1
|
Khanna D, de Vries-Bouwstra J, Hoffmann-Vold AM, Kuwana M, Low AHL, Proudman S, Flack M, Kukreja A, Fagan N, Distler O. A Phase II study of avenciguat, a novel soluble guanylate cyclase activator, in patients with systemic sclerosis: Study design and rationale of the VITALISScE™ study. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024:23971983241291923. [PMID: 39544899 PMCID: PMC11559521 DOI: 10.1177/23971983241291923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024]
Abstract
Introduction Systemic sclerosis is a rare autoimmune connective tissue disease characterised by (1) microvasculopathy; (2) immune dysregulation; and (3) progressive fibrosis of the skin and internal organs. Soluble guanylate cyclase plays an important role in maintaining vascular and immunological homeostasis and preventing organ fibrosis. Pharmacological modulation of soluble guanylate cyclase with soluble guanylate cyclase stimulators has shown anti-inflammatory and antifibrotic effects in animal models of systemic sclerosis, with a trend towards clinical efficacy in a Phase II study (RISE-SSc). However, the efficacy of soluble guanylate cyclase stimulators may be reduced under conditions of hypoxia and oxidative stress. Soluble guanylate cyclase activators have the potential to overcome this limitation. This paper describes the study design of VITALISScE™, a Phase II clinical trial assessing the efficacy, safety and tolerability of avenciguat, a novel soluble guanylate cyclase activator in patients with active systemic sclerosis at risk of progression. Methods The VITALISScE™ study (NCT05559580) is evaluating the action of avenciguat on all three aspects of systemic sclerosis pathophysiology. The primary endpoint is the rate of decline in forced vital capacity (mL) over 48 weeks. Secondary endpoints include absolute change from baseline at Week 48 in modified Rodnan skin score, Health Assessment Questionnaire Disability Index score and the proportion of responders based on the revised Composite Response Index in Systemic Sclerosis. Additional endpoints include a composite assessment of Raynaud's phenomenon, digital ulcer burden, functional outcomes and quality of life, safety, pharmacokinetics, and biomarkers associated with systemic sclerosis and the mechanism of action of avenciguat. Results VITALISScE™ is an ongoing, multicentre (180 sites; 38 countries), placebo-controlled, double-blind, parallel-group, Phase II clinical study. Recruitment is currently ongoing. Conclusions The VITALISScE™ study is assessing the efficacy, safety and tolerability of avenciguat in patients with active systemic sclerosis at risk of progression. Results will inform further development of avenciguat. Trial Registration VITALISScE™; EU CT No. 2022-500332-11-00; Clinicaltrials.gov: NCT05559580 (https://www.clinicaltrials.gov/study/NCT05559580).
Collapse
Affiliation(s)
- Dinesh Khanna
- Department of Internal Medicine, University of Michigan Scleroderma Clinic, Ann Arbor, MI, USA
| | | | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Susanna Proudman
- Discipline of Medicine, University of Adelaide and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mary Flack
- TA Inflammation Medicine, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Anjli Kukreja
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Nora Fagan
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Naik A, Stratton RJ, Leask A. Digital ulcers associated with scleroderma: A major unmet medical need. Wound Repair Regen 2024; 32:949-959. [PMID: 39323322 DOI: 10.1111/wrr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Scleroderma or systemic sclerosis (SSc)-associated digital ischaemic complications, such as digital ulcers (SSc-DUs), appear relatively early during the disease course and are a major burden with substantial deterioration of quality of life. Expert rheumatologist and wound specialists have defined a DU; however, international application of the definition is still disorganised. Appearance of SSc-DUs is secondary to the onset of Raynaud's phenomenon and as a consequence, recommended first-line of treatment mainly includes vasodilators; however, many DUs are refractory to this treatment. Despite important practical issues, such as a lack of well-characterised SSc-wound healing animal model, significant efforts are needed to mechanistically understand the pathogenesis of SSc-DUs for developing clinically targetable disease modifying therapies.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Disease, University College London (Royal Free Campus), London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Romano E, Rosa I, Fioretto BS, Manetti M. Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis. Biomedicines 2024; 12:1331. [PMID: 38927538 PMCID: PMC11201654 DOI: 10.3390/biomedicines12061331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
In systemic sclerosis (SSc, or scleroderma), defective angiogenesis, clinically manifesting with abnormal capillary architecture and severe capillary reduction, represents a hallmark of early-stage disease, usually preceding the onset of tissue fibrosis, and is caused by several cellular and molecular mechanisms affecting microvascular endothelial cells with different outcomes. Indeed, once damaged, endothelial cells can be dysfunctionally activated, thus becoming unable to undergo angiogenesis and promoting perivascular inflammation. They can also undergo apoptosis, transdifferentiate into profibrotic myofibroblasts, or acquire a senescence-associated secretory phenotype characterized by the release of exosomes and several profibrotic and proinflammatory mediators. In this narrative review, we aimed to give a comprehensive overview of recent studies dealing with the cellular and molecular mechanisms underlying SSc defective angiogenesis and the related endothelial cell dysfunctions, mainly the endothelial-to-mesenchymal transition process. We also discussed potential novel vascular treatment strategies able to restore the angiogenic process and reduce the endothelial-to-mesenchymal transition in this complex disease.
