1
|
Martinović M, Nešić I, Bojović D, Žugić A, Blagojević S, Blagojević S, Tadić VM. Plant-Based Sunscreen Emulgel: UV Boosting Effect of Bilberry and Green Tea NaDES Extracts. Gels 2024; 10:825. [PMID: 39727583 DOI: 10.3390/gels10120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation. Although NaDES extracts cannot fully replace synthetic UV filters (homosalate, ethylhexyl methoxycinnamate, and benzophenone-4), they can serve as effective UV boosters, significantly enhancing the SPFs of formulations containing UV filters. Hence, the SPF of the formulation could be improved without increasing the concentrations of synthetic filters. Moreover, NaDES extracts, unlike UV filters, significantly increased the antioxidant potential of the formulations. Among the carriers, hydrogels with xanthan gum and emulgels with hydroxyethyl cellulose achieved the highest SPFs when containing both NaDES extracts and synthetic filters. A texture analysis further revealed that the NaDES extracts positively impacted the mechanical properties of the formulations by increasing their cohesiveness, thus enhancing their physical stability under mechanical pressure. These findings pave the way for further research into NaDES-based formulations, including in vivo testing, to optimize and confirm their efficacy on human skin and validate NaDES extracts as eco-friendly ingredients in cosmetics, with antioxidant and UV boosting potential.
Collapse
Affiliation(s)
- Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Djindjića 81, 18108 Niš, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Djindjića 81, 18108 Niš, Serbia
| | - Dragica Bojović
- Faculty for Food Technology, Food Safety and Ecology, University of Donja Gorica, Oktoih 1, 20000 Podgorica, Montenegro
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| | - Slavica Blagojević
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski Trg 12/V, 11158 Beograd, Serbia
| | - Vanja M Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Patro N, Sathishkumar D, Panda M, Mahajan R. Algorithmic approach toward diagnosis of patients with congenital photosensitivity disorders and review of literature. Int J Dermatol 2024; 63:298-305. [PMID: 38115704 DOI: 10.1111/ijd.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The congenital photosensitivity disorders present as cutaneous signs and symptoms secondary to photosensitivity, extracutaneous manifestations, and a predisposition to malignancy. Diagnosis of these conditions mainly depend on clinical findings as the molecular analysis is not always feasible. A review of all the related articles collected after a thorough literature search using keywords, "congenital AND photosensitivity NOT acquired" and the individual diseases was done. A total of 264 articles were included in the review. An algorithm for diagnosis of the different congenital photosensitivity disorders based on the various clinical presentations has been proposed. An early suspicion and diagnosis of the different congenital photosensitivity disorders is the cornerstone behind prompt institution of prevention and treatment, and decreasing the associated morbidity.
Collapse
Affiliation(s)
- Nibedita Patro
- Department of Dermatology, Venereology & Leprosy, Hi-Tech Medical College & Hospital, Bhubaneswar, India
| | | | - Maitreyee Panda
- Department of Dermatology, Venereology & Leprosy, IMS & SUM Hospital, Bhubaneswar, India
| | - Rahul Mahajan
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
García-Gil S, Rodríguez-Luna A, Ávila-Román J, Rodríguez-García G, del Río RE, Motilva V, Gómez-Hurtado MA, Talero E. Photoprotective Effects of Two New Morin-Schiff Base Derivatives on UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2024; 13:134. [PMID: 38275659 PMCID: PMC10813227 DOI: 10.3390/antiox13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Ultraviolet (UV) radiation harms the skin, causing oxidative damage, inflammation, and disruption of the skin's barrier function. There is considerable interest in identifying new natural ingredients with antioxidant and anti-inflammatory properties to serve as adjuvants in sunscreens. The flavonoid morin (1) can undergo structural modifications to enhance its biological properties. The aim of this study was to synthesize two new morin-Schiff base derivatives, morin oxime (2) and morin semicarbazone (3), comparing their photoprotective effects with that of the parent compound on UVB-exposed HaCaT keratinocytes. The chemical structure of the novel compounds was revealed based on spectroscopic data analysis. Our findings demonstrated that derivatives 2 and 3 enhanced the light absorption capability in the UV-visible (vis) range compared to 1. Tested compounds exhibited a higher scavenger capacity than Trolox. Moreover, pre-treatment with all compounds protected HaCaT cells from UVB-induced cell death. Compound 3 demonstrated the strongest antioxidant effect, reducing reactive oxygen species (ROS) generation and, subsequently, malondialdehyde (MDA) levels. Additionally, compounds 2 and 3 exhibited greater anti-inflammatory effects than compound 1, significantly reducing interleukin (IL)-6 production levels at all tested concentrations. These findings have demonstrated, for the first time, a promising photoprotective activity of two new Schiff base derivatives and suggest their use as natural sunscreen ingredients.
