1
|
Zhang S, Liu T, Zhou X, Wang J, Zhang T, Xiao G, Huang S, Rao C, Teng X. Isolation of Lactiplantibacillus plantarum for treatment of Salmonella infection in mice. Lett Appl Microbiol 2024; 77:ovae114. [PMID: 39567860 DOI: 10.1093/lambio/ovae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Salmonella infections, often acquired through contaminated food or water, pose significant health risks, particularly amid rising antibiotic resistance and the adverse effects of conventional treatments on gut microbiota. This study isolated the probiotic Lactiplantibacillus plantarum GOLDGUT-LP618 from healthy human fecal samples, demonstrating its potential against Salmonella enterica. Lactiplantibacillus plantarum LP618 produced high levels of short-chain fatty acids (SCFAs) and exhibited robust inhibition of Salmonella in vitro. The strain showed resilience in gastric and bile environments, effectively curbing Salmonella growth. Post-infection treatment with L. plantarum LP618 significantly alleviated diarrhea, improved body weight, and moderated inflammatory responses. Histological analysis indicated restoration of intestinal structure, suggesting protection against mucosal damage. These results highlight L. plantarum LP618 as a promising probiotic candidate, offering a safe and effective alternative to antibiotics for managing Salmonella infections and promoting recovery in affected individuals.
Collapse
Affiliation(s)
- Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China
| | - Tian Liu
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China
| | - Xiaoli Zhou
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China
| | - Jun Wang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China
| | | | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd., Shenzhen 518000, China
| | - Song Huang
- Bluepha Co., Ltd., Shanghai 200072, China
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | | | - Xin Teng
- Bluepha Co., Ltd., Shanghai 200072, China
| |
Collapse
|
2
|
Chanamé Pinedo LE, Meijs AP, Deng H, de Greeff SC, van Duijkeren E, Dierikx CM, Veldman KT, Sanders P, van den Beld MJ, Wullings B, Franz E, Pijnacker R, Mughini-Gras L. Temporal association of antimicrobial use in livestock with antimicrobial resistance in non-typhoid Salmonella human infections in the Netherlands, 2008-2019. One Health 2024; 19:100844. [PMID: 39021559 PMCID: PMC11254175 DOI: 10.1016/j.onehlt.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Antimicrobial use (AMU) in livestock contributes to antimicrobial resistance (AMR) among zoonotic pathogens, such as non-typhoid Salmonella (NTS). Since 2009, the Netherlands has made substantial efforts to reduce AMU in livestock. Objectives To assess the association between AMU in livestock and AMR in NTS human isolates. Additionally, associations between AMU in broilers/pigs and AMR in NTS broiler/pig isolates, and between AMR in broilers/pigs and in human NTS isolates were assessed. The focus was on Salmonella Enteritidis (SE) and Salmonella Typhimurium including its monophasic variant (ST/STM). Methods A national population registry-based study was conducted in the Netherlands from 2008 to 2019. Multivariable logistic regression models were used to assess the associations between livestock AMU and NTS resistance proportion in humans and broilers/pigs, overall as well as per class-specific antimicrobials. Correlation analysis was performed to relate AMR proportions between human and broiler/pig NTS isolates. Results For SE, only a positive association between penicillins use in broilers and resistance to ampicillin among human isolates was significant. For ST/STM, most associations between AMU in livestock and AMR among human isolates were significantly positive, overall and per class-specific antimicrobials, namely for penicillins-ampicillin, tetracyclines-tetracycline and sulfonamides/trimethoprim-sulfamethoxazole/trimethoprim. Significantly positive associations between AMU in broilers/pigs and AMR in broiler/pig ST/STM isolates were also observed, but not between broiler/pig and human AMR levels. Conclusions Significant associations were generally found between livestock AMU and AMR in human and broiler/pig ST/STM isolates. However, confounding factors, such as imported meat and travel are of concern. To fully comprehend the impact of livestock AMU on resistance in human NTS isolates, it is imperative to enhance AMR surveillance of NTS.
Collapse
Affiliation(s)
- Linda E. Chanamé Pinedo
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anouk P. Meijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Huifang Deng
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Sabine C. de Greeff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Engeline van Duijkeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Cindy M. Dierikx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kees T. Veldman
- Wageningen Bioveterinary Research (WBVR), part of Wageningen University and Research, Lelystad, the Netherlands
| | - Pim Sanders
- The Netherlands Veterinary Medicines Institute (SDa), Utrecht, the Netherlands
| | - Maaike J.C. van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bart Wullings
- Wageningen Food Safety Research (WFSR), part of Wageningen University and Research, Wageningen, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Zou Q, Han S, Liang J, Yan G, Wang Q, Wang Y, Zhang Z, Hu J, Li J, Yuan T, Liu Z. Alleviating effect of vagus nerve cutting in Salmonella-induced gut infections and anxiety-like behavior via enhancing microbiota-derived GABA. Brain Behav Immun 2024; 119:607-620. [PMID: 38663772 DOI: 10.1016/j.bbi.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024] Open
Abstract
The vagus nerve, a pivotal link within the gut-brain axis, plays a critical role in maintaining homeostasis and mediating communication between the gastrointestinal tract and the brain. It has been reported that gastrointestinal infection by Salmonella typhimurium (S. typhimurium) triggers gut inflammation and manifests as anxiety-like behaviors, yet the mechanistic involvement of the vagus nerve remains to be elucidated. In this study, we demonstrated that unilateral cervical vagotomy markedly attenuated anxiety-like behaviors induced by S. typhimurium SL1344 infection in C57BL/6 mice, as evidenced by the open field test and marble burying experiment. Furthermore, vagotomy significantly diminished neuronal activation within the nucleus of the solitary tract and amygdala, alongside mitigating aberrant glial cell activation in the hippocampus and amygdala. Additionally, vagotomy notably decreases serum endotoxin levels, counters the increase in splenic Salmonella concentration, and modulates the expression of inflammatory cytokines-including IL-6, IL-1β, and TNF-α-in both the gastrointestinal tract and brain, with a concurrent reduction in IL-22 and CXCL1 expression. This intervention also fostered the enrichment of beneficial gut microbiota, including Alistipes and Lactobacillus species, and augmented the production of gamma-aminobutyric acid (GABA) in the gut. Administration of GABA replicated the vagotomy's beneficial effects on reducing gut inflammation and anxiety-like behavior in infected mice. However, blockade of GABA receptors with picrotoxin abrogated the vagotomy's protective effects against gut inflammation, without influencing its impact on anxiety-like behaviors. Collectively, these findings suggest that vagotomy exerts a protective effect against infection by promoting GABA synthesis in the colon and alleviating anxiety-like behavior. This study underscores the critical role of the vagus nerve in relaying signals of gut infection to the brain and posits that targeting the gut-brain axis may offer a novel and efficacious approach to preventing gastrointestinal infections and associated behavioral abnormalities.