Collapse
Affiliation(s)
- Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
4
|
Cullivan S, Cronin E, Gaine S. Pulmonary Hypertension in Systemic Sclerosis. Semin Respir Crit Care Med 2024; 45:411-418. [PMID: 38531379 DOI: 10.1055/s-0044-1782607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Systemic sclerosis is a multisystem connective tissue disease that is associated with substantial morbidity and mortality. Visceral organ involvement is common in patients with systemic sclerosis and occurs independently of skin manifestations. Pulmonary hypertension (PH) is an important and prevalent complication of systemic sclerosis. The clinical classification of PH cohorts conditions with similar pathophysiological mechanisms into one of five groups. While patients with systemic sclerosis can manifest with a spectrum of pulmonary vascular disease, notable clinical groups include group 1 pulmonary arterial hypertension (PAH) associated with connective tissues disease, PAH with features of capillary/venous involvement, group 2 PH associated with left heart disease, and group 3 PH associated with interstitial lung disease. Considerable efforts have been made to advance screening methods for PH in systemic sclerosis including the DETECT and ASIG (Australian Scleroderma Interest Group) composite algorithms. Current guidelines recommend annual assessment of the risk of PAH as early recognition may result in attenuated hemodynamic impairment and improved survival. The treatment of PAH associated with systemic sclerosis requires a multidisciplinary team including a PH specialist and a rheumatologist to optimize immunomodulatory and PAH-specific therapies. Several potential biomarkers have been identified and there are several promising PAH therapies on the horizon such as the novel fusion protein sotatercept. This chapter provides an overview of PH in systemic sclerosis, with a specific focus on group 1 PAH.
Collapse
Affiliation(s)
- Sarah Cullivan
- Department of Respiratory Medicine and Pulmonary Hypertension, National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eleanor Cronin
- Department of Respiratory Medicine and Pulmonary Hypertension, National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sean Gaine
- Department of Respiratory Medicine and Pulmonary Hypertension, National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Cueto-Robledo G, Tovar-Benitez D, Alfaro-Cruz A, Gonzalez-Hermosillo LM. Systemic scleroderma: Review and updated approach and case description to addressing pulmonary arterial hypertension and idiopathic pulmonary fibrosis: A dual challenge in treatment. Curr Probl Cardiol 2024; 49:102404. [PMID: 38232920 DOI: 10.1016/j.cpcardiol.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
Pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), and scleroderma (SSc) are three interrelated medical conditions that can result in significant morbidity and mortality. Pulmonary hypertension, a condition marked by high blood pressure in the lungs, can lead to heart failure and other complications. Idiopathic pulmonary fibrosis, a progressive lung disease characterised by scarring of lung tissue, can cause breathing difficulties and impaired oxygenation. Scleroderma, an autoimmune disease, can induce thickening and hardening of the skin and internal organs, including the lungs, leading to pulmonary fibrosis and hypertension. Currently, there is no cure for any of these conditions. However, early detection and proper management can improve the quality of life and prognosis of a patient. This review focusses on PH and IPF in patients with SSc, providing information on the causes, symptoms, and treatment of these conditions, together with illustrative images. It also provides an overview of interrelated medical conditions: PH, IPF, and SSc. It emphasises the importance of early detection and proper management to improve patient quality of life and prognosis.
Collapse
Affiliation(s)
- Guillermo Cueto-Robledo
- Cardiorespiratory emergencies, General Hospital of México, Dr. Eduardo Liceaga, Mexico City 06720, Mexico; Pulmonary Circulation Clinic, Hospital General de México "Dr Eduardo Liceaga", Mexico City 06720, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Diana Tovar-Benitez
- Department of Pneumology, Hospital General de Mexico 'Dr Eduardo Liceaga', Mexico City 06720, Mexico
| | - Ana Alfaro-Cruz
- Department of Pathological Anatomy, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City 06720, Mexico
| | | |
Collapse
|
6
|
Zhu K, Liu C, Guo X, Zhang X, Xie J, Xie S, Qi Q, Yang B. Exosomal miR-126-3p: Potential protection against vascular damage by regulating the SLC7A5/mTOR Signalling pathway in human umbilical vein endothelial cells. Scand J Immunol 2024; 99:e13354. [PMID: 39008522 DOI: 10.1111/sji.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease. Vascular damage is one of the important features of SSc, which affects the progression and prognosis of the disease. MiR-126-3p is an important microRNA (miRNA) that regulates vascular structure and function, which can be transported through exosomes. However, the role of miR-126-3p in vascular damage in SSc is still unclear. Therefore, we focused on the connection between miR-126-3p and vascular damage in SSc, as well as investigated the potential role of miR-126-3p in vascular damage in SSc. First, this study successfully extracted extracellular vesicles from clinical plasma samples and characterized the exosomes within them. Then, we predicted and screened the target pathway mammalian/mechanistic target of rapamycin (mTOR) and the target gene SLC7A5 of miR-126-3p through online databases. Next, we constructed SSc mice for in vivo studies. The results showed that the expression of miR-126-3p was decreased in the plasma exosomes, while the SLC7A5 expression, autophagy, and lipid peroxidation were increased in the aorta. Luciferase reporter gene assays demonstrated that miR-126-3p can bind to SLC7A5, resulting in a decrease in its expression. In vitro experiments have shown that exosomal miR-126-3p can be internalized by human umbilical vein endothelial cells (HUVECs). The miR-126-3p group exhibited enhanced cell viability and tube formation ability, along with increased expression of the vascular formation marker CD31. Additionally, miR-126-3p downregulated the protein expression of SLC7A5 and LC3 in HUVECs, while upregulating the protein expression of mTOR, P62, PPARγ, and CPT-1. However, the effects of miR-126-3p on HUVECs were counteracted by mTOR inhibitors and enhanced by mTOR activators. The results indicated that exosomal miR-126-3p has the potential to protect against vascular injury in SSc by regulating the SLC7A5/mTOR signalling pathway in HUVECs.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofang Guo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuting Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Songmiao Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Qi
