Sappington
- Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Wake Forest University Health Sciences, Winston-Salem, NC, USA
- Translational Eye and Vision Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA.
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
8
|
Faiq MA, Sengupta T, Nath M, Velpandian T, Saluja D, Dada R, Dada T, Chan KC. Ocular manifestations of central insulin resistance. Neural Regen Res 2022; 18:1139-1146. [PMID: 36255004 PMCID: PMC9827783 DOI: 10.4103/1673-5374.355765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer's disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance may lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.
Collapse
Affiliation(s)
- Muneeb A. Faiq
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India,Neuroimaging and Visual Science Laboratory, Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA,Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Trina Sengupta
- Dr. Baldev Singh Sleep Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhu Nath
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India,Correspondence to: Tanuj Dada, ; Kevin C. Chan, .
| | - Kevin C. Chan
- Neuroimaging and Visual Science Laboratory, Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA,Correspondence to: Tanuj Dada, ; Kevin C. Chan, .
| |
Collapse
|
9
|
Dai M, Hu Z, Kang Z, Zheng Z. Based on multiple machine learning to identify the ENO2 as diagnosis biomarkers of glaucoma. BMC Ophthalmol 2022; 22:155. [PMID: 35366826 PMCID: PMC8976990 DOI: 10.1186/s12886-022-02350-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Glaucoma is a generic term of a highly different disease group of optic neuropathies, which the leading cause of irreversible vision in the world. There are few biomarkers available for clinical prediction and diagnosis, and the diagnosis of patients is mostly delayed. Methods Differential gene expression of transcriptome sequencing data (GSE9944 and GSE2378) for normal samples and glaucoma samples from the GEO database were analyzed. Furthermore, based on different algorithms (Logistic Regression (LR), Random Forest (RF), lasso regression (LASSO)) two diagnostic models are constructed and diagnostic markers are screened. GO and KEGG analyses revealed the possible mechanism of differential genes in the pathogenesis of glaucoma. ROC curve confirmed the effectiveness. Results LR-RF model included 3 key genes (NAMPT, ADH1C, ENO2), and the LASSO model outputted 5 genes (IFI16, RFTN1, NAMPT, ADH1C, and ENO2), both algorithms have excellent diagnostic efficiency. ROC curve confirmed that the three biomarkers ADH1C, ENO2, and NAMPT were effective in the diagnosis of glaucoma. Next, the expression analysis of the three diagnostic biomarkers in glaucoma and control samples confirmed that NAMPT and ADH1C were up-regulated in glaucoma samples, and ENO2 was down-regulated. Correlation analysis showed that ENO2 was significantly negatively correlated with ADH1C (cor = -0.865714202) and NAMPT (cor = -0.730541227). Finally, three compounds for the treatment of glaucoma were obtained in the TCMs database: acetylsalicylic acid, 7-o-methylisomucitol and scutellarin which were applied to molecular docking with the diagnostic biomarker ENO2. Conclusions In conclusion, our research shows that ENO2, NAMPT, and ADH1C can be used as diagnostic markers for glaucoma, and ENO2 can be used as a therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02350-w.
Collapse
|
10
|
Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients 2022; 14:nu14030534. [PMID: 35276895 PMCID: PMC8840399 DOI: 10.3390/nu14030534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness. It is generally caused by increased intraocular pressure, which results in damage of the optic nerve and retinal ganglion cells, ultimately leading to visual field dysfunction. However, even with the use of intraocular pressure-lowering eye drops, the disease still progresses in some patients. In addition to mechanical and vascular dysfunctions of the eye, oxidative stress, neuroinflammation and excitotoxicity have also been implicated in the pathogenesis of glaucoma. Hence, the use of natural products with antioxidant and anti-inflammatory properties may represent an alternative approach for glaucoma treatment. The present review highlights recent preclinical and clinical studies on various natural products shown to possess neuroprotective properties for retinal ganglion cells, which thereby may be effective in the treatment of glaucoma. Intraocular pressure can be reduced by baicalein, forskolin, marijuana, ginsenoside, resveratrol and hesperidin. Alternatively, Ginkgo biloba, Lycium barbarum, Diospyros kaki, Tripterygium wilfordii, saffron, curcumin, caffeine, anthocyanin, coenzyme Q10 and vitamins B3 and D have shown neuroprotective effects on retinal ganglion cells via various mechanisms, especially antioxidant, anti-inflammatory and anti-apoptosis mechanisms. Extensive studies are still required in the future to ensure natural products' efficacy and safety to serve as an alternative therapy for glaucoma.
Collapse
|
11
|
Colbert MK, Ho LC, van der Merwe Y, Yang X, McLellan GJ, Hurley SA, Field AS, Yun H, Du Y, Conner IP, Parra C, Faiq MA, Fingert JH, Wollstein G, Schuman JS, Chan KC. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34410298 PMCID: PMC8383913 DOI: 10.1167/iovs.62.10.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI). Methods Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes. For genetic models, the DBA/2J mouse model of pigmentary glaucoma, the LTBP2 mutant feline model of congenital glaucoma, and the transgenic TBK1 mouse model of normotensive glaucoma were compared with their respective genetically matched healthy controls. DTI parameters, including fractional anisotropy, axial diffusivity, and radial diffusivity, were evaluated along the optic nerve and optic tract. Results Significantly elevated IOP relative to controls was observed in each animal model except for the transgenic TBK1 mice. Significantly lower fractional anisotropy and higher radial diffusivity were observed along the visual pathways of the microbead- and laser-induced rodent models, the DBA/2J mice, and the LTBP2-mutant cats compared with their respective healthy controls. The DBA/2J mice also exhibited lower axial diffusivity, which was not observed in the other models examined. No apparent DTI change was observed in the transgenic TBK1 mice compared with controls. Conclusions Chronic IOP elevation was accompanied by decreased fractional anisotropy and increased radial diffusivity along the optic nerve or optic tract, suggestive of disrupted microstructural integrity in both inducible and genetic glaucoma animal models. The effects on axial diffusivity differed between models, indicating that this DTI metric may represent different aspects of pathological changes over time and with severity.
Collapse
Affiliation(s)
- Max K Colbert
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Leon C Ho
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xiaoling Yang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Aaron S Field
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ian P Conner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, Iowa, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| | - Kevin C Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States.,Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States.,Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States
| |
Collapse
|