1
|
Willard DJ, H. Manesh MJ, Bing RG, Alexander BH, Kelly RM. Phenotype-driven assessment of the ancestral trajectory of sulfur biooxidation in the thermoacidophilic archaea Sulfolobaceae. mBio 2024; 15:e0103324. [PMID: 38953360 PMCID: PMC11323534 DOI: 10.1128/mbio.01033-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Certain members of the family Sulfolobaceae represent the only archaea known to oxidize elemental sulfur, and their evolutionary history provides a framework to understand the development of chemolithotrophic growth by sulfur oxidation. Here, we evaluate the sulfur oxidation phenotype of Sulfolobaceae species and leverage comparative genomic and transcriptomic analysis to identify the key genes linked to sulfur oxidation. Metabolic engineering of the obligate heterotroph Sulfolobus acidocaldarius revealed that the known cytoplasmic components of sulfur oxidation alone are not sufficient to drive prolific sulfur oxidation. Imaging analysis showed that Sulfolobaceae species maintain proximity to the sulfur surface but do not necessarily contact the substrate directly. This indicates that a soluble form of sulfur must be transported to initiate cytoplasmic sulfur oxidation. Conservation patterns and transcriptomic response implicate an extracellular tetrathionate hydrolase and putative thiosulfate transporter in a newly proposed mechanism of sulfur acquisition in the Sulfolobaceae.IMPORTANCESulfur is one of the most abundant elements on earth (2.9% by mass), so it makes sense that the earliest biology found a way to use sulfur to create and sustain life. However, beyond evolutionary significance, sulfur and the molecules it comprises have important technological significance, not only in chemicals such as sulfuric acid and in pyritic ores containing critical metals but also as a waste product from oil and gas production. The thermoacidophilic Sulfolobaceae are unique among the archaea as sulfur oxidizers. The trajectory for how sulfur biooxidation arose and evolved can be traced using experimental and bioinformatic analyses of the available genomic data set. Such analysis can also inform the process by which extracellular sulfur is acquired and transported by thermoacidophilic archaea, a phenomenon that is critical to these microorganisms but has yet to be elucidated.
Collapse
Affiliation(s)
- Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Benjamin H. Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Kanao T. Tetrathionate hydrolase from the acidophilic microorganisms. Front Microbiol 2024; 15:1338669. [PMID: 38348185 PMCID: PMC10859504 DOI: 10.3389/fmicb.2024.1338669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Tetrathionate hydrolase (TTH) is a unique enzyme found in acidophilic sulfur-oxidizing microorganisms, such as bacteria and archaea. This enzyme catalyzes the hydrolysis of tetrathionate to thiosulfate, elemental sulfur, and sulfate. It is also involved in dissimilatory sulfur oxidation metabolism, the S4-intermediate pathway. TTHs have been purified and characterized from acidophilic autotrophic sulfur-oxidizing microorganisms. All purified TTHs show an optimum pH in the acidic range, suggesting that they are localized in the periplasmic space or outer membrane. In particular, the gene encoding TTH from Acidithiobacillus ferrooxidans (Af-tth) was identified and recombinantly expressed in Escherichia coli cells. TTH activity could be recovered from the recombinant inclusion bodies by acid refolding treatment for crystallization. The mechanism of tetrathionate hydrolysis was then elucidated by X-ray crystal structure analysis. Af-tth is highly expressed in tetrathionate-grown cells but not in iron-grown cells. These unique structural properties, reaction mechanisms, gene expression, and regulatory mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Agricultural and Biological Chemistry, Graduate School of Environment, Life, Natural Science, and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Nosalova L, Piknova M, Kolesarova M, Pristas P. Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria. Microorganisms 2023; 11:1436. [PMID: 37374938 DOI: 10.3390/microorganisms11061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of unicellular life, dissimilation reactions of autotrophic sulfur bacteria have been a crucial part of the biogeochemical sulfur cycle on Earth. A wide range of sulfur oxidation states is reflected in the diversity of metabolic pathways used by sulfur-oxidizing bacteria. This metabolically and phylogenetically diverse group of microorganisms inhabits a variety of environments, including extreme environments. Although they have been of interest to microbiologists for more than 150 years, meso- and psychrophilic chemolithoautotrophic sulfur-oxidizing microbiota are less studied compared to the microbiota of hot springs. Several recent studies suggested that cold sulfur waters harbor unique, yet not described, bacterial taxa.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Maria Piknova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Mariana Kolesarova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Peter Pristas
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| |
Collapse
|
4
|
Han S, Li Y, Gao H. Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants (Basel) 2022; 11:antiox11122487. [PMID: 36552695 PMCID: PMC9774590 DOI: 10.3390/antiox11122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. It has long been known that H2S is toxic to cells at high concentrations, but now this gaseous molecule, at the physiological level, is recognized as a signaling molecule and a regulator of critical biological processes. Recently, many metabolites of H2S, collectively called reactive sulfur species (RSS), have been gradually appreciated as having similar or divergent regulatory roles compared with H2S in living organisms, especially mammals. In prokaryotes, even in bacteria, investigations into generation and physiology of RSS remain preliminary and an understanding of the relevant biological processes is still in its infancy. Despite this, recent and exciting advances in the fields are many. Here, we discuss abiotic and biotic generation of H2S/RSS, sulfur-transforming enzymes and their functioning mechanisms, and their physiological roles as well as the sensing and regulation of H2S/RSS.
