1
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
2
|
Wu X, Tian X, Cao G, Wang Z, Wu X, Gu Y, Yan T. Distinct profiles of bile acid metabolism caused by gut microbiota in kidney transplantation recipients revealed by 16S rRNA gene sequencing. Arch Physiol Biochem 2024; 130:581-590. [PMID: 37204182 DOI: 10.1080/13813455.2023.2212331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
The present study sought to characterise the gut microbiota of subjects with kidney transplantation and healthy control to identify the distinct gut microbiota and analyse their potential function. We found that gut microbiota abundance had significant differences in subjects between the two groups. Line Discriminant Analysis (LDA) Effect Size (LEfSe) analysis showed that the bacterial taxa were differentially represented between the two groups, and the potential biomarkers at different taxonomic levels in kidney transplant recipients were Streptococcus, Enterococcaceae, and Ruminococcus. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) Functional Inference analyses suggested that the difference in gut microbiota between the two groups was correlated with bile acid metabolism. In conclusion, gut microbiota abundance is different between the two groups, which is related to bile acid metabolism, and may influence the metabolic homeostasis of allograft recipients.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China
| | - Xuan Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhou T, Zhang Y, Li Z, Lu C, Zhao H. Research progress of traditional Chinese medicine on the treatment of diarrhea by regulating intestinal microbiota and its metabolites based on renal-intestinal axis. Front Cell Infect Microbiol 2024; 14:1483550. [PMID: 39397865 PMCID: PMC11466940 DOI: 10.3389/fcimb.2024.1483550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Intestinal microbiota and its metabolites are involved in many physiological processes of the human body and play a vital role in maintaining human health. The occurrence of kidney disease can cause intestinal microbiota imbalance, resulting in diarrhea. The change of intestinal microbiota and its metabolites content can aggravate renal function injury, which has a bidirectional regulating effect. The theory of renal-intestinal axis further clarified that the impaired renal function is related to the imbalance of intestinal microorganisms, and the impaired intestinal barrier is related to the accumulation of toxin products. Because of its unique therapeutic advantages, Traditional Chinese Medicine can treat diarrhea by enhancing the growth of beneficial bacteria, inhibiting pathogenic bacteria and immune regulation, and slow down the continuous deterioration of kidney disease. This paper focuses on the relationship between intestinal microbiota and its metabolites and diarrhea, the influence of Traditional Chinese Medicine on intestinal microbiota in the treatment of diarrhea, and the role of intestinal microbiota and its metabolites in the renal-intestinal axis. It provides a theoretical basis for Traditional Chinese Medicine to regulate intestinal microbiota and its metabolites based on the renal-intestinal axis theory to treat nephrology-induced diarrhea, and also provides a new idea and method for Traitional Chinese Medicine to treat nephrology-induced diarrhea.
Collapse
Affiliation(s)
- Tong Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yifan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhaoyuan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Medical, Huzhou University, Huzhou, Zhejiang, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
4
|
Wang J, Xie Y, Wu T, Chen Y, Jiang M, Li X, Ye Y, Zhou E, Yang Z. Phytic acid alleviates ochratoxin A-induced renal damage in chicks by modulating ferroptosis and the structure of the intestinal microbiota. Poult Sci 2024; 103:104027. [PMID: 39024690 DOI: 10.1016/j.psj.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Phytic acid (PA) is a natural antioxidant with various biological activities, providing protective effects in multiple animals. Ochratoxin A (OTA) is a mold toxin commonly found in feed, which induces multi-organ damage, with kidney being the target organ of its toxicity. This study investigates the protective effects of PA on OTA-induced renal damage and its potential mechanisms in chicks. The results demonstrates that PA treatment restores OTA-induced renal pathological injuries, reverses the diminished activities of antioxidant enzymes, reduces the accumulation of malondialdehyde, and normalizes the expression of pro-inflammatory cytokines, which confirms that PA can alleviate OTA-induced renal damage. Further investigations reveal that OTA-induced renal injury accompanied by an increase in tissue iron content and the transcription levels of ferroptosis-related genes (TFR, ACSL4, and HO-1), and a decrease in the levels of SLC7A11 and GPX4. PA treatment reverses all these effects, indicating that PA mitigates OTA-induced renal ferroptosis. Moreover, PA supplementation improves intestinal morphology and mucosal function, corrects OTA-induced changes in the intestinal microbiota. Besides, PA microbiota transplantation alleviates renal inflammation and oxidative stress caused by OTA. In conclusion, PA plays a protective role against renal damage through the regulation of ferroptosis and the intestinal microbiota, possibly providing novel insights into the control and prevention of OTA-related nephrotoxicity.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yueqing Xie
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ting Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Xuhai Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
5
|
Pezzuoli C, Biagini G, Magistroni R. Ketogenic Interventions in Autosomal Dominant Polycystic Kidney Disease: A Comprehensive Review of Current Evidence. Nutrients 2024; 16:2676. [PMID: 39203812 PMCID: PMC11356904 DOI: 10.3390/nu16162676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder characterized by the development and enlargement of multiple kidney cysts, leading to progressive kidney function decline. To date, Tolvaptan, the only approved treatment for this condition, is able to slow down the loss of annual kidney function without stopping the progression of the disease. Furthermore, this therapy is approved only for patients with rapid disease progression and its compliance is problematic because of the drug's impact on quality of life. The recent literature suggests that cystic cells are subject to several metabolic dysregulations, particularly in the glucose pathway, and mitochondrial abnormalities, leading to decreased oxidative phosphorylation and impaired fatty acid oxidation. This finding paved the way for new lines of research targeting potential therapeutic interventions for ADPKD. In particular, this review highlights the latest studies on the use of ketosis, through ketogenic dietary interventions (daily calorie restriction, intermittent fasting, time-restricted feeding, ketogenic diets, and exogenous ketosis), as a potential strategy for patients with ADPKD, and the possible involvement of microbiota in the ketogenic interventions' effect.