Collapse
Affiliation(s)
- Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiyao Han
- Molecular Biology Laboratory of Stem Cells and Anti-infection Medicine, College of Veterinary medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiarui Liang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiming Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilong Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jufang Li
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Tian Yuan
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
5
|
Kandari A, Odat MA, Alzaid F, Scott KP. Biotics and bacterial function: impact on gut and host health. THE ISME JOURNAL 2024; 18:wrae226. [PMID: 39499657 PMCID: PMC11631128 DOI: 10.1093/ismejo/wrae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
The human gut microbiota, the vast community of microbes inhabiting the gastrointestinal tract, plays a pivotal role in maintaining health. Bacteria are the most abundant organism, and the composition of bacterial communities is strongly influenced by diet. Gut bacteria can degrade complex dietary carbohydrates to produce bioactive compounds such as short-chain fatty acids. Such products influence health, by acting on systemic metabolism, or by virtue of anti-inflammatory or anti-carcinogenic properties. The composition of gut bacteria can be altered through overgrowth of enteropathogens (e.g. Campylobacter, Salmonella spp.), leading to dysbiosis of the gut ecosystem, with some species thriving under the altered conditions whereas others decline. Various "biotics" strategies, including prebiotics, probiotics, synbiotics, and postbiotics, contribute to re-establishing balance within the gut microbial ecosystem conferring health benefits. Prebiotics enhance growth of beneficial members of the resident microbial community and can thus prevent pathogen growth by competitive exclusion. Specific probiotics can actively inhibit the growth of pathogens, either through the production of bacteriocins or simply by reducing the gastrointestinal pH making conditions less favorable for pathogen growth. This review discusses the importance of a balanced gut ecosystem, and strategies to maintain it that contribute to human health.
Collapse
Affiliation(s)
- Anwar Kandari
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- Ministry of Health, Sulaibkhat, Jamal Abdel Nasser Street, PO Box 5, 13001, Kuwait
| | - Ma’en Al Odat
- Medical Laboratory Science, Mutah University, Mutah, Karak 61710, Jordan
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Karen P Scott
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
6
|
Depew CE, McSorley SJ. The role of tissue resident memory CD4 T cells in Salmonella infection: Implications for future vaccines. Vaccine 2023; 41:6426-6433. [PMID: 37739887 DOI: 10.1016/j.vaccine.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Salmonella infections cause a wide range of intestinal and systemic disease that affects global human health. While some vaccines are available, they do not mitigate the impact of Salmonella on endemic areas. Research using Salmonella mouse models has revealed the important role of CD4 T cells and antibody in the development of protective immunity against Salmonella infection. Recent work points to a critical role for hepatic tissue-resident memory lymphocytes in naturally acquired immunity to systemic infection. Thus, understanding the genesis and function of this Salmonella-specific population is an important objective and is the primary focus of this review. Greater understanding of how these memory lymphocytes contribute to bacterial elimination could suggest new approaches to vaccination against an important human pathogen.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Cobb J, Soliman SSM, Retuerto M, Quijano JC, Orr C, Ghannoum M, Kandeel F, Husseiny MI. Changes in the gut microbiota of NOD mice in response to an oral Salmonella-based vaccine against type 1 diabetes. PLoS One 2023; 18:e0285905. [PMID: 37224176 DOI: 10.1371/journal.pone.0285905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
We developed an oral Salmonella-based vaccine that prevents and reverses diabetes in non-obese diabetic (NOD) mice. Related to this, the gastrointestinal tract harbors a complex dynamic population of microorganisms, the gut microbiome, that influences host homeostasis and metabolism. Changes in the gut microbiome are associated with insulin dysfunction and type 1 diabetes (T1D). Oral administration of diabetic autoantigens as a vaccine can restore immune balance. However, it was not known if a Salmonella-based vaccine would impact the gut microbiome. We administered a Salmonella-based vaccine to prediabetic NOD mice. Changes in the gut microbiota and associated metabolome were assessed using next-generation sequencing and gas chromatography-mass spectrometry (GC-MS). The Salmonella-based vaccine did not cause significant changes in the gut microbiota composition immediately after vaccination although at 30 days post-vaccination changes were seen. Additionally, no changes were noted in the fecal mycobiome between vaccine- and control/vehicle-treated mice. Significant changes in metabolic pathways related to inflammation and proliferation were found after vaccine administration. The results from this study suggest that an oral Salmonella-based vaccine alters the gut microbiome and metabolome towards a more tolerant composition. These results support the use of orally administered Salmonella-based vaccines that induced tolerance after administration.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mauricio Retuerto
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Janine C Quijano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Chris Orr
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Leleiwi I, Rodriguez-Ramos J, Shaffer M, Sabag-Daigle A, Kokkinias K, Flynn RM, Daly RA, Kop LFM, Solden LM, Ahmer BMM, Borton MA, Wrighton KC. Exposing new taxonomic variation with inflammation - a murine model-specific genome database for gut microbiome researchers. MICROBIOME 2023; 11:114. [PMID: 37210515 PMCID: PMC10199544 DOI: 10.1186/s40168-023-01529-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs. RESULTS Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains. CONCLUSIONS This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally. Video Abstract.