Collapse
|
5
|
Liu LJ, Jiang Z, Wang P, Qin YL, Xu W, Wang Y, Liu SJ, Jiang CY. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea. Front Microbiol 2021; 12:768283. [PMID: 34721370 PMCID: PMC8551704 DOI: 10.3389/fmicb.2021.768283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The order Sulfolobales (phylum Crenarchaeota) is a group of thermoacidophilic archaea. The first member of the Sulfolobales was discovered in 1972, and current 23 species are validly named under the International Code of Nomenclature of Prokaryotes. The majority of members of the Sulfolobales is obligately or facultatively chemolithoautotrophic. When they grow autotrophically, elemental sulfur or reduced inorganic sulfur compounds are their energy sources. Therefore, sulfur metabolism is the most important physiological characteristic of the Sulfolobales. The functions of some enzymes and proteins involved in sulfur reduction, sulfur oxidation, sulfide oxidation, thiosulfate oxidation, sulfite oxidation, tetrathionate hydrolysis, and sulfur trafficking have been determined. In this review, we describe current knowledge about the physiology, taxonomy, and sulfur metabolism of the Sulfolobales, and note future challenges in this field.
Collapse
Affiliation(s)
- Li-Jun Liu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Wang
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Counts JA, Willard DJ, Kelly RM. Life in hot acid: a genome-based reassessment of the archaeal order Sulfolobales. Environ Microbiol 2021; 23:3568-3584. [PMID: 32776389 PMCID: PMC10560490 DOI: 10.1111/1462-2920.15189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 01/07/2023]
Abstract
The order Sulfolobales was one of the first named Archaeal lineages, with globally distributed members from terrestrial thermal acid springs (pH < 4; T > 65°C). The Sulfolobales represent broad metabolic capabilities, ranging from lithotrophy, based on inorganic iron and sulfur biotransformations, to autotrophy, to chemoheterotrophy in less acidophilic species. Components of the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle, as well as sulfur oxidation, are nearly universally conserved, although dissimilatory sulfur reduction and disproportionation (Acidianus, Stygiolobus and Sulfurisphaera) and iron oxidation (Acidianus, Metallosphaera, Sulfurisphaera, Sulfuracidifex and Sulfodiicoccus) are limited to fewer lineages. Lithotrophic marker genes appear more often in highly acidophilic lineages. Despite the presence of facultative anaerobes and one confirmed obligate anaerobe, oxidase complexes (fox, sox, dox and a new putative cytochrome bd) are prevalent in many species (even facultative/obligate anaerobes), suggesting a key role for oxygen among the Sulfolobales. The presence of fox genes tracks with a putative antioxidant OsmC family peroxiredoxin, an indicator of oxidative stress derived from mixing reactive metals and oxygen. Extreme acidophily appears to track inversely with heterotrophy but directly with lithotrophy. Recent phylogenetic re-organization efforts are supported by the comparative genomics here, although several changes are proposed, including the expansion of the genus Saccharolobus.