Collapse
Affiliation(s)
- Carla Pezzuoli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Magistroni
- Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
6
|
DeChristopher LR, Tucker KL. Disproportionately higher cardiovascular disease risk and incidence with high fructose corn syrup sweetened beverage intake among black young adults-the CARDIA study. Nutr J 2024; 23:84. [PMID: 39075463 PMCID: PMC11285415 DOI: 10.1186/s12937-024-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The black/white heart disease mortality disparity began increasing in the early 1980's, coincident with the switch from sucrose to high-fructose-corn-syrup/(HFCS) in the US food supply. There has been more fructose in HFCS than generally-recognized-as-safe/GRAS, which has contributed to unprecedented excess-free-fructose/(unpaired-fructose) in foods/beverages. Average- per-capita excess-free-fructose, from HFCS, began exceeding dosages/(5-10 g) that trigger fructose-malabsorption in the early 1980's. Fructose malabsorption contributes to gut-dysbiosis and gut-in-situ-fructosylation of dietary peptides/incretins/(GLP-1/GIP) which forms atherosclerotic advanced-glycation-end-products. Both dysregulate gut endocrine function and are risk factors for cardiovascular disease/(CVD). Limited research shows that African Americans have higher fructose malabsorption prevalence than others. CVD risk begins early in life. METHODS Coronary-Artery-Risk-Development-in-Adults/(CARDIA) study data beginning in 1985-86 with 2186 Black and 2277 White participants, aged 18-30 y, were used to test the hypothesis that HFCS sweetened beverage intake increases CVD risk/incidence, more among Black than White young adults, and at lower intakes; while orange juice-a low excess-free-fructose juice with comparable total sugars and total fructose, but a 1:1 fructose-to-glucose-ratio, i.e., low excess-free-fructose, does not. Cox proportional hazards models were used to calculate hazard ratios. RESULTS HFCS sweetened beverage intake was associated with higher CVD risk (HR = 1.7) than smoking (HR = 1.6). CVD risk was higher at lower HFCS sweetened beverage intake among Black than White participants. Intake, as low as 3 times/wk, was associated with twice the CVD risk vs. less frequent/never, among Black participants only (HR 2.1, 95% CI 1.2-3.7; P = 0.013). Probability of an ordered relationship approached significance. Among Black participants, CVD incidence jumped 62% from 59.8/1000, among ≤ 2-times/wk, to 96.9/1000 among 3-6 times/wk consumers. Among White participants, CVD incidence increased from 37.6/1000, among ≤ 1.5-times/wk, to 41.1/1000, among 2 times/wk-once/d - a 9% increase. Hypertension was highest among Black daily HFCS sweetened beverage consumers. CONCLUSION The ubiquitous presence of HFCS over-the-past-40 years, at higher fructose-to-glucose ratios than generally-recognized-as-safe, may have contributed to CVD racial disparities, due to higher fructose-malabsorption prevalence among Black individuals, unpaired/excess-free-fructose induced gut dysbiosis and gut fructosylation of dietary peptides/incretins (GLP-1/GIP). These disturbances contribute to atherosclerotic plaque; promote incretin insufficiency/dysregulation/altered satiety/dysglycemia; decrease protective microbiota metabolites; and increase hypertension, CVD morbidity and mortality.
Collapse
Affiliation(s)
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
7
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Yang Y, Ludvigsson JF, Olén O, Sjölander A, Carrero JJ. Estimated Glomerular Filtration Rate and the Risk of Inflammatory Bowel Disease in Adults: A Swedish Population-Based Study. Inflamm Bowel Dis 2024; 30:718-725. [PMID: 36617285 PMCID: PMC11063554 DOI: 10.1093/ibd/izac267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Kidney complications are common in patients with long-standing inflammatory bowel disease (IBD). Whether kidney complications, defined as low estimated glomerular filtration rate (eGFR), may predispose to later IBD is unknown. METHODS We analyzed the association between eGFR and the risk of being subsequently diagnosed with IBD among 1 612 160 adults from Stockholm. The exposure was categories of eGFR, with 90 to 104 mL/min/1.73 m2 as the reference. Cox regression models were used to investigate the association between eGFR, IBD, and IBD subtypes. Subgroup analyses included age strata, sex, education, and comorbidities. To explore the possibility of detection bias or reverse causation, we estimated IBD hazard ratios (HRs) after excluding cases and individuals censored during early years of follow-up. RESULTS During a median of 9 years of follow-up, we detected 9663 cases of IBD (3299 Crohn's disease, 5072 ulcerative colitis, 1292 IBD unclassified). Lower eGFR levels were associated with higher IBD risk (for eGFR 30-59 mL/min/1.73 m2: adjusted HR, 1.15; 95% confidence interval [CI], 1.01-1.33; and for eGFR <30 mL/min/1.73 m2: adjusted HR, 1.65; 95% CI, 1.16-2.37). This association was stronger in magnitude for Crohn's disease (for eGFR 30-59 mL/min/1.73 m2: HR, 1.33, 95% CI, 1.04-1.72; and for eGFR <30 mL/min/1.73 m2: HR, 2.25; 95% CI, 1.26-3.99). Results were consistent across strata of age, comorbidities, and attained education but suggested the association between eGFR and IBD to be stronger in women (P for interaction <.05). Results attenuated but were robust to exclusion of early IBD cases. CONCLUSIONS We observed an association between reduced eGFR and the risk of developing IBD, which was stronger in magnitude for Crohn's disease.