Collapse
Affiliation(s)
- Ikaia Leleiwi
- Department of Cell and Molecular Biology, The Colorado State University, Fort Collins, CO USA
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Josué Rodriguez-Ramos
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
- Graduate Degree Program in Ecology, The Colorado State University, Fort Collins, CO USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Katherine Kokkinias
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
- Department of Microbiology, Immunology, and Pathology, The Colorado State University, Fort Collins, CO USA
| | - Rory M. Flynn
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Linnea F. M. Kop
- Department of Microbiology, RIBES, Radbound University, Nijmegen, The Netherlands
- Department of Microbiology and Biophysics, The Ohio State University, Columbus, OH USA
| | - Lindsey M. Solden
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Kelly C. Wrighton
- Department of Cell and Molecular Biology, The Colorado State University, Fort Collins, CO USA
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
- Graduate Degree Program in Ecology, The Colorado State University, Fort Collins, CO USA
- Department of Microbiology, Immunology, and Pathology, The Colorado State University, Fort Collins, CO USA
| |
Collapse
|
9
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
10
|
Pottenger S, Watts A, Wedley A, Jopson S, Darby AC, Wigley P. Timing and delivery route effects of cecal microbiome transplants on Salmonella Typhimurium infections in chickens: potential for in-hatchery delivery of microbial interventions. Anim Microbiome 2023; 5:11. [PMID: 36788638 PMCID: PMC9926694 DOI: 10.1186/s42523-023-00232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Exposure to microbes early in life has long-lasting effects on microbial community structure and function of the microbiome. However, in commercial poultry settings chicks are reared as a single-age cohort with no exposure to adult birds which can have profound effects on microbiota development and subsequent pathogen challenge. Microbiota manipulation is a proven and promising strategy to help reduce pathogen load and transmission within broiler flocks. However, administration of microbiota transplant products in a hatchery setting may prove challenging. Effective administration strategies are dependent on key factors, such as; the age of chicks receiving interventions and mode of delivery. This study aimed to assess these two aspects to provide supporting evidence towards microbiome manipulation strategies for use in commercial hatcheries. RESULTS Manipulation of the microbiota between 4 and 72 h of hatch markedly reduced faecal shedding and colonisation with the foodborne pathogen Salmonella enterica serovar Typhimurium (ST4/74). Administration of transplant material via spray or gel drop delivery systems had minimal effect on the protection conferred with fewer birds in transplant groups shown to shed ST4/74 in the faeces compared to PBS-gavaged control birds. Analysis of the microbiome following transplantation demonstrated that all transplant groups had higher diversity and species richness than non-transplant groups during the first week of life and the early stages of infection with ST47/4.The relative abundance of the bacterium Faecalibacterium prausnitzii was significantly higher in CMT groups compared to PBS controls. The presence of F. prausnitzii was also shown to increase in PBS-challenged birds compared to unchallenged birds potentially indicating a role of this bacterium in limiting Salmonella infections. CONCLUSIONS This study demonstrated that administration of microbiome transplants, using methods that would align with hatchery practices, effectively reduced colonisation and shedding of Salmonella in chickens. Age of chicks at microbiome administration had limited effect on the diversity and composition of the microbiome and conferred protection against Salmonella infections. Traditional hatchery delivery systems, such as spray or gel-drop, are sufficient to transfer donor material, alter the microbiome and confer protection against Salmonella. This study helps highlight the opportunity for use of microbiome modification methods within the hatchery.
Collapse
Affiliation(s)
- Sian Pottenger
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Amyleigh Watts
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Amy Wedley
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sue Jopson
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- grid.10025.360000 0004 1936 8470Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Paul Wigley
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK ,grid.5337.20000 0004 1936 7603School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Influence of Hurdle Technology on Foodborne Pathogen Survival in the Human Gastrointestinal Tract. Microorganisms 2023; 11:microorganisms11020405. [PMID: 36838370 PMCID: PMC9960521 DOI: 10.3390/microorganisms11020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The application of several sublethal stresses in hurdle technology can exert microbial stress resistance, which, in turn, might enable foodborne pathogens to overcome other types of lethal stresses, such as the gastrointestinal barriers. The present study evaluated the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following exposure to combinations of water activity (aw), pH and storage temperature stresses. The results revealed that both pathogens survived their passage through the simulated gastrointestinal tract (GIT) with their previous habituation to certain hurdle combinations inducing stress tolerance. More specifically, the habituation to a low temperature or to a high pH resulted in the increased stress tolerance of Salmonella, while for Listeria, the cells appeared stress tolerant after exposure to a high temperature or to a low pH. Nonetheless, both pathogens expressed increased sensitivity after habituation to growth-limiting hurdle combinations. The survival of stress-tolerant pathogenic cells in the human GIT poses major public health issues, since it can lead to host infection. Consequently, further research is required to obtain a deeper understanding of the adaptive stress responses of foodborne bacteria after exposure to combinations of sublethal hurdles to improve the existing food safety systems.