- Department of Dermatology, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Prajjwal P, Marsool MDM, Yadav V, Kanagala RSD, Reddy YB, John J, Lam JR, Karra N, Amiri B, Islam MU, Nithya V, Marsool ADM, Gadam S, Vora N, Hussin OA. Neurological, cardiac, musculoskeletal, and renal manifestations of scleroderma along with insights into its genetics, pathophysiology, diagnostic, and therapeutic updates. Health Sci Rep 2024; 7:e2072. [PMID: 38660003 PMCID: PMC11040569 DOI: 10.1002/hsr2.2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Background Scleroderma, also referred to as systemic sclerosis, is a multifaceted autoimmune condition characterized by abnormal fibrosis and impaired vascular function. Pathologically, it encompasses the persistent presence of inflammation, abnormal collagen buildup, and restructuring of blood vessels in various organs, resulting in a wide range of clinical symptoms. This review incorporates the most recent scientific literature on scleroderma, with a particular emphasis on its pathophysiology, clinical manifestations, diagnostic approaches, and treatment options. Methodology A comprehensive investigation was carried out on numerous databases, such as PubMed, MEDLINE, Scopus, Web of Science, and Google Scholar, to collect pertinent studies covering diverse facets of scleroderma research. Results Scleroderma presents with a range of systemic manifestations, such as interstitial lung disease, gastrointestinal dysmotility, Raynaud's phenomenon, pulmonary arterial hypertension, renal complications, neurological symptoms, and cardiac abnormalities. Serological markers, such as antinuclear antibodies, anti-centromere antibodies, and anti-topoisomerase antibodies, are important for classifying diseases and predicting their outcomes. Discussion The precise identification of scleroderma is crucial for promptly and correctly implementing effective treatment plans. Treatment approaches aim to improve symptoms, reduce complications, and slow down the progression of the disease. An integrated approach that combines pharmacological agents, including immunosuppressants, endothelin receptor antagonists, and prostanoids, with nonpharmacological interventions such as physical and occupational therapy is essential for maximizing patient care. Conclusion Through the clarification of existing gaps in knowledge and identification of emerging trends, our goal is to improve the accuracy of diagnosis, enhance the effectiveness of therapeutic interventions, and ultimately enhance the overall quality of life for individuals suffering from scleroderma. Ongoing cooperation and creative research are necessary to advance the field and achieve improved patient outcomes and new therapeutic discoveries.
Collapse
Affiliation(s)
| | | | - Vikas Yadav
- Department of Internal MedicinePt. B. D. S. Postgraduate Institute of Medical SciencesRohtakIndia
| | | | | | - Jobby John
- Department of Internal MedicineDr. Somervell Memorial CSI Medical College and HospitalNeyyāttinkaraIndia
| | - Justin Riley Lam
- Department of Internal MedicineCebu Institute of MedicineCebuPhilippines
| | - Nanditha Karra
- Department of Internal MedicineOsmania Medical CollegeHyderabadTelanganaIndia
| | - Bita Amiri
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Moiz Ul Islam
- Department of Internal MedicinePunjab Medical CollegeFaisalabadPakistan
| | - Venkatesh Nithya
- Department of Internal MedicineS. D. Asfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | | | | | | | - Omniat Amir Hussin
- Department of MedicineAlmanhal University Academy of ScienceKhartoumSudan
| |
Collapse
|
8
|
D’Agnano V, Mariniello DF, Ruotolo M, Quarcio G, Moriello A, Conte S, Sorrentino A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. Targeting Progression in Pulmonary Fibrosis: An Overview of Underlying Mechanisms, Molecular Biomarkers, and Therapeutic Intervention. Life (Basel) 2024; 14:229. [PMID: 38398739 PMCID: PMC10890660 DOI: 10.3390/life14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Michela Ruotolo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Alessandro Moriello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Antonio Sorrentino
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | | | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| |
Collapse
|
9
|
Romano E, Rosa I, Fioretto BS, Manetti M. The contribution of endothelial cells to tissue fibrosis. Curr Opin Rheumatol 2024; 36:52-60. [PMID: 37582200 PMCID: PMC10715704 DOI: 10.1097/bor.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Tissue fibrosis is an increasingly prevalent condition associated with various diseases and heavily impacting on global morbidity and mortality rates. Growing evidence indicates that common cellular and molecular mechanisms may drive fibrosis of diverse cause and affecting different organs. The scope of this review is to highlight recent findings in support for an important role of vascular endothelial cells in the pathogenesis of fibrosis, with a special focus on systemic sclerosis as a prototypic multisystem fibrotic disorder. RECENT FINDINGS Although transition of fibroblasts to chronically activated myofibroblasts is widely considered the central profibrotic switch, the endothelial cell involvement in development and progression of fibrosis has been increasingly recognized over the last few years. Endothelial cells can contribute to the fibrotic process either directly by acting as source of myofibroblasts through endothelial-to-myofibroblast transition (EndMT) and concomitant microvascular rarefaction, or indirectly by becoming senescent and/or secreting a variety of profibrotic and proinflammatory mediators with consequent fibroblast activation and recruitment of inflammatory/immune cells that further promote fibrosis. SUMMARY An in-depth understanding of the mechanisms underlying EndMT or the acquisition of a profibrotic secretory phenotype by endothelial cells will provide the rationale for novel endothelial cell reprogramming-based therapeutic approaches to prevent and/or treat fibrosis.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|
10
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
11
|
Dziedzic R, Wójcik K, Olchawa M, Sarna T, Pięta J, Jakieła B, Padjas A, Korona A, Zaręba L, Potaczek DP, Kosałka-Węgiel J, Jurczyszyn A, Bazan-Socha S. Increased oxidative stress response in circulating blood of systemic sclerosis patients - relation to disease characteristics and inflammatory blood biomarkers. Semin Arthritis Rheum 2023; 62:152228. [PMID: 37429138 DOI: 10.1016/j.semarthrit.2023.152228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a rare connective tissue disorder of unknown etiology characterized by organ fibrosis and microcirculation dysfunction. Emerging evidence suggests that SSc is related to increased oxidative stress, which contributes to further tissue and vascular damage. METHODS Oxidative stress response in the peripheral blood was assessed in patients with SSc (n = 55) and well-matched controls (n = 44) using real-time monitoring of protein hydroperoxide (HP) formation by the coumarin boronic acid (CBA) assay. We also analyzed the relationship between HP generation and SSc clinics, systemic inflammation, and cellular fibronectin, an emerging biomarker of endothelial damage. RESULTS SSc was characterized by a significantly faster (2-fold) fluorescent product generation in the CBA assay and higher cumulative HP formation (3-fold) compared to controls (p<0.001, both). The dynamics of HP generation were not associated with the form of the disease (diffuse vs. limited SSc), current immunosuppressive therapy use, presence of abnormal nailfold capillaries, and autoantibody profile. Still, it was enhanced in patients with more severe illness and certain clinical manifestations (i.e., pulmonary hypertension, digital ulcers, and cyclophosphamide treatment) and in smokers (current or past). Higher serum CRP, blood eosinophil count, and cellular fibronectin with lower hemoglobin levels were independent determinants of increased HP formation. CONCLUSIONS Our data indicate a pro-oxidant imbalance in SSc, likely related to systemic inflammation and endothelial injury. However, extensive prospective studies are needed to verify whether it is also associated with clinical disease progression.