Collapse
Affiliation(s)
- Yuanhang Yang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
- Celiac Disease Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Ola Olén
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital Stockholm, Stockholm South General Hospital, Stockholm, Sweden
| | - Arvid Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Juan J Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Division of Nephrology, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Wang L, Xu A, Wang J, Fan G, Liu R, Wei L, Pei M. The effect and mechanism of Fushen Granule on gut microbiome in the prevention and treatment of chronic renal failure. Front Cell Infect Microbiol 2024; 13:1334213. [PMID: 38274729 PMCID: PMC10808756 DOI: 10.3389/fcimb.2023.1334213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Background Fushen Granule is an improved granule based on the classic formula Fushen Formula, which is used for the treatment of peritoneal dialysis-related intestinal dysfunction in patients with end-stage renal disease. However, the effect and mechanism of this granule on the prevention and treatment of chronic renal failure have not been fully elucidated. Methods A 5/6 nephrectomy model of CRF was induced and Fushen Granule was administered at low and high doses to observe its effects on renal function, D-lactate, serum endotoxin, and intestinal-derived metabolic toxins. The 16SrRNA sequencing method was used to analyze the abundance and structure of the intestinal flora of CRF rats. A FMT assay was also used to evaluate the effects of transplantation of Fushen Granule fecal bacteria on renal-related functional parameters and metabolic toxins in CRF rats. Results Gavage administration of Fushen Granule at low and high doses down-regulated creatinine, urea nitrogen, 24-h urine microalbumin, D-lactate, endotoxin, and the intestinal-derived toxins indophenol sulphateand p-cresol sulphate in CRF rats. Compared with the sham-operated group in the same period, CRF rats had a decreased abundance of the firmicutes phylum and an increased abundance of the bacteroidetes phylum at the phylum level, and a decreasing trend of the lactobacillus genus at the genus level. Fushen Granule intervention increased the abundance of the firmicutes phylum, decreased the abundance of the bacteroidetes phylum, and increased the abundance of the lactobacillus genus. The transplantation of Fushen Granule fecal bacteria significantly reduced creatinine(Cr), blood urea nitrogen(Bun), uric acid(UA), 24-h urinary microalbumin, D-lactate, serum endotoxin, and enterogenic metabolic toxins in CRF rats. Compared with the sham-operated group, the transplantation of Fushen Granule fecal bacteria modulated the Firmicutes and Bacteroidetes phyla and the Lactobacillus genus. Conclusion Fushen Granule improved renal function and intestinal barrier function by regulating intestinal flora, inhibiting renal fibrosis, and delaying the progression of chronic renal failure.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guorong Fan
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqi Liu
- Nephrology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Wu PH, Tseng YF, Liu W, Chuang YS, Tai CJ, Tung CW, Lai KY, Kuo MC, Chiu YW, Hwang SJ, Hung WC, Lin YT. Exploring the Relationship between Gut Microbiome Composition and Blood Indole-3-acetic Acid in Hemodialysis Patients. Biomedicines 2024; 12:148. [PMID: 38255253 PMCID: PMC10813781 DOI: 10.3390/biomedicines12010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Indole-3-acetic acid (IAA), a protein-bound uremic toxin resulting from gut microbiota-driven tryptophan metabolism, increases in hemodialysis (HD) patients. IAA may induce endothelial dysfunction, inflammation, and oxidative stress, elevating cardiovascular and cognitive risk in HD patients. However, research on the microbiome-IAA association is limited. This study aimed to explore the gut microbiome's relationship with plasma IAA levels in 72 chronic HD patients aged over 18 (August 2016-January 2017). IAA levels were measured using tandem mass spectrometry, and gut microbiome analysis utilized 16s rRNA next-generation sequencing. Linear discriminative analysis effect size and random forest analysis distinguished microbial species linked to IAA levels. Patients with higher IAA levels had reduced microbial diversity. Six microbial species significantly associated with IAA levels were identified; Bacteroides clarus, Bacteroides coprocola, Bacteroides massiliensi, and Alisteps shahii were enriched in low-IAA individuals, while Bacteroides thetaiotaomicron and Fusobacterium varium were enriched in high-IAA individuals. This study sheds light on specific gut microbiota species influencing IAA levels, enhancing our understanding of the intricate interactions between the gut microbiota and IAA metabolism.