Collapse
|
12
|
Akritidou T, Akkermans S, Smet C, Delens V, Van Impe JFM. Effect of food structure and buffering capacity on pathogen survival during in vitro digestion. Food Res Int 2023; 164:112305. [PMID: 36737908 DOI: 10.1016/j.foodres.2022.112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Valérie Delens
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
13
|
Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Han L, Liu XW, Zang T, Ren H, Liang DS, Bai SC, Li C, Liao XP, Liu YH, Zhang C, Sun J. H2S responsive PEGylated poly (lipoic acid) with ciprofloxacin for targeted therapy of Salmonella. J Control Release 2022; 351:896-906. [DOI: 10.1016/j.jconrel.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
15
|
Hankel J, Chuppava B, Wilke V, Hartung CB, Muthukumarasamy U, Strowig T, Bach Knudsen KE, Kamphues J, Visscher C. High Dietary Intake of Rye Affects Porcine Gut Microbiota in a Salmonella Typhimurium Infection Study. PLANTS 2022; 11:plants11172232. [PMID: 36079614 PMCID: PMC9460007 DOI: 10.3390/plants11172232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Bacterial fermentation of undigested carbohydrates in the hindgut has considerable potential for the stimulation or inhibition of the growth of distinct bacteria within microbiota. The aim of the present study was to evaluate whether high levels of rye affect porcine gut microbiota composition with subsequent effects on the load of Salmonella Typhimurium, an intestinal pathogen with zoonotic relevance. Therefore, forty-two 25-day-old piglets were allocated to two groups and fed a diet containing either 69% wheat or 69% rye for 35 days. One week after introducing the two different diets, the piglets were experimentally infected with Salmonella Typhimurium. The microbiota composition of cecal and fecal samples of the piglets were evaluated 28 days after infection. In the cecum, promoted growth of Bifidobacterium, several lactic acid bacteria and Faecalibacterium prausnitzii were seen in pigs fed the diet containing 69% rye. Bacterial species belonging to the genera Bifidobacterium and Catenisphaera were associated with differing bacterial counts of Salmonella Typhimurium detected in the cecal contents of all piglets in both feeding groups via cultural cultivation. The high intake of rye instead of wheat seems to promote the growth of beneficial intestinal bacteria accompanied by impaired growth conditions for the foodborne pathogen Salmonella Typhimurium.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Bussarakam Chuppava
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Volker Wilke
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Clara Berenike Hartung
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Uthayakumar Muthukumarasamy
- Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
- Hannover Medical School, 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
- Hannover Medical School, 30625 Hannover, Germany
| | | | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
16
|
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int J Mol Sci 2022; 23:ijms23137084. [PMID: 35806089 PMCID: PMC9266447 DOI: 10.3390/ijms23137084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.
Collapse
|
17
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
18
|
Hsu TL, Yang CJ, Pao JL. Salmonella spondylodiscitis and epidural abscess successfully treated with unilateral biportal endoscopic discectomy and debridement: a rare case report. J Int Med Res 2022; 50:3000605221085405. [PMID: 35321567 PMCID: PMC8958527 DOI: 10.1177/03000605221085405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spinal epidural abscess (SEA) is a rare but severe infection with potentially devastating consequences. Epidural abscesses caused by Salmonella serogroup C2 are even rarer and tend to be more invasive with multidrug resistance. Early diagnosis, effective use of antibiotics and surgical intervention are the mainstay strategies for managing SEA, especially for more virulent and multidrug-resistant Salmonella infections. This case report presents a rare case of an elderly and fragile woman with Salmonella spondylodiscitis and an extensive epidural abscess, which were successfully treated with intravenous antibiotics and unilateral biportal endoscopic (UBE) debridement and drainage through four small surgical incisions. After surgery, her fever subsided, she regained consciousness and her low back pain dramatically improved. Follow-up magnetic resonance imaging showed complete resolution of the epidural abscess. At 6 months after surgery, the patient regained muscle strength, ambulated with a walker and had no recurrence of the infection. The UBE technique can effectively eradicate infection while minimizing surgery-related risks and complications. A multidisciplinary team is required to achieve a good outcome.