Collapse
Affiliation(s)
- Sara García-Gil
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
- Faculty of Health Sciences, Universidad Loyola Andalucía, 41704 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Gabriela Rodríguez-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Rosa E. del Río
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico; (G.R.-G.); (R.E.d.R.); (M.A.G.-H.)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (V.M.); (E.T.)
| |
Collapse
|
4
|
Kumari K, Kumar V, Nayaka S, Saxena G, Sanyal I. Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:84. [PMID: 38147167 DOI: 10.1007/s10661-023-12256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Air pollution has become a major concern due to its detrimental effects on living beings. The present study is aimed at assessing the current status of air pollution in Lucknow city using lichen transplantation technique and assesing its effect on physiology of Pyxine cocoes. The samples of P. cocoes were collected from relatively pollution-free area Malihabad and transplanted in 10 designated sites in five regions for 30 days. Various parameters such as heavy metals, chlorophyll pigments, carotenoid, chlorophyll degradation, and electrolyte conductivity were estimated in transplanted lichens. The study revealed that the concentration of all 10 heavy metals was higher in all transplanted samples than in the control sample, which was found in order of Al > Fe > Mn > Zn > Cu > Cr > Pb > Ni > Co > Cd. Among all 10 transplanted sites, the significantly increased accumulation of aluminum (5.11 to 5.47 µg L-1), iron (4.73 to 5.46 µg L-1), manganese (110.99 to 144.58 µg g-1), and zinc (87.96 to 97.40 µg g-1) was found in Charbagh, Qaisarbagh, and Alambagh sites. Further, in all samples, chlorophyll a (3.98 µg L-1), chlorophyll b (1.22 µg L-1), total chlorophyll (5.20 µg L-1), and chlorophyll degradation (0.55 µg g-1) were significantly decreased, whereas elevated levels of carotenoid (0.71 µg g-1), and electrolyte conductivity (64.99 µS cm-1), were observed. The scanning electron microscope (SEM) investigated the morphological changes in transplanted lichen samples, and significant damage to the anatomy of mycelium was found in most of the polluted site's samples, which correlated with the pollution levels. The present study clearly demonstrated that the transplanted lichen P. cocoes is an efficient bioaccumulator and bioindicator of air quality in urban environments.
Collapse
Affiliation(s)
- Kirti Kumari
- Department of Botany, Lucknow University, Lucknow, 226007, Uttar Pradesh, India
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Varun Kumar
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeeva Nayaka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Lichenology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India.