Collapse
Grants
- MOST 111-2314-B-037-032-MY3 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-037 -083 -MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-037-088 Ministry of Science and Technology, Taiwan
- KMUH111-1M60 Kaohsiung Medical University Hospital, Taiwan
- KMUH111-1R73 Kaohsiung Medical University Hospital, Taiwan
- KMUH111-1M09 Kaohsiung Medical University Hospital, Taiwan
- KMUH110-0M13 Kaohsiung Medical University Hospital, Taiwan
- KMUH110-0M73 Kaohsiung Medical University Hospital, Taiwan
- KMUH110-0M12 Kaohsiung Medical University Hospital, Taiwan
- KT112P012 Kaohsiung Medical University, Taiwan
- NHRIKMU-111-I003 Kaohsiung Medical University, Taiwan
- NHRIKMU-111-I003-2 Kaohsiung Medical University, Taiwan
- NHRIKMU-111-I003-4 Kaohsiung Medical University, Taiwan
- NHRIKMU-111-I001-3 Kaohsiung Medical University, Taiwan
- NPUST-KMU-111-P001 Kaohsiung Medical University, Taiwan
- KMU-DK(B)110003 Kaohsiung Medical University, Taiwan
- KMUH-DK(B)110003-1 Kaohsiung Medical University, Taiwan
- KMU-DK(B)110003-2 Kaohsiung Medical University, Taiwan
- KMU-DK(B)110003-3 Kaohsiung Medical University, Taiwan
- KMU-DK(B)110003-4 Kaohsiung Medical University, Taiwan
- KMU-DK(B)110003-5 Kaohsiung Medical University, Taiwan
Collapse
Affiliation(s)
- Ping-Hsun Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Fang Tseng
- Department of Family Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yun-Shiuan Chuang
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Chi-Jung Tai
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan;
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Kean-Yee Lai
- Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mei-Chuan Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.); (S.-J.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Ting Lin
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| |
Collapse
|
11
|
Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The Combinational Effect of Inulin and Resveratrol on the Oxidative Stress and Inflammation Level in a Rat Model of Diabetic Nephropathy. Curr Dev Nutr 2024; 8:102059. [PMID: 38292928 PMCID: PMC10826146 DOI: 10.1016/j.cdnut.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background Using inulin can enhance resveratrol's effects by improving the intestinal microbiome and the stability of resveratrol. Objectives We aimed to investigate the effect of therapeutic intervention with combined inulin and resveratrol on kidney function in diabetic rats. Methods Diabetic model was induced by intraperitoneal injection of streptozotocin. Afterward, rats were divided into 6 groups: control, diabetic without treatment, diabetic treated with insulin, diabetic treated with resveratrol, diabetic treated with inulin, and diabetic treated with a combination of inulin and resveratrol. After 10 wk, the creatinine, urea, insulin, urinary proteins, and inflammatory and oxidative stress markers were evaluated. Pathologic changes were examined in kidney tissues. Results Renal dysfunction, accompanied by increased inflammation and oxidative stress, was observed. Our results showed that treatment with resveratrol and inulin had antidiabetic effects and was associated with reduced renal dysfunction, oxidative stress, and kidney inflammation. In addition, it was observed that combined treatment with inulin and resveratrol outperformed monotherapies in improving kidney function and reducing oxidative stress and inflammation. Conclusions Treatment with resveratrol and inulin can have renoprotective effects by improving oxidative stress and inflammation in kidney tissues. Therefore, employing these 2 compounds is suggested as an inexpensive and available method for diabetic nephropathy.
Collapse
Affiliation(s)
- Farideh Ghavidel
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Sun X, Zhou X, He W, Sun W, Xu Z. Co-Housing and Fecal Microbiota Transplantation: Technical Support for TCM Herbal Treatment of Extra-Intestinal Diseases Based on Gut Microbial Ecosystem Remodeling. Drug Des Devel Ther 2023; 17:3803-3831. [PMID: 38155743 PMCID: PMC10753978 DOI: 10.2147/dddt.s443462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulation of the gut microbial ecosystem (GME) (eg, alterations in the gut microbiota, gut-derived metabolites, and gut barrier) may contribute to the onset and progression of extra-intestinal diseases. Previous studies have found that Traditional Chinese Medicine herbs (TCMs) play an important role in manipulating the GME, but a prominent obstacle in current TCM research is the causal relationship between GME and disease amelioration. Encouragingly, co-housing and fecal microbiota transplantation (FMT) provide evidence-based support for TCMs to treat extra-intestinal diseases by targeting GME. In this review, we documented the principles, operational procedures, applications and limitations of the key technologies (ie, co-housing and FMT); furthermore, we provided evidence that TCM works through the GME, especially the gut microbiota (eg, SCFA- and BSH-producing bacteria), the gut-derived metabolites (eg, IS, pCS, and SCFAs), and intestinal barrier to alleviate extra-intestinal diseases. This will be beneficial in constructing microecological pathways for TCM treatment of extra-intestinal diseases in the future.