Collapse
Affiliation(s)
- Ta-Li Hsu
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City
| | - Chia-Jui Yang
- Department of Infectious Disease, Division of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City.,School of Medicine, 34914National Yang Ming Chiao Tung University, National Yang Ming Chiao Tung University, Taipei
| | - Jwo-Luen Pao
- Department of Orthopaedic Surgery, Far Eastern Memorial Hospital, New Taipei City.,General Education Centre, Longhwa University of Science & Technology, Taoyuan
| |
Collapse
|
19
|
Nikiema MEM, Kakou-Ngazoa S, Ky/Ba A, Sylla A, Bako E, Addablah AYA, Ouoba JB, Sampo E, Gnada K, Zongo O, Traoré KA, Sanou A, Bonkoungou IJO, Ouédraogo R, Barro N, Sangaré L. Characterization of virulence factors of Salmonella isolated from human stools and street food in urban areas of Burkina Faso. BMC Microbiol 2021; 21:338. [PMID: 34895140 PMCID: PMC8665542 DOI: 10.1186/s12866-021-02398-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
Background This study was undertaken to identify and functionally characterize virulence genes from Salmonella isolates in street food and stool cultures. From February 2017 to May 2018, clinical and food Salmonella strains were isolated in three regions in Burkina Faso. Salmonella was serotyped according to the White-Kauffmann-Le Minor method, and polymerase chain reaction (PCR) was used to detec invA, spvR, spvC, fimA and stn virulence genes commonly associated with salmonellosis in Sub-Saharan Africa. Results A total of 106 Salmonella isolates (77 human stools; 14 sandwiches) was analyzed using a serological identification with an O-group test reagent. The presence of Salmonella was confirmed in 86% (91/106) of the samples were reactive (OMA-positive/OMB-positive). Salmonella serogroup O:4,5 was the most common serogroup detected (40%; 36/91). Salmonella Enteritidis and Typhimurium represented 5.5% (5/91) and 3.3% (3/91), respectively and were identified only from clinical isolates. Furthermore, 14 serotypes of Salmonella (12/91 human strains and 2/15 sandwich strains) were evocative of Kentucky/Bargny serotype. For the genetic profile, 66% (70/106) of the Salmonella had invA and stn genes; 77.4% (82/106) had the fimA gene. The spvR gene was found in 36.8% (39/106) of the isolates while 48.1% (51/106) had the spvC gene. Among the identified Salmonella Enteritidis and Salmonella Typhimurium isolated from stools, the virulence genes detected were invA (3/5) versus (2/3), fimA (4/5) versus (3/3), stn (3/5) versus (2/3), spvR (4/5) versus (2/3) and spvC (3/5) versus (2/3), respectively. Conclusion This study reports the prevalence of Salmonella serotypes and virulence genes in clinical isolates and in street foods. It shows that food could be a significant source of Salmonella transmission to humans. Our results could help decision-making by the Burkina Faso health authority in the fight against street food-related diseases, in particular by training restaurateurs in food hygiene.
Collapse
Affiliation(s)
- Marguerite E M Nikiema
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso. .,Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire. .,Service de Bactériologie-Virologie, CHU-Yalgado OUEDRAOGO, 03 BP 7022, Ouagadougou, Burkina Faso.
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Absatou Ky/Ba
- Laboratoire de Bactériologie-Virologie, CHU-Bogodogo, Ouagadougou, Burkina Faso
| | - Aboubacar Sylla
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Evariste Bako
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | | | - Jean Bienvenue Ouoba
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Emmanuel Sampo
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso.,Hôpital Protestant Schiphra, 07 BP 5246, Ouagadougou, 07, Burkina Faso
| | - Kobo Gnada
- Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Oumarou Zongo
- Laboratoire de Biochimie et Immunologie Appliquées (LABIA), Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Kuan Abdoulaye Traoré
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Adama Sanou
- Centre MURAZ, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, 01, Burkina Faso
| | - Isidore Juste Ouindgueta Bonkoungou
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Rasmata Ouédraogo
- Laboratoire de Bactériologie-Virologie, CHU-Pédiatrie Charles De Gaulle, 01 BP 1198 BP, Ouagadougou, 01, Burkina Faso
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Lassana Sangaré
- Service de Bactériologie-Virologie, CHU-Yalgado OUEDRAOGO, 03 BP 7022, Ouagadougou, Burkina Faso
| |
Collapse
|
20
|
Dróżdż M, Małaszczuk M, Paluch E, Pawlak A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect Ecol Epidemiol 2021; 11:1975530. [PMID: 34531964 PMCID: PMC8439213 DOI: 10.1080/20008686.2021.1975530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a global health problem, affecting approximately 1.3 billion people annually. Most of these cases are related to food contamination. However, although the majority of Salmonella serovars are pathogenic to humans, animals can be asymptomatic carriers of these bacteria. Nowadays, a wide range of animals is present in human households as pets, including reptiles, amphibians, dogs, cats, ornamental birds, and rodents. Pets contaminate the environment of their owners by shedding the bacteria intermittently in their feaces. In consequence, theyare thought to cause salmonellosis through pet-to-human transmission. Each Salmonella serovar has a different zoonotic potential, which is strongly regulated by stress factors such as transportation, crowding, food deprivation, or temperature. In this review, we summarize the latest reports concerning Salmonella-prevalence and distribution in pets as well as the risk factors and means of prevention of human salmonellosis caused by contact with their pets. Our literature analysis (based on PubMed and Google Scholar databases) is limited to the distribution of Salmonella serovars found in commonly owned pet species. We collected the recent results of studies concerning testing for Salmonella spp. in biological samples, indicating their prevalence in pets, with regard to clinical cases of human salmonellosis.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Rna Biochemistry, Berlin, Germany
| | | | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | |
Collapse
|
21
|
Tirloni E, Stella S, Bernardi C, Rosshaug PS. A new predictive model for the description of the growth of Salmonella spp. in Italian fresh ricotta cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Zhang H, Wang M, Jia J, Zhao J, Radebe SM, Yu Q. The Protective Effect of E. faecium on S. typhimurium Infection Induced Damage to Intestinal Mucosa. Front Vet Sci 2021; 8:740424. [PMID: 34722703 PMCID: PMC8554125 DOI: 10.3389/fvets.2021.740424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/17/2023] Open
Abstract
Intensive farming is prone to induce large-scale outbreaks of infectious diseases, with increasing use of antibiotics, which deviate from the demand of organic farming. The high mortality rate of chickens infected with Salmonella caused huge economic losses; therefore, the promising safe prevention and treatment measures of Salmonella are in urgent need, such as probiotics. Probiotics are becoming an ideal alternative treatment option besides antibiotics, but the effective chicken probiotic strains with clear protective mechanism against Salmonella remain unclear. In this study, we found Enterococcus faecium YQH2 was effective in preventing Salmonella typhimurium infection in chickens. Salmonella typhimurium induced the loss of body weight, and liver and intestinal morphology damage. The inflammatory factor levels increased and intestinal proliferation inhibited. However, after treatment with Enterococcus faecium YQH2, broilers grew normally, the pathological changes of liver and intestine were reduced, and the colonization of Salmonella in the intestine was improved. Not only that, the length of villi and the depth of crypts were relatively normal, and the levels of inflammatory factors such as IL-1β, TNF-α, and IL-8 were reduced. The number of PCNA cells of Enterococcus faecium YQH2 returned to normal under the action of Salmonella typhimurium infection, which was conducive to the normal proliferation of intestinal epithelial cells. The protective effect of Enterococcus faecium YQH2 may be due to the attribution to the activation of hypoxia and then induced the proliferation of intestinal stem cells to repair the damage of intestinal mucosa under Salmonella typhimurium infection. This study demonstrated that Enterococcus faecium YQH2 was effective in preventing Salmonella typhimurium infection, which could be further used in the chicken health breeding.