Collapse
Affiliation(s)
- Radosław Dziedzic
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Krakow, Poland
| | - Krzysztof Wójcik
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Bogdan Jakieła
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Agnieszka Padjas
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Anna Korona
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Lech Zaręba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Daniel P Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), Aulweg 132, 35392 Gießen, Germany; Bioscientia MVZ Labor Mittelhessen GmbH, Rudolf-Diesel-Straße 4, 35394 Gießen, Germany
| | - Joanna Kosałka-Węgiel
- Jagiellonian University Medical College, Department of Rheumatology and Immunology, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Jagiellonian University Medical College, Department of Hematology, Faculty of Medicine, Kopernika 17, 31-501 Kraków, Poland
| | - Stanisława Bazan-Socha
- Jagiellonian University Medical College, Department of Internal Medicine, Faculty of Medicine, Jakubowskiego 2, 30-688 Krakow, Poland.
| |
Collapse
|
12
|
Huang Y, Zhao H, Shi X, Liu J, Lin JM, Ma Q, Jiang S, Pu W, Ma Y, Liu J, Wu W, Wang J, Liu Q. GRB2 serves as a viable target against skin fibrosis in systemic sclerosis by regulating endothelial cell apoptosis. J Dermatol Sci 2023; 111:109-119. [PMID: 37661474 DOI: 10.1016/j.jdermsci.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 07/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune system dysfunction, along with tissue fibrosis. Our previous study found GRB2 was downregulated by salvianolic acid B, a small molecule drug that attenuated skin fibrosis of SSc. OBJECTIVES Here we aim to investigate the role of GRB2 in SSc. METHODS The microarray data of SSc skin biopsies in Caucasians were obtained from the Gene Expression Omnibus (GEO) database. The expression of GRB2 was further detected in Chinese SSc and healthy controls. Bleomycin (BLM)-induced skin fibrosis mice were used to explore how GRB2 downregulation affected fibrosis. The apoptosis of EA.hy926 endothelial cells was induced by H2O2 and apoptosis ratio was measured by flow cytometric. Transcriptome and phosphoproteomic analyses were performed to explore the regulated pathway. RESULTS The expression of GRB2 was significantly enhanced in SSc patient skin, 1.51-fold in Caucasians and 1.40-fold in Chinese. Double immunofluorescence staining showed the endothelial cells of SSc patient's skin highly expressed GRB2. The in vivo study revealed that GRB2 knockdown alleviated skin fibrosis and apoptosis of endothelial cells in BLM mouse skin. The in vitro study showed that GRB2 downregulation inhibited the apoptosis of EA.hy926 and protected them from H2O2-induced hyperpermeability. Moreover, transcriptome and phosphoproteomic analysis suggested the focal adhesion pathway was enriched in GRB2 siRNA transfected endothelial cells. CONCLUSIONS Our results demonstrated GRB2 highly expressed in endothelial cells of SSc skin, and inhibiting GRB2 could effectively attenuate BLM-induced skin fibrosis and endothelial cell apoptosis. GRB2 is expected to be a new therapeutic target for SSc.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Nanjing Intellectual Property Protection Center, Nanjing, China
| | - Xiangguang Shi
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jui-Ming Lin
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Qianqian Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianlan Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Wenyu Wu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Department of Dermatology, Jing' an District Central Hospital, Shanghai, China.
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, China.
| | - Qingmei Liu
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Khan SL, Mathai SC. Scleroderma pulmonary arterial hypertension: the same as idiopathic pulmonary arterial hypertension? Curr Opin Pulm Med 2023; 29:380-390. [PMID: 37461869 PMCID: PMC11334969 DOI: 10.1097/mcp.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a common complication of systemic sclerosis (SSc), which confers significant morbidity and mortality. The current therapies and treatment strategies for SSc-associated PAH (SSc-PAH) are informed by those used to treat patients with idiopathic PAH (IPAH). There are, however, important differences between these two diseases that impact diagnosis, treatment, and outcomes. RECENT FINDINGS Both SSc-PAH and IPAH are incompletely understood with ongoing research into the underlying cellular biology that characterize and differentiate the two diseases. Additional research seeks to improve identification among SSc patients in order to diagnose patients earlier in the course of their disease. Novel therapies specifically for SSc-PAH such as rituximab and dimethyl fumarate are under investigation. SUMMARY Although patients with SSc-PAH and IPAH present with similar symptoms, there are significant differences between these two forms of PAH that warrant further investigation and characterization of optimal detection strategies, treatment algorithms, and outcomes assessment.