Collapse
Affiliation(s)
- Xian Sun
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Xi Zhou
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Weiming He
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Zheng Xu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
14
|
Cooper TE, Khalid R, Chan S, Craig JC, Hawley CM, Howell M, Johnson DW, Jaure A, Teixeira-Pinto A, Wong G. Synbiotics, prebiotics and probiotics for people with chronic kidney disease. Cochrane Database Syst Rev 2023; 10:CD013631. [PMID: 37870148 PMCID: PMC10591284 DOI: 10.1002/14651858.cd013631.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major public health problem affecting 13% of the global population. Prior research has indicated that CKD is associated with gut dysbiosis. Gut dysbiosis may lead to the development and/or progression of CKD, which in turn may in turn lead to gut dysbiosis as a result of uraemic toxins, intestinal wall oedema, metabolic acidosis, prolonged intestinal transit times, polypharmacy (frequent antibiotic exposures) and dietary restrictions used to treat CKD. Interventions such as synbiotics, prebiotics, and probiotics may improve the balance of the gut flora by altering intestinal pH, improving gut microbiota balance and enhancing gut barrier function (i.e. reducing gut permeability). OBJECTIVES This review aimed to evaluate the benefits and harms of synbiotics, prebiotics, and probiotics for people with CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 9 October 2023 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) measuring and reporting the effects of synbiotics, prebiotics, or probiotics in any combination and any formulation given to people with CKD (CKD stages 1 to 5, including dialysis and kidney transplant). Two authors independently assessed the retrieved titles and abstracts and, where necessary, the full text to determine which satisfied the inclusion criteria. DATA COLLECTION AND ANALYSIS Data extraction was independently carried out by two authors using a standard data extraction form. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Data entry was carried out by one author and cross-checked by another. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Forty-five studies (2266 randomised participants) were included in this review. Study participants were adults (two studies in children) with CKD ranging from stages 1 to 5, with patients receiving and not receiving dialysis, of whom half also had diabetes and hypertension. No studies investigated the same synbiotic, prebiotic or probiotic of similar strains, doses, or frequencies. Most studies were judged to be low risk for selection bias, performance bias and reporting bias, unclear risk for detection bias and for control of confounding factors, and high risk for attrition and other biases. Compared to prebiotics, it is uncertain whether synbiotics improve estimated glomerular filtration rate (eGFR) at four weeks (1 study, 34 participants: MD -3.80 mL/min/1.73 m², 95% CI -17.98 to 10.38), indoxyl sulfate at four weeks (1 study, 42 participants: MD 128.30 ng/mL, 95% CI -242.77 to 499.37), change in gastrointestinal (GI) upset (borborymgi) at four weeks (1 study, 34 participants: RR 15.26, 95% CI 0.99 to 236.23), or change in GI upset (Gastrointestinal Symptom Rating Scale) at 12 months (1 study, 56 participants: MD 0.00, 95% CI -0.27 to 0.27), because the certainty of the evidence was very low. Compared to certain strains of prebiotics, it is uncertain whether a different strain of prebiotics improves eGFR at 12 weeks (1 study, 50 participants: MD 0.00 mL/min, 95% CI -1.73 to 1.73), indoxyl sulfate at six weeks (2 studies, 64 participants: MD -0.20 μg/mL, 95% CI -1.01 to 0.61; I² = 0%) or change in any GI upset, intolerance or microbiota composition, because the certainty of the evidence was very low. Compared to certain strains of probiotics, it is uncertain whether a different strain of probiotic improves eGFR at eight weeks (1 study, 30 participants: MD -0.64 mL/min, 95% CI -9.51 to 8.23; very low certainty evidence). Compared to placebo or no treatment, it is uncertain whether synbiotics improve eGFR at six or 12 weeks (2 studies, 98 participants: MD 1.42 mL/min, 95% CI 0.65 to 2.2) or change in any GI upset or intolerance at 12 weeks because the certainty of the evidence was very low. Compared to placebo or no treatment, it is uncertain whether prebiotics improves indoxyl sulfate at eight weeks (2 studies, 75 participants: SMD -0.14 mg/L, 95% CI -0.60 to 0.31; very low certainty evidence) or microbiota composition because the certainty of the evidence is very low. Compared to placebo or no treatment, it is uncertain whether probiotics improve eGFR at eight, 12 or 15 weeks (3 studies, 128 participants: MD 2.73 mL/min, 95% CI -2.28 to 7.75; I² = 78%), proteinuria at 12 or 24 weeks (1 study, 60 participants: MD -15.60 mg/dL, 95% CI -34.30 to 3.10), indoxyl sulfate at 12 or 24 weeks (2 studies, 83 participants: MD -4.42 mg/dL, 95% CI -9.83 to 1.35; I² = 0%), or any change in GI upset or intolerance because the certainty of the evidence was very low. Probiotics may have little or no effect on albuminuria at 12 or 24 weeks compared to placebo or no treatment (4 studies, 193 participants: MD 0.02 g/dL, 95% CI -0.08 to 0.13; I² = 0%; low certainty evidence). For all comparisons, adverse events were poorly reported and were minimal (flatulence, nausea, diarrhoea, abdominal pain) and non-serious, and withdrawals were not related to the study treatment. AUTHORS' CONCLUSIONS We found very few studies that adequately test biotic supplementation as alternative treatments for improving kidney function, GI symptoms, dialysis outcomes, allograft function, patient-reported outcomes, CVD, cancer, reducing uraemic toxins, and adverse effects. We are not certain whether synbiotics, prebiotics, or probiotics are more or less effective compared to one another, antibiotics, or standard care for improving patient outcomes in people with CKD. Adverse events were uncommon and mild.