Collapse
Affiliation(s)
- James A. Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
8
|
Willard DJ, Kelly RM. Intersection of Biotic and Abiotic Sulfur Chemistry Supporting Extreme Microbial Life in Hot Acid. J Phys Chem B 2021; 125:5243-5257. [PMID: 33979170 PMCID: PMC10562994 DOI: 10.1021/acs.jpcb.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial life on Earth exists within wide ranges of temperature, pressure, pH, salinity, radiation, and water activity. Extreme thermoacidophiles, in particular, are microbes found in hot, acidic biotopes laden with heavy metals and reduced inorganic sulfur species. As chemolithoautotrophs, they thrive in the absence of organic carbon, instead using sulfur and metal oxidation to fuel their bioenergetic needs, while incorporating CO2 as a carbon source. Metal oxidation by these microbes takes place extracellularly, mediated by membrane-associated oxidase complexes. In contrast, sulfur oxidation involves extracellular, membrane-associated, and cytoplasmic biotransformations, which intersect with abiotic sulfur chemistry. This novel lifestyle has been examined in the context of early aerobic life on this planet, but it is also interesting when considering the prospects of life, now or previously, on other solar bodies. Here, extreme thermoacidophily (growth at pH below 4.0, temperature above 55 °C), a characteristic of species in the archaeal order Sulfolobales, is considered from the perspective of sulfur chemistry, both biotic and abiotic, as it relates to microbial bioenergetics. Current understanding of the mechanisms involved are reviewed which are further expanded through recent experimental results focused on imparting sulfur oxidation capacity on a natively nonsulfur oxidizing extremely thermoacidophilic archaeon, Sulfolobus acidocaldarius, through metabolic engineering.
Collapse
Affiliation(s)
- Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
9
|
Kanao T, Hase N, Nakayama H, Yoshida K, Nishiura K, Kosaka M, Kamimura K, Hirano Y, Tamada T. Reaction mechanism of tetrathionate hydrolysis based on the crystal structure of tetrathionate hydrolase from Acidithiobacillus ferrooxidans. Protein Sci 2021; 30:328-338. [PMID: 33103311 PMCID: PMC7784748 DOI: 10.1002/pro.3984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Tetrathionate hydrolase (4THase) plays an important role in dissimilatory sulfur oxidation in the acidophilic iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans. The structure of recombinant 4THase from A. ferrooxidans (Af-Tth) was determined by X-ray crystallography to a resolution of 1.95 Å. Af-Tth is a homodimer, and its monomer structure exhibits an eight-bladed β-propeller motif. Two insertion loops participate in dimerization, and one loop forms a cavity with the β-propeller region. We observed unexplained electron densities in this cavity of the substrate-soaked structure. The anomalous difference map generated using diffraction data collected at a wavelength of 1.9 Å indicated the presence of polymerized sulfur atoms. Asp325, a highly conserved residue among 4THases, was located near the polymerized sulfur atoms. 4THase activity was completely abolished in the site-specific Af-Tth D325N variant, suggesting that Asp325 plays a crucial role in the first step of tetrathionate hydrolysis. Considering that the Af-Tth reaction occurs only under acidic pH, Asp325 acts as an acid for the tetrathionate hydrolysis reaction. The polymerized sulfur atoms in the active site cavity may represent the intermediate product in the subsequent step.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Naruki Hase
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Hisayuki Nakayama
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kyoya Yoshida
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kazumi Nishiura
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Megumi Kosaka
- Department of Instrumental Analysis, Advanced Science Research CenterOkayama UniversityOkayamaJapan
| | - Kazuo Kamimura
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yu Hirano
- Institute for Quantum Life ScienceNational Institutes for Quantum and Radiological Science and TechnologyTokaiJapan
| | - Taro Tamada
- Institute for Quantum Life ScienceNational Institutes for Quantum and Radiological Science and TechnologyTokaiJapan
| |
Collapse
|
10
|
Draft Genome Sequence of Acidianus ambivalens DSM 3772, an Aerobic Thermoacidophilic Sulfur Disproportionator. Microbiol Resour Announc 2020; 9:9/3/e01415-19. [PMID: 31948968 PMCID: PMC6965586 DOI: 10.1128/mra.01415-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the genome sequence of Acidianus ambivalens DSM 3772, an archaeon belonging to the Sulfolobales order that was first isolated from continental solfataric fields. This thermoacidophile was sequenced because it utilizes a unique sulfur disproportionation pathway that enables this metabolism under aerobic conditions, in contrast to obligately anaerobic bacterial sulfur disproportionators. Here, we describe the genome sequence of Acidianus ambivalens DSM 3772, an archaeon belonging to the Sulfolobales order that was first isolated from continental solfataric fields. This thermoacidophile was sequenced because it utilizes a unique sulfur disproportionation pathway that enables this metabolism under aerobic conditions, in contrast to obligately anaerobic bacterial sulfur disproportionators.