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, 226007, Uttar Pradesh, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
El Mansouri M, Essaddouki S, Mouradi M, Oukerroum A, El Fatoiki FZ, Truchuelo MT, Vitale MA, González S, Chiheb S. Evaluation of the effectiveness and safety of combined oral and topical photoprotection with a standardized extract of Polypodium leucotomos (Fernblock®) in a Moroccan population with xeroderma pigmentosum. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:607-612. [PMID: 37584519 DOI: 10.1111/phpp.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is a rare autosomal-recessive genodermatosis resulting from a DNA-repair defect syndrome. The purpose was to evaluate the prevention on new malignant lesions in patients taking a supplement with Fernblock® (Polypodium leucotomos extract [PLE]) and secondarily correlation with the photoprotective behavior. METHODS A prospective, single-center and open cohort study was conducted over a 12-month period. The study was performed in Morocco. Optimal photoprotection behavior was recommended. Patients were instructed to take one capsule containing 480 mg of Fernblock® and 5 mcg vitamin D and to apply sunscreen with a SPF50+ and Fernblock® every 2 h during sun exposure. The demographic, clinical, and dermatoscopic patient data were collected at baseline (T0) and following visits at 3 months (T3), 6 months (T6), and 12 months (T12) when it was assessed: Investigator Global Assessment (IGA), Patient/Guardian Global Assessment (PGA), Patient/Guardian Satisfaction Questionnaire, and Photographic and Adverse Events Registration. Pertinent statistical study was performed. RESULTS Eighteen patients completed the study. Eleven patients (61%) finished the study without new lesions. Seven patients developed new lesions by the end of the study. Among them, only 30% showed an ideal photoprotective behavior. The lack of an optimal photoprotective behavior increased the probability of developing lesions by 2.5 times with 95% confidence interval. CONCLUSIONS In our study, more than 60% of patients taking a supplement with Fernblock® did not develop new lesions, and furthermore, we detected that patients following almost ideal photoprotection were 2.5 times less likely to develop NMSC lesions.
Collapse
Affiliation(s)
- M El Mansouri
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - S Essaddouki
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - M Mouradi
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - A Oukerroum
- Department of maxillofacial surgery, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - F Z El Fatoiki
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| | - M T Truchuelo
- Department of Dermatology, Vithas Madrid Arturo Soria Hospital, Madrid, Spain
| | - M A Vitale
- Medical Department, Cantabria labs, Madrid, Spain
| | - S González
- Medicine and Medical Specialties Department, University of Alcalá de Henares, Madrid, Spain
| | - S Chiheb
- Department of dermatology, University of Hassan II Casablanca, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
6
|
Aguilera J, Gracia-Cazaña T, Gilaberte Y. New developments in sunscreens. Photochem Photobiol Sci 2023; 22:2473-2482. [PMID: 37543534 DOI: 10.1007/s43630-023-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/28/2023] [Indexed: 08/07/2023]
Abstract
Topical sunscreen application is one of the most important photoprotection tool to prevent sun damaging effects in human skin at the short and long term. Although its efficacy and cosmeticity have significantly improved in recent years, a better understanding of the biological and clinical effects of longer wavelength radiation, such as long ultraviolet A (UVA I) and blue light, has driven scientists and companies to search for effective and safe filters and substances to protect against these newly identified forms of radiation. New technologies have sought to imbue sunscreen with novel properties, such as the reduction of calorific radiation. Cutaneous penetration by sunscreens can also be reduced using hydrogels or nanocrystals that envelop the filters, or by binding filters to nanocarriers such as alginate microparticles, cyclodextrins, and methacrylate polymers. Finally, researchers have looked to nature as a source of healthier products, such as plant products (e.g., mycosporines, scytonemin, and various flavonoids) and even fungal and bacterial melanin, which could potentially be used as substitutes or enhancers of current filters.
Collapse
Affiliation(s)
- José Aguilera
- Photobiological Dermatology Laboratory, Medical Research Center, Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragossa, Spain.
- University of Zaragoza, University of Medicine, Zaragoza, Spain.