Collapse
Affiliation(s)
- Tess E Cooper
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Rabia Khalid
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Martin Howell
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Allison Jaure
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Germaine Wong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
15
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Saxami G, Kerezoudi EN, Eliopoulos C, Arapoglou D, Kyriacou A. The Gut-Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life (Basel) 2023; 13:2023. [PMID: 37895405 PMCID: PMC10608660 DOI: 10.3390/life13102023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The human gut microbiota (GM) is a complex microbial ecosystem that colonises the gastrointestinal tract (GIT) and is comprised of bacteria, viruses, fungi, and protozoa. The GM has a symbiotic relationship with its host that is fundamental for body homeostasis. The GM is not limited to the scope of the GIT, but there are bidirectional interactions between the GM and other organs, highlighting the concept of the "gut-organ axis". Any deviation from the normal composition of the GM, termed "microbial dysbiosis", is implicated in the pathogenesis of various diseases. Only a few studies have demonstrated a relationship between GM modifications and disease phenotypes, and it is still unknown whether an altered GM contributes to a disease or simply reflects its status. Restoration of the GM with probiotics and prebiotics has been postulated, but evidence for the effects of prebiotics is limited. Prebiotics are substrates that are "selectively utilized by host microorganisms, conferring a health benefit". This study highlights the bidirectional relationship between the gut and vital human organs and demonstrates the relationship between GM dysbiosis and the emergence of certain representative diseases. Finally, this article focuses on the potential of prebiotics as a target therapy to manipulate the GM and presents the gaps in the literature and research.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| |
Collapse
|
17
|
Wang C, Qu W, Chen Q, Huang WY, Kang Y, Shen J. Primary nephrotic syndrome relapse within 1 year after glucocorticoid therapy in children is associated with gut microbiota composition at syndrome onset. Nephrol Dial Transplant 2023; 38:1969-1980. [PMID: 36815457 DOI: 10.1093/ndt/gfac328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Children with primary nephrotic syndrome (PNS) who relapse after glucocorticoid therapy are shown to have a decreased total proportion of butyrate-producing bacteria in the gut at onset. Glucocorticoid treatment changes the gut microbiota composition. It is unclear whether gut microbiota at remission right after therapy and gut bacteria other than butyrate-producing bacteria are associated with PNS relapse. METHODS PNS relapse of paediatric patients within 1 year after glucocorticoid therapy was recorded. The gut microbiota composition, profiled with 16S rRNA gene V3-V4 region sequencing, was compared between relapsing and non-relapsing PNS children at onset before glucocorticoid treatment (preT group) and in PNS children at remission right after treatment (postT group), respectively. RESULTS The gut microbiota composition of postT children significantly differed from that of preT children by having lower levels of Bacteroides, Lachnoclostridium, Flavonifractor, Ruminococcaceae UBA1819, Oscillibacter, Hungatella and Coprobacillus and higher levels of Ruminococcaceae UCG-013 and Clostridium sensu stricto 1 group. In the preT group, compared with non-relapsing patients, relapsing patients showed decreased Blautia, Dialister and total proportion of butyrate-producing bacteria and increased Oscillibacter, Anaerotruncus and Ruminococcaceae UBA1819. However, relapsing and non-relapsing postT children showed no difference in gut microbiota composition. CONCLUSIONS PNS relapse-associated gut microbiota dysbiosis at onset, which includes alterations of both butyrate-producing and non-butyrate-producing bacteria, disappeared right after glucocorticoid therapy. It is necessary to study the association of the longitudinal changes in the complete profiles of gut microbiota after glucocorticoid treatment with later PNS relapse.