Collapse
|
11
|
Zeldes BM, Loder AJ, Counts JA, Haque M, Widney KA, Keller LM, Albers S, Kelly RM. Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilicSulfolobales. Environ Microbiol 2019; 21:3696-3710. [DOI: 10.1111/1462-2920.14712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin M. Zeldes
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Andrew J. Loder
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - James A. Counts
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Mashkurul Haque
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Karl A. Widney
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Lisa M. Keller
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Sonja‐Verena Albers
- Institute of Biology II – MicrobiologyUniversity of Freiburg Freiburg Germany
| | - Robert M. Kelly
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| |
Collapse
|
12
|
Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation. J Ind Microbiol Biotechnol 2019; 46:1113-1127. [PMID: 31165968 DOI: 10.1007/s10295-019-02193-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile and of great relevance in bioleaching. However, the impacts of extreme thermoacidophiles propagated with different energy substrates on subsequent bioleaching of refractory chalcopyrite remain unknown. Transcriptional responses underlying their different bioleaching potentials are still elusive. Here, it was first showed that M. sedula inocula propagated with typical energy substrates have different chalcopyrite bioleaching capabilities. Inoculum propagated heterotrophically with yeast extract was deficient in bioleaching; however, inoculum propagated mixotrophically with chalcopyrite, pyrite or sulfur recovered 79%, 78% and 62% copper, respectively, in 12 days. Compared with heterotrophically propagated inoculum, 937, 859 and 683 differentially expressed genes (DEGs) were identified in inoculum cultured with chalcopyrite, pyrite or sulfur, respectively, including upregulation of genes involved in bioleaching-associated metabolism, e.g., Fe2+ and sulfur oxidation, CO2 fixation. Inoculum propagated with pyrite or sulfur, respectively, shared 480 and 411 DEGs with chalcopyrite-cultured inoculum. Discrepancies on repertories of DEGs that involved in Fe2+ and sulfur oxidation in inocula greatly affected subsequent chalcopyrite bioleaching rates. Novel genes (e.g., Msed_1156, Msed_0549) probably involved in sulfur oxidation were first identified. This study highlights that mixotrophically propagated extreme thermoacidophiles especially with chalcopyrite should be inoculated into chalcopyrite heaps at industrial scale.
Collapse
|
13
|
Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 2019; 35:60. [PMID: 30919119 DOI: 10.1007/s11274-019-2632-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.
Collapse
Affiliation(s)
- Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Jiangong Duan
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, Gansu Province, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China. .,College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
14
|
Pyne P, Alam M, Rameez MJ, Mandal S, Sar A, Mondal N, Debnath U, Mathew B, Misra AK, Mandal AK, Ghosh W. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation. Mol Microbiol 2018; 109:169-191. [DOI: 10.1111/mmi.13972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Prosenjit Pyne
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Masrure Alam
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Moidu Jameela Rameez
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Subhrangshu Mandal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Abhijit Sar
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Nibendu Mondal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Utsab Debnath
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Wriddhiman Ghosh
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| |
Collapse
|
15
|
Kanao T, Onishi M, Kajitani Y, Hashimoto Y, Toge T, Kikukawa H, Kamimura K. Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Biosci Biotechnol Biochem 2018; 82:152-160. [PMID: 29303046 DOI: 10.1080/09168451.2017.1415128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetrathionate hydrolase (4THase), a key enzyme of the S4-intermediate (S4I) pathway, was partially purified from marine acidophilic bacterium, Acidithiobacillus thiooxidans strain SH, and the gene encoding this enzyme (SH-tth) was identified. SH-Tth is a homodimer with a molecular mass of 97 ± 3 kDa, and contains a subunit 52 kDa in size. Enzyme activity was stimulated in the presence of 1 M NaCl, and showed the maximum at pH 3.0. Although 4THases from A. thiooxidans and the closely related Acidithiobacillus caldus strain have been reported to be periplasmic enzymes, SH-Tth seems to be localized on the outer membrane of the cell, and acts as a peripheral protein. Furthermore, both 4THase activity and SH-Tth proteins were detected in sulfur-grown cells of strain SH. These results suggested that SH-Tth is involved in elemental sulfur-oxidation, which is distinct from sulfur-oxidation in other sulfur-oxidizing strains such as A. thiooxidans and A. caldus.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Moe Onishi