Collapse
|
23
|
Ray R, Potts R, Pietri JE. The Persistence of Escherichia coli Infection in German Cockroaches (Blattodea: Blattellidae) Varies Between Host Developmental Stages and is Influenced by the Gut Microbiota. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1964-1971. [PMID: 32516418 DOI: 10.1093/jme/tjaa108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The German cockroach, Blatella germanica (L.), is a suspected vector of several enteric bacterial pathogens, including Escherichia coli, among livestock and humans. However, little is known about the factors that influence bacterial transmission by cockroaches. Here, we orally infected B. germanica with various laboratory and field strains of E. coli and examined bacterial titers over time to shed new light on the factors that influence the dynamics of infection. Our results reveal that a laboratory strain of E. coli is largely cleared within 48 h while one field isolate can persist in a majority of cockroaches (80-100%) for longer than 3 d with minimal impact on cockroach longevity. We also find that the ability to clear some strains of E. coli is greater in cockroach nymphs than adults. Notably, no differential expression of the antimicrobial gene lysozyme was observed between nymphs and adults or in infected groups. However, clearance of E. coli was significantly reduced in gnotobiotic cockroaches that were reared in the absence of environmental bacteria, suggesting a protective role for the microbiota against exogenous bacterial pathogens. Together, these results demonstrate that the interactions between cockroaches and enteric bacterial pathogens are highly dynamic and influenced by a combination of microbial, host, and environmental parameters. Such factors may affect the disease transmission capacity of cockroaches in nature and should be further considered in both lab and field studies.
Collapse
Affiliation(s)
- Ritesh Ray
- Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD
| | - Rashaun Potts
- Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD
| | | |
Collapse
|
24
|
Stewart JD, Shakya KM, Bilinski T, Wilson JW, Ravi S, Choi CS. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138353. [PMID: 32408469 DOI: 10.1016/j.scitotenv.2020.138353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms are abundant in the near surface atmosphere and make up a significant fraction of organic aerosols with implications on both human health and ecosystem services. Despite their importance, studies investigating biogeographical patterns of the atmospheric microbiome between urban and suburban areas are limited. Urban and suburban locations (including their microbial communities) vary considerably depending on climate, topography, industrial activities, demographics and other socio-economic factors. Hence, we need more location-specific data to make informed decision affecting air quality, human health, and the implication of a changing climate and policy decisions. The objective of this study was to describe how the atmospheric microbiome varies in composition and function between urban and suburban sites. We used high-throughput sequencing to analyze microbial communities collected at different times from PM2.5 samples collected by active sampling method (using a pump and an impactor) and dust settling of TSP collected by passive sampling method (no pump and no impactor) from an urban and suburban site. We found diverse communities unique in composition at both sites with equivalent functional potential. Taxonomic composition varied significantly with Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Other phyla in greater relative abundance at the urban site. In contrast, Cyanobacteria, Tenericutes, Fusobacteria, and Deinococcus, were enriched at the suburban site. Community diversity also demonstrated a high degree of temporal variation within site. We identified over one-third of the communities as potentially pathogenic taxa (urban: 47.52% ± 14.40%, suburban: 34.53% ± 14.60%) and determined the majority of organisms come from animal-associated host or are environmental non-specific. Potentially pathogenic taxa and source environments were similar between active- and passive- sampling method results. Our research is novel it adds to the underrepresented set of studies on atmospheric microbial structure and function across land types and is the first to compare suburban and urban atmospheric communities.