Collapse
Affiliation(s)
- Sarah L Khan
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
14
|
Batu ED, Günalp A, Şahin S, Özdel S, Kızıldağ Z, Pac Kısaarslan A, Bağrul İ, Kasap Cuceoglu M, Tanatar A, Sonmez HE, Sag E, Demir S, Çelikel E, Cağlayan S, Çelikel Acar B, Sözeri B, Aktay Ayaz N, Bilginer Y, Poyrazoğlu MH, Ünsal E, Kasapçopur Ö, Özen S. Pediatric mixed connective tissue disease versus other overlap syndromes: a retrospective multicenter cohort study. Rheumatol Int 2023; 43:1485-1495. [PMID: 36906866 DOI: 10.1007/s00296-023-05300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Pediatric mixed connective tissue disease (MCTD) is a subgroup of overlap syndromes. We aimed to compare the characteristics and outcomes in children with MCTD and other overlap syndromes. All MCTD patients met either Kasukawa or Alarcon-Segovia and Villareal criteria. The patients with other overlap syndromes had the features of ≥ 2 autoimmune rheumatic diseases but did not meet MCTD diagnostic criteria. Thirty MCTD (F/M = 28/2) and thirty (F/M = 29/1) overlap patients were included (disease onset < 18 years). The most prominent phenotype at disease onset and the last visit was systemic lupus erythematosus (SLE) in the MCTD group; juvenile idiopathic arthritis and dermatomyositis/polymyositis, respectively, in the overlap group. At the last visit, systemic sclerosis (SSc) phenotype was more frequent among MCTD than overlap patients (60% vs. 33.3%; p = 0.038). The frequency of the predominant SLE phenotype had decreased (60% to 36.7%), while predominant SSc phenotype had increased (13.3% to 33.3%) during follow-up in MCTD patients. Weight loss (36.7% vs. 13.3%), digital ulcers (20% vs. 0), swollen hands (60% vs. 20%), Raynaud phenomenon (86.7% vs. 46.7%), hematologic involvement (70% vs. 26.7%), and anti-Sm positivity (29% vs. 3.3%) were more common, while Gottron papules (16.7% vs. 40%) were less frequent among MCTD than overlap patients (p < 0.05). A higher percentage of overlap patients achieved complete remission than MCTD patients (51.7% vs. 24.1%; p = 0.047). The disease phenotype and outcome differ between pediatric MCTD and other overlap syndromes where MCTD may be regarded as a more severe disease. Analyzing these patients could pave the way for early and effective treatment.
Collapse
Affiliation(s)
- Ezgi Deniz Batu
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
- Çocuk Romatoloji Bölümü, Hacettepe Üniversitesi İhsan Doğramacı Çocuk Hastanesi, Kat: 3 Sıhhiye, 06100, Ankara, Turkey.
| | - Aybüke Günalp
- Cerrahpasa Medical School, Department of Pediatrics, Division of Rheumatology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Sezgin Şahin
- Cerrahpasa Medical School, Department of Pediatrics, Division of Rheumatology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Semanur Özdel
- Dr. Sami Ulus Maternity and Child Health and Diseases Research and Training Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Ankara, Turkey
| | - Zehra Kızıldağ
- Department of Pediatrics, Division of Rheumatology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | - Aysenur Pac Kısaarslan
- Faculty of Medicine, Department of Pediatrics, Division of Rheumatology, Erciyes University, Kayseri, Turkey
| | - İlknur Bağrul
- Dr. Sami Ulus Maternity and Child Health and Diseases Research and Training Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Ankara, Turkey
| | - Muserref Kasap Cuceoglu
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Tanatar
- Faculty of Medicine, Department of Pediatrics, Division of Rheumatology, Istanbul University, Istanbul, Turkey
| | - Hafize Emine Sonmez
- Faculty of Medicine, Department of Pediatrics, Division of Rheumatology, Kocaeli University, Kocaeli, Turkey
| | - Erdal Sag
- Ankara Research and Training Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Ankara, Turkey
| | - Selcan Demir
- Department of Pediatrics, Division of Rheumatology, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Elif Çelikel
- Ankara City Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Ankara, Turkey
| | - Sengul Cağlayan
- Umraniye Research and Training Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Istanbul, Turkey
| | - Banu Çelikel Acar
- Ankara City Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Ankara, Turkey
| | - Betül Sözeri
- Umraniye Research and Training Hospital, Department of Pediatrics, Division of Rheumatology, University of Health Sciences, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Faculty of Medicine, Department of Pediatrics, Division of Rheumatology, Istanbul University, Istanbul, Turkey
| | - Yelda Bilginer
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M Hakan Poyrazoğlu
- Faculty of Medicine, Department of Pediatrics, Division of Rheumatology, Erciyes University, Kayseri, Turkey
| | - Erbil Ünsal
- Department of Pediatrics, Division of Rheumatology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | - Özgür Kasapçopur
- Cerrahpasa Medical School, Department of Pediatrics, Division of Rheumatology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Seza Özen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Sisto M, Lisi S. Towards a Unified Approach in Autoimmune Fibrotic Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109060. [PMID: 37240405 DOI: 10.3390/ijms24109060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmunity is a chronic process resulting in inflammation, tissue damage, and subsequent tissue remodelling and organ fibrosis. In contrast to acute inflammatory reactions, pathogenic fibrosis typically results from the chronic inflammatory reactions characterizing autoimmune diseases. Despite having obvious aetiological and clinical outcome distinctions, most chronic autoimmune fibrotic disorders have in common a persistent and sustained production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements or epithelial to mesenchymal transformation (EMT) that progressively remodels and destroys normal tissue architecture leading to organ failure. Despite its enormous impact on human health, there are currently no approved treatments that directly target the molecular mechanisms of fibrosis. The primary goal of this review is to discuss the most recent identified mechanisms of chronic autoimmune diseases characterized by a fibrotic evolution with the aim to identify possible common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| |
Collapse
|
16
|
Korman BD, Lachant DJ, Castelino FV. Pulmonary Hypertension: How to Best Treat the Different Scleroderma Phenotypes? Rheum Dis Clin North Am 2023; 49:345-357. [PMID: 37028839 DOI: 10.1016/j.rdc.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Pulmonary hypertension (PH) is a leading cause of morbidity and mortality in systemic sclerosis (SSc). PH is a heterogenous condition and several different forms of PH are associated with SSc, including pulmonary arterial hypertension (PAH) resulting from a pulmonary arterial vasculopathy, PH due to interstitial lung disease, PH due to left heart disease, and PH due to thromboembolic disease. Extensive research has led to an improved understanding of the mediators involved in the pathogenesis of SSc-PH. Initial combination therapy is the preferred treatment approach for SSc-PAH and requires coordinated care with a multidisciplinary team including rheumatology, pulmonology, and cardiology.