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Yuki Hashimoto
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | - Tatsuya Toge
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Kazuo Kamimura
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| |
Collapse
|
16
|
Urbieta MS, Rascovan N, Vázquez MP, Donati E. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities. BMC Genomics 2017; 18:445. [PMID: 28587624 PMCID: PMC5461723 DOI: 10.1186/s12864-017-3828-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Within this group, the genus Acidianus contains four biomining species (from ten known Acidianus species), but none of these have their genome sequenced. To get insights into the genetic potential and metabolic pathways involved in the biomining activity of this group, we sequenced the genome of Acidianus copahuensis ALE1 strain, a novel thermoacidophilic crenarchaeon (optimum growth: 75 °C, pH 3) isolated from the volcanic geothermal area of Copahue at Neuquén province in Argentina. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is also autotrophic and tolerant to heavy metals, thus, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments. Results In this work we analyzed the genome of Acidianus copahuensis and describe the genetic pathways involved in biomining processes. We identified the enzymes that are most likely involved in growth on sulfur and ferrous iron oxidation as well as those involved in autotrophic carbon fixation. We also found that A. copahuensis genome gathers different features that are only present in particular lineages or species from the order Sulfolobales, some of which are involved in biomining. We found that although most of its genes (81%) were found in at least one other Sulfolobales species, it is not specifically closer to any particular species (60–70% of proteins shared with each of them). Although almost one fifth of A. copahuensis proteins are not found in any other Sulfolobales species, most of them corresponded to hypothetical proteins from uncharacterized metabolisms. Conclusion In this work we identified the genes responsible for the biomining metabolisms that we have previously observed experimentally. We provide a landscape of the metabolic potentials of this strain in the context of Sulfolobales and propose various pathways and cellular processes not yet fully understood that can use A. copahuensis as an experimental model to further understand the fascinating biology of thermoacidophilic biomining archaea. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3828-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Sofía Urbieta
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina. .,, Calle 50, entre 115 y 116, N° 227, La Plata, Buenos Aires, Argentina.
| | - Nicolás Rascovan
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Predio CCT, Rosario, Argentina
| | - Martín P Vázquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Predio CCT, Rosario, Argentina
| | - Edgardo Donati
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina
| |
Collapse
|
17
|
Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, Weckwerth W, Schleper C. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 2016; 113:E7937-E7946. [PMID: 27864514 PMCID: PMC5150414 DOI: 10.1073/pnas.1601212113] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile "Ca. Nitrosotalea devanaterra" revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and "Ca Nitrosopelagicus brevis" proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs.
Collapse
Affiliation(s)
- Melina Kerou
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Pierre Offre
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Luis Valledor
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Sophie S Abby
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Melcher
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Matthias Nagler
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Wolfram Weckwerth
- Vienna Metabolomics Center, University of Vienna, A-1090 Vienna, Austria
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
18
|
Christel S, Fridlund J, Buetti-Dinh A, Buck M, Watkin EL, Dopson M. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans. FEMS Microbiol Lett 2016; 363:fnw057. [PMID: 26956550 DOI: 10.1093/femsle/fnw057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Antoine Buetti-Dinh
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Moritz Buck
- National Bioinformatics Infrastructure Sweden and Evolutionary Biology Center, Uppsala University, 751 05 Uppsala, Sweden
| | - Elizabeth L Watkin
- CHIRI Biosciences, School of Biomedical Sciences, Curtin University, Perth 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
19
|
Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus. Microorganisms 2015; 3:707-24. [PMID: 27682113 PMCID: PMC5023260 DOI: 10.3390/microorganisms3040707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 12/15/2022] Open
Abstract
The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.