Collapse
Affiliation(s)
- J D Stewart
- Department of Geography & the Environment, Villanova University, PA, USA
| | - K M Shakya
- Department of Geography & the Environment, Villanova University, PA, USA.
| | - T Bilinski
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - J W Wilson
- Department of Biology, Villanova University, PA, USA
| | - S Ravi
- Department of Earth & Environmental Science, Temple University, PA, USA
| | - Chong Seok Choi
- Department of Earth & Environmental Science, Temple University, PA, USA
| |
Collapse
|
25
|
Chen Y, Wang X, Zhang X, Xu D, Zhang W, Qiu J, Liu Q, Dong Q. Modeling the interactions among
Salmonella
enteritidis,
Pseudomonas aeruginosa
, and
Lactobacillus plantarum. J Food Saf 2020. [DOI: 10.1111/jfs.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanmei Chen
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Xiang Wang
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and EngineeringShandong Agricultural University Taian Shandong China
- New Hope Liuhe Co., Ltd. Beijing China
| | - Dongpo Xu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Wenmin Zhang
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Jingxuan Qiu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Qing Liu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Qingli Dong
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
26
|
Voevodina YA, Novikova TV, Shevchuk VB, Gnezdilova AI, Fialkova EA, Vinogradova YV, Kuzin AA. Changes in calf productivity and resistance as a result of using the lactulose-based feed additive. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201700170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: the aim of the research is to make a comprehensive assessment of the prebiotic feed additive effect on calves. The experiment was carried out in work conditions on 10 black-and-white Holstein-cross calves at the age of 2 to 32 days. To conduct the experiment, an experimental group and a test group have been formed. Each group has included five milk-fed calves at the age of 2 days and older. All the calves have been given colostrum in their first 2–4 hours after birth and then they have been fed three times a day, at regular intervals. The following methods are used: clinical, microbiological, immunological and statistical. The article describes the prebiotic lactulose-based additive effect on the intestinal microbiocenosis development in one-month old calves and presents an assessment of humoral and cellular components of natural resistance in calves. The research results show a positive effect of the lactulose-based additive on the symbiotic microflora of the gastrointestinal tract that improves the natural resistance of the body and the physiological status of animals, reduces the disease duration and contributes to an increase in weight gain. After feeding the calves with the lactulose-containing preparation during their first month of life, the weight gain of each calf in the experimental group has been 21.8 kg, or + 51 % of the initial weight and in the test group 19.0 kg, or + 41 % of the initial weight. Feeding the additive has an impact on the two components of natural resistance: serum bactericidal activity in the experimental group calves has been higher by 17.8 % and the phagocytosis activity has been higher by 30.5%, compared to the test group calves. Feeding calves with the lactulose-containing additive helps reduce the illness duration, stimulates the increase in live weight and affects the natural resistance level of newborn animals positively.
Collapse
|
27
|
Mthembu TP, Zishiri OT, El Zowalaty ME. Detection and Molecular Identification of Salmonella Virulence Genes in Livestock Production Systems in South Africa. Pathogens 2019; 8:pathogens8030124. [PMID: 31405078 PMCID: PMC6789496 DOI: 10.3390/pathogens8030124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Livestock are an important source of protein and food for humans, however opportunistic pathogens such as Salmonella spp. turn livestock into vehicles of foodborne diseases. This study investigated the prevalence of virulence genes in Salmonella spp. isolated from livestock production systems in two provinces of South Africa. During the period from May to August, 2018, a total of 361 faecal (189), oral (100), environmental (soil (36) and water (27)) and feed (9) samples were randomly collected from different animals (cattle, sheep, goats, pigs, ducks and chickens) that were housed in small-scale livestock production systems from Eastern Cape and KwaZulu-Natal Provinces in South Africa. Salmonella spp. were isolated and identified using microbiological and DNA molecular methods. Salmonella spp. were present in 29.0% of the samples of which 30.2% belonged to the Salmonella enterica species as confirmed by the positive amplification of the species specific iroB gene. Virulence genes that were screened from livestock-associated Salmonella were invA, iroB, spiC, pipD and int1. Statistically significant associations (p < 0.05) were established between the virulence genes, sampling location, animal host as well as the season when samples were collected. Furthermore, statistically significant (p < 0.05) positive correlations were observed between most of the virulence genes investigated. This is one of the recent studies to detect and investigate livestock-associated Salmonella spp. in South Africa. This study highlights the importance of continuous monitoring and surveillance for pathogenic salmonellae. It also demonstrated the detection and prevalence of virulent Salmonella spp. harbored by livestock in South Africa. This study demonstrated the potential risks of pathogenic Salmonella enterica to cause foodborne diseases and zoonotic infections from farm-to-fork continuum using the global one-health approach.
Collapse
Affiliation(s)
- Thobeka P Mthembu
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T Zishiri
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, College of Pharmacy City University College of Ajman, Al Tallah 2, Ajman, P.O. Box 18484, UAE.
| |
Collapse
|
28
|
Fan Y, Thompson L, Lyu Z, Cameron TA, De Lay NR, Krachler AM, Ling J. Optimal translational fidelity is critical for Salmonella virulence and host interactions. Nucleic Acids Res 2019; 47:5356-5367. [PMID: 30941426 PMCID: PMC6547416 DOI: 10.1093/nar/gkz229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 01/09/2023] Open
Abstract
Translational fidelity is required for accurate flow of genetic information, but is frequently altered by genetic changes and environmental stresses. To date, little is known about how translational fidelity affects the virulence and host interactions of bacterial pathogens. Here we show that surprisingly, either decreasing or increasing translational fidelity impairs the interactions of the enteric pathogen Salmonella Typhimurium with host cells and its fitness in zebrafish. Host interactions are mediated by Salmonella pathogenicity island 1 (SPI-1). Our RNA sequencing and quantitative RT-PCR results demonstrate that SPI-1 genes are among the most down-regulated when translational fidelity is either increased or decreased. Further, this down-regulation of SPI-1 genes depends on the master regulator HilD, and altering translational fidelity destabilizes HilD protein via enhanced degradation by Lon protease. Our work thus reveals that optimal translational fidelity is pivotal for adaptation of Salmonella to the host environment, and provides important mechanistic insights into this process.