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragossa, Spain
- University of Zaragoza, University of Medicine, Zaragoza, Spain
| |
Collapse
|
7
|
Rodríguez-Luna A, Zamarrón A, Juarranz Á, González S. Clinical Applications of Polypodium leucotomos (Fernblock ®): An Update. Life (Basel) 2023; 13:1513. [PMID: 37511888 PMCID: PMC10381169 DOI: 10.3390/life13071513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Exposure to sun radiation leads to higher risk of sunburn, pigmentation, immunosuppression, photoaging and skin cancer. In addition to ultraviolet radiation (UVR), recent research indicates that infrared radiation (IR) and visible light (VIS) can play an important role in the pathogenesis of some of these processes. Detrimental effects associated with sun exposure are well known, but new studies have shown that DNA damage continues to occur long after exposure to solar radiation has ended. Regarding photoprotection strategies, natural substances are emerging for topical and oral photoprotection. In this sense, Fernblock®, a standardized aqueous extract of the fern Polypodium Leucotomos (PLE), has been widely administered both topically and orally with a strong safety profile. Thus, this extract has been used extensively in clinical practice, including as a complement to photodynamic therapy (PDT) for treating actinic keratoses (AKs) and field cancerization. It has also been used to treat skin diseases such as photodermatoses, photoaggravated inflammatory conditions and pigmentary disorders. This review examines the most recent developments in the clinical application of Fernblock® and assesses how newly investigated action mechanisms may influence its clinical use.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
| |
Collapse
|
8
|
Calzari P, Vaienti S, Nazzaro G. Uses of Polypodium leucotomos Extract in Oncodermatology. J Clin Med 2023; 12:jcm12020673. [PMID: 36675602 PMCID: PMC9861608 DOI: 10.3390/jcm12020673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The effects of UV radiation on the skin and its damage mechanisms are well known. New modalities of exogenous photoprotection have been studied. It was demonstrated that Polypodium leucotomos extract acts as an antioxidant, photoprotectant, antimutagenic, anti-inflammatory, and immunoregulator. It is effective when taken orally and/or applied topically to support the prevention of skin cancers. It also has an important role in preventing photoaging. This review aims to report the mechanisms through which Polypodium leucotomos acts and to analyze its uses in oncodermatology with references to in vitro and in vivo studies. Additionally, alternative uses in non-neoplastic diseases, such as pigmentary disorders, photosensitivity, and atopic dermatitis, have been considered.
Collapse
Affiliation(s)
- Paolo Calzari
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Silvia Vaienti
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 30127 Verona, Italy
| | - Gianluca Nazzaro
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Dermatology Unit, Foundation IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
9
|
Alalaiwe A, Lin YC, Lin CF, Huang CC, Wang PW, Fang JY. TiO 2-embedded mesoporous silica with lower porosity is beneficial to adsorb the pollutants and retard UV filter absorption: A possible application for outdoor skin protection. Eur J Pharm Sci 2023; 180:106344. [PMID: 36455708 DOI: 10.1016/j.ejps.2022.106344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
The purpose of the current investigation was to develop multifunctional TiO2-embedded mesoporous silica incorporating avobenzone to protect against environmental stress through pollutant adsorption and UVA protection. We sought to explore the effect of the mesoporous porosity on the capability of contaminant capture and the suppression of avobenzone skin penetration. The porosity of the mesoporous silica was tuned by adjusting the ratio of template triblock copolymers (Pluronic P123 and F68). The Pluronic P123:F68 ratios of 3:1, 2:2, and 1:3 produced mesoporous silica with pore volumes of 0.66 (TiO2/SBA-L), 0.47 (TiO2/SBA-M), and 0.25 (TiO2/SBA-S) cm3/g, respectively. X-ray scattering and electron microscopy confirmed the SBA-15 structure of the as-prepared material had a size of 3-5 μm. The maximum adsorbability of fluoranthene and methylene blue was found to be 43% and 53% for the TiO2/SBA-S under UVA light, respectively. The avobenzone loaded into the mesoporous silica demonstrated the synergistic effect of in vitro UVA protection, reaching an UVA/UVB absorbance ratio of near 1.5 (Boots star rating = 5). The encapsulation of avobenzone into the TiO2/SBA-S lessened cutaneous avobenzone absorption from 0.76 to 0.50 nmol/mg, whereas no reduction was detected for the TiO2/SBA-L. The avobenzone-loaded TiO2/SBA-S hydrogel exhibited a greater improvement in skin barrier recovery and proinflammatory mediator mitigation compared to the SBA-S hydrogel (without TiO2). The cytokines/chemokines in the photoaged skin were reduced by two- to three-fold after TiO2/SBA-S treatment compared to the non-treatment control. Our data suggested that the mesoporous formulation with low porosity and a specific surface area showed effective adsorbability and UVA protection, with reduced UVA filter absorption. The versatility of the developed mesoporous system indicated a promising potential for outdoor skin protection.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yu-Chih Lin