Collapse
Affiliation(s)
- Chenwei Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Qu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qiurong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yulin Kang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
18
|
Mafra D, Kemp JA, Borges NA, Wong M, Stenvinkel P. Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins (Basel) 2023; 15:499. [PMID: 37624256 PMCID: PMC10467110 DOI: 10.3390/toxins15080499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Residual kidney function for patients with chronic kidney disease (CKD) is associated with better quality of life and outcome; thus, strategies should be implemented to preserve kidney function. Among the multiple causes that promote kidney damage, gut dysbiosis due to increased uremic toxin production and endotoxemia need attention. Several strategies have been proposed to modulate the gut microbiota in these patients, and diet has gained increasing attention in recent years since it is the primary driver of gut dysbiosis. In addition, medications and faecal transplantation may be valid strategies. Modifying gut microbiota composition may mitigate chronic kidney damage and preserve residual kidney function. Although various studies have shown the influential role of diet in modulating gut microbiota composition, the effects of this modulation on residual kidney function remain limited. This review discusses the role of gut microbiota metabolism on residual kidney function and vice versa and how we could preserve the residual kidney function by modulating the gut microbiota balance.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niteroi 24020-140, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niteroi 24020-140, Brazil;
| | - Natalia A. Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Michelle Wong
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | | |
Collapse
|
19
|
Nithiyanandam S, Evan Prince S. Caesalpinia bonducella mitigates oxidative damage by paracetamol intoxication in the kidney and intestine via modulating pro/anti-inflammatory and apoptotic signaling: an In vivo mechanistic insight. 3 Biotech 2023; 13:176. [PMID: 37188289 PMCID: PMC10175523 DOI: 10.1007/s13205-023-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Protracted use of paracetamol at therapeutic/toxic doses readily induces major organ toxicity and poor clinical efficacy. Caesalpinia bonducella seeds possess a diverse range of biological and therapeutic activities. Thus, our study aimed to scrutinize the toxic effects of paracetamol and the potential renal and intestinal protective effects of Caesalpinia bonducella seed extract (CBSE). To Wistar rats, CBSE was administered for 8 days (300 mg/kg, p.o.) with or without paracetamol (2000 mg/kg, p.o.) on the 8th day. Pertinent toxicity assessments in the kidney and intestine were analyzed at the end of the study. The CBASE's phytochemical components were examined using gas chromatography-mass spectrometry (GC-MS). After the study period, study findings evidenced that paracetamol intoxication induced elevation of renal enzyme indicators, oxidative damage, imbalance with the pro/anti-inflammatory production and pro/anti-apoptotic mediators, and tissue injury; all repercussions were alleviated by pre-treatment with CBASE. CBASE considerably reduced (P < 0.05) paracetamol-induced kidney and intestine injury by limiting caspase-8/3 signaling and amplification of inflammation in renal and intestinal tissue by significantly reducing pro-inflammatory cytokine production. As per the GC-MS report, three main bioactive components-Piperine, Isocaryophyllene, and Tetradec-13-en-11-yn-1-ol were predominant and have protective activities. Our study ascertains that CBSE pre-treatment exerts potent renal and intestine protection against paracetamol intoxication. Thus, CBSE could be a prospective therapeutic candidate for protecting the kidney and intestine from the severity of paracetamol intoxication.
Collapse
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India
| | - Sabina Evan Prince
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India
| |
Collapse
|
20
|
Chancharoenthana W, Kamolratanakul S, Visitchanakun P, Sontidejkul S, Cheibchalard T, Somboonna N, Settachaimongkon S, Leelahavanichkul A. Lacticaseibacilli attenuated fecal dysbiosis and metabolome changes in Candida-administered bilateral nephrectomy mice. Front Immunol 2023; 14:1131447. [PMID: 36969207 PMCID: PMC10034098 DOI: 10.3389/fimmu.2023.1131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The impacts of metabolomic changes (reduced short-chain-fatty acids; SCFAs) in uremic condition is not fully understood. Once daily Candida gavage with or without probiotics (different times of administration) for 1 week prior to bilateral nephrectomy (Bil Nep) in 8-week-old C57BL6 mice as the possible models more resemble human conditions were performed. Candida-administered Bil Nep mice demonstrated more severe conditions than Bil Nep alone as indicated by mortality (n = 10/group) and other 48 h parameters (n = 6-8/group), including serum cytokines, leaky gut (FITC-dextran assay, endotoxemia, serum beta-glucan, and loss of Zona-occludens-1), and dysbiosis (increased Enterobacteriaceae with decreased diversity in microbiome analysis) (n = 3/group for fecal microbiome) without the difference in uremia (serum creatinine). With nuclear magnetic resonance metabolome analysis (n = 3-5/group), Bil Nep reduced fecal butyric (and propionic) acid and blood 3-hydroxy butyrate compared with sham and Candida-Bil Nep altered metabolomic patterns compared with Bil Nep alone. Then, Lacticaseibacillus rhamnosus dfa1 (SCFA-producing Lacticaseibacilli) (n = 8/group) attenuated the model severity (mortality, leaky gut, serum cytokines, and increased fecal butyrate) of Bil Nep mice (n = 6/group) (regardless of Candida). In enterocytes (Caco-2 cells), butyrate attenuated injury induced by indoxyl sulfate (a gut-derived uremic toxin) as indicated by transepithelial electrical resistance, supernatant IL-8, NFκB expression, and cell energy status (mitochondria and glycolysis activities by extracellular flux analysis). In conclusion, the reduced butyrate by uremia was not enhanced by Candida administration; however, the presence of Candida in the gut induced a leaky gut that was attenuated by SCFA-producing probiotics. Our data support the use of probiotics in uremia.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Supistha Sontidejkul
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| |
Collapse
|
21
|
Gut microbiome studies in CKD: opportunities, pitfalls and therapeutic potential. Nat Rev Nephrol 2023; 19:87-101. [PMID: 36357577 DOI: 10.1038/s41581-022-00647-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Interest in gut microbiome dysbiosis and its potential association with the development and progression of chronic kidney disease (CKD) has increased substantially in the past 6 years. In parallel, the microbiome field has matured considerably as the importance of host-related and environmental factors is increasingly recognized. Past research output in the context of CKD insufficiently considered the myriad confounding factors that are characteristic of the disease. Gut microbiota-derived metabolites remain an interesting therapeutic target to decrease uraemic (cardio)toxicity. However, future studies on the effect of dietary and biotic interventions will require harmonization of relevant readouts to enable an in-depth understanding of the underlying beneficial mechanisms. High-quality standards throughout the entire microbiome analysis workflow are also of utmost importance to obtain reliable and reproducible results. Importantly, investigating the relative composition and abundance of gut bacteria, and their potential association with plasma uraemic toxins levels is not sufficient. As in other fields, the time has come to move towards in-depth quantitative and functional exploration of the patient's gut microbiome by relying on confounder-controlled quantitative microbial profiling, shotgun metagenomics and in vitro simulations of microorganism-microorganism and host-microorganism interactions. This step is crucial to enable the rational selection and monitoring of dietary and biotic intervention strategies that can be deployed as a personalized intervention in CKD.