Collapse
Affiliation(s)
- Benjamin D Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA.
| | - Daniel J Lachant
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642, USA
| | - Flavia V Castelino
- Division of Rheumatology, Massachusetts General Hospital, 55 Fruit Street, Yawkey 4B, Boston, MA 02114, USA
| |
Collapse
|
17
|
Doskaliuk B, Zaiats L. Structural and functional characteristics of the pulmonary hemomicrocirculatory bed in induced systemic sclerosis: an experimental study. Rheumatol Int 2023; 43:1341-1347. [PMID: 37071178 DOI: 10.1007/s00296-023-05328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
The objective of this study was to investigate the effects of prolonged exposure to the oxidative agent NaClO on histopathological changes in the lung tissues of laboratory animals. Specifically, the study aimed to examine morphological changes in the pulmonary microcirculation and the level of vascular cell adhesion molecule-1 (VCAM-1) as a functional activity indicator of endothelial cells in animals with induced systemic sclerosis (SSc). A laboratory animal model was used to assess the impact of long-term exposure to NaClO on lung tissues. The animals were divided into three groups: the experimental group (25 rats) was exposed to NaClO, while the control group (20 rats) received an isotonic solution, and the intact group (15 animals) was without any exposure. The concentration of VCAM-1 in the serum of the animals was measured using an enzyme-linked immunosorbent assay. Histopathological analysis of lung tissue specimens was performed using both light and electron microscopy. The concentration of VCAM-1 in the serum of the animals in the experimental group was significantly higher than that of the control group (91.25 [85.63-143.75] vs 19.50 [13.53-22.20], p < 0.05). The histopathological analysis revealed significant abnormalities in the lung tissue specimens from the experimental group, including disruption in the structure of the hemocapillaries of the lungs, narrowing of the microvessel lumen, and perivascular infiltration by polymorphonuclear cells. The electron microscopic analysis showed several ultrastructural changes in the endotheliocytes of the hemocapillaries, including uneven expansion of the perinuclear space, swollen mitochondria, and fragmentation of the membranes of the granular endoplasmic reticulum. Additionally, the basement membrane of hemocapillaries showed uneven thickening with indistinct contours, and the peripheral parts of endotheliocytes were marked by numerous micropinocytotic vesicles and vacuoles. Erythrocyte aggregates and leukocyte adhesion were identified in the lumen of many hemocapillaries, while adhesion and aggregation of platelets were also observed in several hemocapillaries. Long-term exposure to NaClO can cause significant histopathological changes in lung tissues, including damage to the hemocapillaries and disruption in the structure of endotheliocytes.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Department of Patophysiology, Ivano-Frankivsk National Medical University, Halytska str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Liubomyr Zaiats
- Department of Patophysiology, Ivano-Frankivsk National Medical University, Halytska str. 2, Ivano-Frankivsk, 76000, Ukraine
| |
Collapse
|
18
|
Geroldinger-Simić M, Bayati S, Pohjanen E, Sepp N, Nilsson P, Pin E. Autoantibodies against PIP4K2B and AKT3 Are Associated with Skin and Lung Fibrosis in Patients with Systemic Sclerosis. Int J Mol Sci 2023; 24:5629. [PMID: 36982700 PMCID: PMC10051301 DOI: 10.3390/ijms24065629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune systemic disease that leads to decreased survival and quality of life due to fibrosis, inflammation, and vascular damage in the skin and/or vital organs. Early diagnosis is crucial for clinical benefit in SSc patients. Our study aimed to identify autoantibodies in the plasma of SSc patients that are associated with fibrosis in SSc. Initially, we performed a proteome-wide screening on sample pools from SSc patients by untargeted autoantibody screening on a planar antigen array (including 42,000 antigens representing 18,000 unique proteins). The selection was complemented with proteins reported in the literature in the context of SSc. A targeted antigen bead array was then generated with protein fragments representing the selected proteins and used to screen 55 SSc plasma samples and 52 matched controls. We found eleven autoantibodies with a higher prevalence in SSc patients than in controls, eight of which bound to proteins associated with fibrosis. Combining these autoantibodies in a panel could lead to the subgrouping of SSc patients with fibrosis. Anti-Phosphatidylinositol-5-phosphate 4-kinase type 2 beta (PIP4K2B)- and anti-AKT Serine/Threonine Kinase 3 (AKT3)-antibodies should be further explored to confirm their association with skin and lung fibrosis in SSc patients.