Collapse
|
20
|
Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 2015; 6:439. [PMID: 26029183 PMCID: PMC4429474 DOI: 10.3389/fmicb.2015.00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023] Open
Abstract
Cytochromes c (Cytc) are widespread electron transfer proteins and important enzymes in the global nitrogen and sulfur cycles. The distribution of Cytc in more than 300 archaeal proteomes deduced from sequence was analyzed with computational methods including pattern and similarity searches, secondary and tertiary structure prediction. Two hundred and fifty-eight predicted Cytc (with single, double, or multiple heme c attachment sites) were found in some but not all species of the Desulfurococcales, Thermoproteales, Archaeoglobales, Methanosarcinales, Halobacteriales, and in two single-cell genome sequences of the Thermoplasmatales, all of them Cren- or Euryarchaeota. Other archaeal phyla including the Thaumarchaeota are so far free of these proteins. The archaeal Cytc sequences were bundled into 54 clusters of mutual similarity, some of which were specific for Archaea while others had homologs in the Bacteria. The cytochrome c maturation system I (CCM) was the only one found. The highest number and variability of Cytc were present in those species with known or predicted metal oxidation and/or reduction capabilities. Paradoxical findings were made in the haloarchaea: several Cytc had been purified biochemically but corresponding proteins were not found in the proteomes. The results are discussed with emphasis on cell morphologies and envelopes and especially for double-membraned Archaea-like Ignicoccus hospitalis. A comparison is made with compartmentalized bacteria such as the Planctomycetes of the Anammox group with a focus on the putative localization and roles of the Cytc and other electron transport proteins.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Department of Biology, Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt Darmstadt, Germany
| | - Thomas Heimerl
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Jennifer Flechsler
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Reinhard Rachel
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development, Biocenter LMU Munich Planegg-Martinsried, Germany
| |
Collapse
|
21
|
Justice NB, Norman A, Brown CT, Singh A, Thomas BC, Banfield JF. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms. BMC Genomics 2014; 15:1107. [PMID: 25511286 PMCID: PMC4378227 DOI: 10.1186/1471-2164-15-1107] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/27/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood. RESULTS Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA). Three of these species (AMDSBA2, AMDSBA3, and AMDSBA4) have no cultured representatives while AMDSBA1 is a strain of S. benefaciens, and AMDSBA5 a strain of S. thermosulfidooxidans. We analyzed the diversity of energy conservation and central carbon metabolisms for these genomes and previously published Sulfobacillus genomes. Pathways of sulfur oxidation vary considerably across the genus, including the number and type of subunits of putative heterodisulfide reductase complexes likely involved in sulfur oxidation. The number and type of nickel-iron hydrogenase proteins varied across the genus, as does the presence of different central carbon pathways. Only the AMDSBA3 genome encodes a dissimilatory nitrate reducatase and only the AMDSBA5 and S. thermosulfidooxidans genomes encode assimilatory nitrate reductases. Within the genus, AMDSBA4 is unusual in that its electron transport chain includes a cytochrome bc type complex, a unique cytochrome c oxidase, and two distinct succinate dehydrogenase complexes. CONCLUSIONS Overall, the results significantly expand our understanding of carbon, sulfur, nitrogen, and hydrogen metabolism within the Sulfobacillus genus.
Collapse
Affiliation(s)
- Nicholas B Justice
- />Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA USA
| | - Anders Norman
- />Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
- />Section for Infection Microbiology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Christopher T Brown
- />Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
| | - Andrea Singh
- />Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
| | - Brian C Thomas
- />Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
| | - Jillian F Banfield
- />Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
22
|
Kanao T, Nakayama H, Kato M, Kamimura K. The sole cysteine residue (Cys301) of tetrathionate hydrolase from Acidithiobacillus ferrooxidans does not play a role in enzyme activity. Biosci Biotechnol Biochem 2014; 78:2030-5. [PMID: 25144400 DOI: 10.1080/09168451.2014.948374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cysteine residues are absolutely indispensable for the reactions of almost all enzymes involved in the dissimilatory oxidation pathways of reduced inorganic sulfur compounds. Tetrathionate hydrolase from the acidophilic iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans (Af-Tth) catalyzes tetrathionate hydrolysis to generate elemental sulfur, thiosulfate, and sulfate. Af-Tth is a key enzyme in the dissimilatory sulfur oxidation pathway in this bacterium. Only one cysteine residue (Cys301) has been identified in the deduced amino acid sequence of the Af-Tth gene. In order to clarify the role of the sole cysteine residue, a site-specific mutant enzyme (C301A) was generated. No difference was observed in the retention volumes of the wild-type and mutant Af-Tth enzymes by gel-filtration column chromatography, and surprisingly the enzyme activities measured in the cysteine-deficient and wild-type enzymes were the same. These results suggest that the sole cysteine residue (Cys301) in Af-Tth is involved in neither the tetrathionate hydrolysis reaction nor the subunit assembly. Af-Tth may thus have a novel cysteine-independent reaction mechanism.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | | | | | | |
Collapse
|
23
|
Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. J Biol Chem 2014; 289:26949-26959. [PMID: 25122768 PMCID: PMC4175335 DOI: 10.1074/jbc.m114.591669] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S0)- and tetrathionate (S4O62−)-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys18-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys18) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C93S and DsrE3A-C101S retained the ability to transfer the thiosulfonate group to TusA. TusA-C18S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.