Collapse
|
22
|
Ren F, Jin Q, Liu T, Ren X, Zhan Y. Causal effects between gut microbiota and IgA nephropathy: a bidirectional Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1171517. [PMID: 37201114 PMCID: PMC10185820 DOI: 10.3389/fcimb.2023.1171517] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Background Therapeutic approaches that target the gut microbiota (GM) may be helpful in the potential prevention and treatment of IgA nephropathy (IgAN). Meanwhile, relevant studies demonstrated a correlation between GM and IgAN, however, these confounding evidence cannot prove a causal relationship between GM and IgAN. Methods Based on the data from the GM genome-wide association study (GWAS) of MiBioGen and the IgAN GWAS data from the FinnGen research. A bi-directional Mendelian randomization (MR) study was performed to explore the causal relationship between GM and IgAN. We used inverse variance weighted (IVW) method as the primary method to determine the causal relationship between exposure and outcome in our MR study. Besides, we used additional analysis (MR-Egger, weighted median) and sensitivity analysis (Cochrane's Q test, MR-Egger and MR-PRESSO) to select significant results, followed by Bayesian model averaging (MR-BMA) to test the results of MR study. Finally, a reverse MR analysis was conducted to estimate the probability of reverse causality. Results At the locus-wide significance level, the results of IVW method and additional analysis showed that Genus Enterorhabdus was a protective factor for IgAN [OR: 0.456, 95% CI: 0.238-0.875, p=0.023], while Genus butyricicoccus was a risk factor for IgAN [OR: 3.471, 95% CI: 1.671-7.209, p=0.0008]. In the sensitivity analysis, no significant pleiotropy or heterogeneity of the results was found. Conclusion Our study revealed the causal relationship between GM and IgAN, and expanded the variety of bacterial taxa causally related to IgAN. These bacterial taxa could become novel biomarkers to facilitate the development of targeted therapies for IgAN, developing our understanding of the "gut-kidney axis".
Collapse
Affiliation(s)
- Feihong Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiubai Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yongli Zhan,
| |
Collapse
|
23
|
Kawalec A, Kiliś-Pstrusińska K. Gut Microbiota Alterations and Primary Glomerulonephritis in Children: A Review. Int J Mol Sci 2022; 24:ijms24010574. [PMID: 36614013 PMCID: PMC9820462 DOI: 10.3390/ijms24010574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The article summarizes the current evidence on the impact of microbiota alterations on immune-mediated primary glomerulonephritis in children. In particular, the focus is on the link between dysbiosis and the onset or recurrence of idiopathic nephrotic syndrome, immunoglobulin A nephropathy, and membranous nephropathy. The aim is to describe possible pathomechanisms, differences in gut microbiota composition between pediatric patients and healthy controls, and possible usage of microbiota manipulations in supportive therapy. On this basis, we attempt to indicate directions for further research in that field.
Collapse
|
24
|
Ettinger S. Diet Strategies for the Patient with Chronic Kidney Disease. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
De Siena M, Raoul P, Costantini L, Scarpellini E, Cintoni M, Gasbarrini A, Rinninella E, Mele MC. Food Emulsifiers and Metabolic Syndrome: The Role of the Gut Microbiota. Foods 2022; 11:2205. [PMID: 35892789 PMCID: PMC9331555 DOI: 10.3390/foods11152205] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The use of emulsifiers in processed foods and the rapid epidemic development of metabolic syndrome in Western countries over the past 20 years have generated growing interest. Evidence for the role of emulsifiers in metabolic syndrome through gut microbiota has not been clearly established, thus making it challenging for clinical nutritionists and dietitians to make evidence-based associations between the nature and the quantity of emulsifiers and metabolic disorders. This narrative review summarizes the highest quality clinical evidence currently available about the impact of food emulsifiers on gut microbiota composition and functions and the potential development of metabolic syndrome. The state-of-the-art of the different common emulsifiers is performed, highlighting where they are present in daily foods and their roles. Recent findings of in vitro, in vivo, and human studies assessing the effect of different emulsifiers on gut microbiota have been recently published. There is some progress in understanding how some food emulsifiers could contribute to developing metabolic diseases through gut microbiota alterations while others could have prebiotic effects. However, there are still many unanswered questions regarding daily consumption amounts and the synergic effects between emulsifiers' intake and responses by the microbial signatures of each individual.
Collapse
Affiliation(s)
- Martina De Siena
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.S.); (A.G.)
| | - Pauline Raoul
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, 01100 Viterbo, Italy;
| | - Emidio Scarpellini
- Nutrition and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy;
- T.A.R.G.I.D., Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium
| | - Marco Cintoni
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
| | - Antonio Gasbarrini
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.D.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Maria Cristina Mele
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|