Collapse
Affiliation(s)
- Marija Geroldinger-Simić
- Department of Dermatology and Venereology, Ordensklinikum Linz Elisabethinen, 4020 Linz, Austria
- Faculty of Medicine, Johannes Kepler University, 4040 Linz, Austria
| | - Shaghayegh Bayati
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| | - Emmie Pohjanen
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| | - Norbert Sepp
- Department of Dermatology and Venereology, Ordensklinikum Linz Elisabethinen, 4020 Linz, Austria
| | - Peter Nilsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, 171 65 Stockholm, Sweden
| |
Collapse
|
19
|
The Clinical Significance of Salusins in Systemic Sclerosis-A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13050848. [PMID: 36899991 PMCID: PMC10001236 DOI: 10.3390/diagnostics13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is a connective tissue disease manifesting with progressive fibrosis of the skin and internal organs. Its pathogenesis is strictly associated with vascular disfunction and damage. Salusin-α and salusin-β, endogenous peptides regulating secretion of pro-inflammatory cytokines and vascular smooth muscle proliferation, may potentially play a role in SSc pathogenesis. Objectives: The aim of this study was to assess the concentration of salusins in sera of patients with SSc and healthy controls and to evaluate correlations between the salusins levels and selected clinical parameters within the study group. Materials and methods: 48 patients with SSc (44 women; mean age, 56.4, standard deviation, 11.4) and 25 adult healthy volunteers (25 women; mean age, 55.2, standard deviation, 11.2) were enrolled. All patients with SSc were treated with vasodilators and twenty-seven of them (56%) also received immunosuppressive therapy. Results: Circulating salusin-α was significantly elevated in patients with SSc in comparison to healthy controls (U = 350.5, p = 0.004). Patients with SSc receiving immunosuppression had higher serum salusin-α concentrations compared with those without immunosuppressive therapy (U = 176.0, p = 0.026). No correlation was observed between salusins concentrations and skin or internal organ involvement parameters. Conclusions: Salusin-α, a bioactive peptide mitigating the endothelial disfunction, was elevated in patients with systemic sclerosis receiving vasodilators and immunosuppressants. Increased salusin-α concertation may be associated with the initiation of atheroprotective processes in patients with SSc managed pharmacologically, which requires verification in future studies.
Collapse
|
20
|
Fioretto BS, Rosa I, Matucci-Cerinic M, Romano E, Manetti M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24044097. [PMID: 36835506 PMCID: PMC9965592 DOI: 10.3390/ijms24044097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma) is a multifaceted rare connective tissue disease whose pathogenesis is dominated by immune dysregulation, small vessel vasculopathy, impaired angiogenesis, and both cutaneous and visceral fibrosis. Microvascular impairment represents the initial event of the disease, preceding fibrosis by months or years and accounting for the main disabling and/or life-threatening clinical manifestations, including telangiectasias, pitting scars, periungual microvascular abnormalities (e.g., giant capillaries, hemorrhages, avascular areas, ramified/bushy capillaries) clinically detectable by nailfold videocapillaroscopy, ischemic digital ulcers, pulmonary arterial hypertension, and scleroderma renal crisis. Despite a variety of available treatment options, treatment of SSc-related vascular disease remains problematic, even considering SSc etherogenity and the quite narrow therapeutic window. In this context, plenty of studies have highlighted the great usefulness in clinical practice of vascular biomarkers allowing clinicians to assess the evolution of the pathological process affecting the vessels, as well as to predict the prognosis and the response to therapy. The current narrative review provides an up-to-date overview of the main candidate vascular biomarkers that have been proposed for SSc, focusing on their main reported associations with characteristic clinical vascular features of the disease.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
21
|
Stec A, Maciejewska M, Paralusz-Stec K, Michalska M, Giebułtowicz J, Rudnicka L, Sikora M. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis. J Inflamm Res 2023; 16:1895-1904. [PMID: 37152867 PMCID: PMC10162098 DOI: 10.2147/jir.s409489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare immune-mediated connective tissue disease characterized by fibrosis of the skin and internal organs, whose pathogenesis is not fully understood. Recent studies have revealed dysbiosis in patients with systemic sclerosis and have indicated the possible role of the microbiota and its metabolites in the pathogenesis of the disease. Trimethylamine N-oxide (TMAO) is a compound produced by dysbiotic microbiota observed at higher concentrations in several autoimmune diseases. Objective To determine concentrations of the bacteria-derived metabolite TMAO in patients with systemic sclerosis and to assess possible correlation between TMAO and a specific manifestation of the disease. Patients and Methods The study included 63 patients with SSc and 47 matched control subjects. The concentration of TMAO was measured with high-performance liquid chromatography. Results Plasma TMAO level was significantly increased in patients with SSc (283.0 [188.5-367.5] ng/mL versus 205.5 [101.0-318.0] ng/mL; p < 0.01). An increased concentration of TMAO was observed in patients with concomitant interstitial lung disease (ILD) (302.0 ng/mL [212.0-385.5] ng/mL versus 204.0 [135.5-292.0] ng/mL; p < 0.01) and esophageal dysmotility (289.75 [213.75-387.5] ng/mL versus 209.5 ng/mL [141.5-315.0] ng/mL; p < 0.05) compared to patients without these complications. Furthermore, TMAO concentration exhibited significant correlation with markers of heart involvement (left ventricle ejection fraction, NT-proBNP), marker of ILD severity and Scleroderma Clinical Trials Consortium Damage Index. Conclusion The concentration of TMAO, gut microbiota-associated metabolite, is increased in systemic sclerosis, particularly in patients with advanced organ involvement. This is the first study evaluating plasma TMAO in systemic sclerosis. Bacterial metabolites may be a link between dysbiosis and organ involvement in the course of the disease. Modulation of gut bacterial-derived metabolites may represent a new therapeutic approach in the management of systemic sclerosis.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Correspondence: Mariusz Sikora, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, Warsaw, 02-637, Poland, Tel +48 22 670 91 00, Fax +48 22 844 77 97, Email
| |
Collapse
|
22
|
Frech TM, Frech M, Saknite I, O'Connell KA, Ghosh S, Baba J, Tkaczyk ER. Novel therapies and innovation for systemic sclerosis skin ulceration. Best Pract Res Clin Rheumatol 2022; 36:101813. [PMID: 36609122 PMCID: PMC11671032 DOI: 10.1016/j.berh.2022.101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skin ulceration is an important cause of morbidity in systemic sclerosis and can occur at anytime during disease progression. Incident disease cohorts are important for understanding whether skin ulceration represents active vasculopathy versus resultant damage. Biomarkers for skin ulcer pathogenesis, both serum and imaging, are under investigation to elucidate the functional consequences of the structural abnormalities. Novel therapeutics for the treatment of vasculopathy benefit from reliable biomarkers able to predict the disease evolution remains an important unmet need. Nonetheless, a diagnostic approach that captures early skin ulceration and treatments that restore vascular and immune homeostasis is critical for effective systemic sclerosis (SSc) vasculopathy management.