Collapse
Affiliation(s)
- Li-Jun Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Yvonne Stockdreher
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Shu-Tao Sun
- Core Facility and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Michaele Josten
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Hans-Georg Sahl
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Qian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Ming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany,.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| |
Collapse
|
24
|
Kanao T, Kosaka M, Yoshida K, Nakayama H, Tamada T, Kuroki R, Yamada H, Takada J, Kamimura K. Crystallization and preliminary X-ray diffraction analysis of tetrathionate hydrolase from Acidithiobacillus ferrooxidans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:692-4. [PMID: 23722856 PMCID: PMC3668597 DOI: 10.1107/s1744309113013419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Tetrathionate hydrolase (4THase) from the iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans catalyses the disproportionate hydrolysis of tetrathionate to elemental sulfur, thiosulfate and sulfate. The gene encoding 4THase (Af-tth) was expressed as inclusion bodies in recombinant Escherichia coli. Recombinant Af-Tth was activated by refolding under acidic conditions and was then purified to homogeneity. The recombinant protein was crystallized in 20 mM glycine buffer pH 10 containing 50 mM sodium chloride and 33%(v/v) PEG 1000 using the hanging-drop vapour-diffusion method. The crystal was a hexagonal cylinder with dimensions of 0.2 × 0.05 × 0.05 mm. X-ray crystallographic analysis showed that the crystal diffracted to 2.15 Å resolution and belongs to space group P3(1) or P3(2), with unit-cell parameters a = b = 92.1, c = 232.6 Å.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Megumi Kosaka
- Department of Instrumental Analysis, Advanced Science Research Center, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kyoya Yoshida
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hisayuki Nakayama
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Taro Tamada
- Molecular Biology Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4, Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | - Ryota Kuroki
- Molecular Biology Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4, Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | - Hidenori Yamada
- Department of Instrumental Analysis, Advanced Science Research Center, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Jun Takada
- Department of Material Chemistry, Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuo Kamimura
- Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
25
|
Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Appl Environ Microbiol 2012. [PMID: 23183980 DOI: 10.1128/aem.02989-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.
Collapse
|
26
|
Krupovic M, Peixeiro N, Bettstetter M, Rachel R, Prangishvili D. Archaeal tetrathionate hydrolase goes viral: secretion of a sulfur metabolism enzyme in the form of virus-like particles. Appl Environ Microbiol 2012; 78:5463-5. [PMID: 22636008 PMCID: PMC3416430 DOI: 10.1128/aem.01186-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 11/20/2022] Open
Abstract
In the course of screening for virus-host systems in extreme thermal environments, we have isolated a strain of the hyperthermophilic archaeaon Acidianus hospitalis producing unusual filamentous particles with a zipper-like appearance. The particles were shown to represent a secreted form of a genuine cellular enzyme, tetrathionate hydrolase, involved in sulfur metabolism.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Department of Microbiology, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | - Nuno Peixeiro
- Institut Pasteur, Department of Microbiology, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | - Reinhard Rachel
- University of Regensburg Centre for EM/Anatomy, Faculty of Biology & Preclinical Medicine, Regensburg, Germany
| | - David Prangishvili
- Institut Pasteur, Department of Microbiology, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| |
Collapse
|
27
|
Szabo Z, Pohlschroder M. Diversity and subcellular distribution of archaeal secreted proteins. Front Microbiol 2012; 3:207. [PMID: 22783239 PMCID: PMC3387779 DOI: 10.3389/fmicb.2012.00207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022] Open
Abstract
Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.
Collapse
|