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan,, Taoyuan, Taiwan
| | - Chih-Chi Huang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan,, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Li L, Chong L, Huang T, Ma Y, Li Y, Ding H. Natural products and extracts from plants as natural UV filters for sunscreens: A review. Animal Model Exp Med 2022. [DOI: 10.1002/ame2.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Liyan Li
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Lan Chong
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
- Zhengzhou Key Laboratory of Drug Screening and Activity Evaluation Zhengzhou China
| | - Tao Huang
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| | - Yunge Ma
- Pharmacy College Henan University Kaifeng PR China
| | - Yingyan Li
- Pharmacy College Henan University Kaifeng PR China
| | - Hui Ding
- School of Medical, Huanghe Science and Technology University Zhengzhou PR China
| |
Collapse
|
11
|
González S, Aguilera J, Berman B, Calzavara-Pinton P, Gilaberte Y, Goh CL, Lim HW, Schalka S, Stengel F, Wolf P, Xiang F. Expert Recommendations on the Evaluation of Sunscreen Efficacy and the Beneficial Role of Non-filtering Ingredients. Front Med (Lausanne) 2022; 9:790207. [PMID: 35433750 PMCID: PMC9008233 DOI: 10.3389/fmed.2022.790207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
A variety of non-filtering agents have been introduced to enhance sunscreen photoprotection. Most of those agents have only weak erythema protective properties but may be valuable and beneficial in supporting protection against other effects of UV radiation, such as photoimmunosuppression, skin aging, and carcinogenesis, as well as photodermatoses. The question arises how to measure and evaluate this efficacy since standard SPF testing is not appropriate. In this perspective, we aim to provide a position statement regarding the actual value of SPF and UVA-PF to measure photoprotection. We argue whether new or additional parameters and scales can be used to better indicate the protection conferred by these products against the detrimental effects of natural/artificial, UV/visible light beyond sunburn, including DNA damage, photoimmunosuppression and pigmentation, and the potential benefits of the addition of other ingredients beyond traditional inorganic and organic filters to existing sunscreens. Also, we debate the overall usefulness of adding novel parameters that measure photoprotection to reach two tiers of users, that is, the general public and the medical community; and how this can be communicated to convey the presence of additional beneficial effects deriving from non-filtering agents, e.g., biological extracts. Finally, we provide a perspective on new challenges stemming from environmental factors, focusing on the role of the skin microbiome and the role of air pollutants and resulting needs for photoprotection.
Collapse
Affiliation(s)
- Salvador González
- Medicine and Medical Specialties Department, University of Alcalá de Henares, Madrid, Spain
- *Correspondence: Salvador González,
| | - José Aguilera
- Dermatological Photobiology Laboratory, Medical Research Center, School of Medicine, University of Málaga, Málaga, Spain
| | - Brian Berman
- Department of Dermatology and Cutaneous Surgery, University of Miami-Florida, Miami, FL, United States
| | | | - Yolanda Gilaberte
- Department of Dermatology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | | | - Henry W. Lim
- Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Sergio Schalka
- Photoprotection Laboratory, Medicine Skin Research Center, São Paulo, Brazil
| | | | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Flora Xiang
- Department of Dermatology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramírez-Cabrera MA, Ramirez-Estrada K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. PLANTS (BASEL, SWITZERLAND) 2022; 11:220. [PMID: 35050108 PMCID: PMC8779981 DOI: 10.3390/plants11020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.
Collapse
Affiliation(s)
- Ana Mariel Torres-Contreras
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Antoni Garcia-Baeza
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Heriberto Rafael Vidal-Limon
- Centro de Biotecnología FEMSA, Instituto Tecnológico de Monterrey, Avenida Junco de la Vega, Col. Tecnológico, Montrerrey 65849, Mexico;
| | - Isaias Balderas-Renteria
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Mónica A. Ramírez-Cabrera
- Laboratorio de Farmacología Molecular y Modelos Biológicos, División de Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Guerrero s/n, Col. Treviño, Monterrey 64570, Mexico;
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| |
Collapse
|