Collapse
Affiliation(s)
- Tracy M Frech
- US Department of Veterans Affairs, Tennessee Valley Healthcare System, Dermatology Service and Research Service, Nashville, TN, USA; Vanderbilt University Medical Center, Department of Medicine, Division of Rheumatology and Immunology, Nashville, TN, USA.
| | | | - Inga Saknite
- Vanderbilt University Medical Center, Department of Dermatology, Nashville, TN, USA; University of Latvia, Institute of Atomic Physics and Spectroscopy, Biophotonics Laboratory, Riga, Latvia
| | - Katie A O'Connell
- Vanderbilt University Medical Center, Department of Dermatology, Nashville, TN, USA
| | - Shramana Ghosh
- US Department of Veterans Affairs, Tennessee Valley Healthcare System, Dermatology Service and Research Service, Nashville, TN, USA; Vanderbilt University Medical Center, Department of Dermatology, Nashville, TN, USA
| | - Justin Baba
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric R Tkaczyk
- US Department of Veterans Affairs, Tennessee Valley Healthcare System, Dermatology Service and Research Service, Nashville, TN, USA; Vanderbilt University Medical Center, Department of Dermatology, Nashville, TN, USA; Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
23
|
Maritati F, Provenzano M, Lerario S, Corradetti V, Bini C, Busutti M, Grandinetti V, Cuna V, La Manna G, Comai G. Kidney transplantation in systemic sclerosis: Advances in graft, disease, and patient outcome. Front Immunol 2022; 13:878736. [PMID: 35958558 PMCID: PMC9360313 DOI: 10.3389/fimmu.2022.878736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Systemic sclerosis (SSc) is an immune-mediated rheumatic disease characterized by vascular abnormalities, tissue fibrosis, and inflammation. Renal disease occurring in patients with SSc may have a variable clinicopathological picture. However, the most specific renal condition associated with this disease is the scleroderma renal crisis (SRC), characterized by acute onset of renal failure and severe hypertension. SRC develops in about 20% of cases of SSc, especially in those patients with diffuse cutaneous disease. The prognosis of this condition is often negative, with a rapid progression to end-stage renal disease (ESRD). The advent of the antihypertensive angiotensin-converting enzyme inhibitors in 1980 was associated with a significant improvement in patients’ survival and recovery of renal function. However, the prognosis of these patients can still be improved. The dialytic condition is associated with early death, and mortality is significantly higher than among patients undergoing renal replacement therapy (RRT) due to other conditions. Patients with SRC who show no signs of renal functional recovery despite timely blood pressure control are candidates for kidney transplantation (KT). In this review, we reported the most recent advances in KT in patients with ESRD due to SSc, with a particular overview of the risk of disease recurrence after transplantation and the evolution of other disease manifestations.
Collapse
|
24
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. Circulating Neurovascular Guidance Molecules and Their Relationship with Peripheral Microvascular Impairment in Systemic Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071056. [PMID: 35888144 PMCID: PMC9316343 DOI: 10.3390/life12071056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disease whose earliest clinical manifestations are microvascular tone dysregulation and peripheral microcirculatory abnormalities. Following previous evidence of an association between circulating neurovascular guidance molecules and SSc disturbed angiogenesis, here, we measured the levels of soluble neuropilin 1 (sNRP1), semaphorin 3E (Sema3E), and Slit2 by enzyme-linked immunosorbent assay in serum samples from a large case series of 166 SSc patients vs. 110 healthy controls. We focused on their possible correlation with vascular disease clinical features and applied logistic regression analysis to determine which of them could better reflect disease activity and severity. Our results demonstrate that, in SSc: (i) sNRP1 is significantly decreased, with lower sNRP1 serum levels correlating with the severity of nailfold videocapillaroscopy (NVC) abnormalities and the presence of ischemic digital ulcers (DUs); (ii) both Sema3E and Slit2 are increased, with Sema3E better reflecting early NVC abnormalities; and (iii) higher Sema3E correlates with the absence of DUs, while augmented Slit2 associates with the presence of DUs. Receiver operator characteristics curve analysis revealed that both circulating sNRP1 and Sema3E show a moderate diagnostic accuracy. Moreover, logistic regression analysis allowed to identify sNRP1 and Sema3E as more suitable independent biomarkers reflecting the activity and severity of SSc-related peripheral microvasculopathy.
Collapse
Affiliation(s)
- Eloisa Romano
- Division of Rheumatology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Division of Rheumatology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Marco Matucci-Cerinic
- Division of Rheumatology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Correspondence: ; Tel.: +39-055-275-8073
| |
Collapse
|