Collapse
Affiliation(s)
- Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, People's Republic of China
| | - Laurel Thompson
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Leite FLL, Singer RS, Ward T, Gebhart CJ, Isaacson RE. Vaccination Against Lawsonia intracellularis Decreases Shedding of Salmonella enterica serovar Typhimurium in Co-Infected Pigs and Alters the Gut Microbiome. Sci Rep 2018; 8:2857. [PMID: 29434295 PMCID: PMC5809363 DOI: 10.1038/s41598-018-21255-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium continues to be a major cause of foodborne illness worldwide and pork can serve as a source of infection. Co-infection of S. enterica with Lawsonia intracellularis, a common intestinal pathogen of swine, has been found as risk factor for increased S. enterica shedding. The objective of this study was to investigate if vaccination against L. intracellularis could lead to decreased S. Typhimurium shedding. To test this hypothesis, pigs were challenged with either S. Typhimurium or S. Typhimurium and L. intracellularis, with and without L. intracellularis vaccination (n = 9 per group). A non-challenged group served as a negative control. Vaccination decreased the shedding of S. Typhimurium in co-infected animals by 2.12 log10 organisms per gram of feces at 7 days post infection. Analysis of the microbiome showed that vaccination led to changes in the abundance of Clostridium species, including Clostridium butyricum, in addition to other compositional changes that may explain the protection mediated against S. Typhimurium. These results indicate that vaccination against L. intracellularis in co-infected herds may provide a new tool to increase food safety by helping to prevent S. enterica without the need for antibiotics.
Collapse
Affiliation(s)
- Fernando L L Leite
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Tonya Ward
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
30
|
Yu SX, Chen W, Liu ZZ, Zhou FH, Yan SQ, Hu GQ, Qin XX, Zhang J, Ma K, Du CT, Gu JM, Deng XM, Han WY, Yang YJ. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation. Front Immunol 2018; 9:119. [PMID: 29456533 PMCID: PMC5801401 DOI: 10.3389/fimmu.2018.00119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.
Collapse
Affiliation(s)
- Shui-Xing Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shi-Qing Yan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gui-Qiu Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Xia Qin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jie Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chong-Tao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing-Min Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu-Ming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Yu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
31
|
Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X. Lactobacillus plantarum Restores Intestinal Permeability Disrupted by Salmonella Infection in Newly-hatched Chicks. Sci Rep 2018; 8:2229. [PMID: 29396554 PMCID: PMC5797085 DOI: 10.1038/s41598-018-20752-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023] Open
Abstract
Salmonella infections in newly hatched chicks result in enteric and systemic diseases with a high mortality. Probiotics can improve the health of a host. The purpose of the present study was to investigate the effect of Lactobacillus plantarum LTC-113 on the gut permeability in the presence or absence of Salmonella (Salmonella Typhimurium) infection. Newly hatched chicks were randomly allocated to 4 treatments (i) NC (negative control); (ii) LAC (the L. plantarum LTC-113-treated group); (iii) SAL (the Salmonella-infected group), and (iv) LAC + SAL (the L. plantarum LTC-113-treated and Salmonella-infected group). Compared with the NC group, the intestinal permeability and claudin-2 (CLDN-2) were significantly increased, while mRNA levels of zonula occludens-1 (ZO-1) and claudin-5 (CLDN-5) were significantly decreased in the SAL group. However, these changes were eliminated in the LAC + SAL group. Additionally, numbers of Salmonella in liver, spleen and ceca were significantly reduced in the LAC + SAL group compared with the SAL group. Moreover, L. plantarum LTC-113 prevented the increase of inflammatory meditators myeloperoxidase (MPO), LITAF, IL-1β, IL-6 and inflammation scores induced by Salmonella. These findings indicate that L. plantarum LTC-113 can protect hosts from Salmonella induced intestinal barrier disruption by regulating expression of tight junction genes and inflammatory meditators and decreasing Salmonella colonization.
Collapse
Affiliation(s)
- Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal Engineering, YangLing Vocational & Technical College, Yangling, China
| | - Yan Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiaoling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junchang Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
- Department of Animal Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
32
|
Näsström E, Jonsson P, Johansson A, Dongol S, Karkey A, Basnyat B, Tran Vu Thieu N, Trinh Van T, Thwaites GE, Antti H, Baker S. Diagnostic metabolite biomarkers of chronic typhoid carriage. PLoS Negl Trop Dis 2018; 12:e0006215. [PMID: 29373578 PMCID: PMC5802941 DOI: 10.1371/journal.pntd.0006215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/07/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background Salmonella Typhi and Salmonella Paratyphi A are the agents of enteric (typhoid) fever; both can establish chronic carriage in the gallbladder. Chronic Salmonella carriers are typically asymptomatic, intermittently shedding bacteria in the feces, and contributing to disease transmission. Detecting chronic carriers is of public health relevance in areas where enteric fever is endemic, but there are no routinely used methods for prospectively identifying those carrying Salmonella in their gallbladder. Methodology/Principal findings Here we aimed to identify biomarkers of Salmonella carriage using metabolite profiling. We performed metabolite profiling on plasma from Nepali patients undergoing cholecystectomy with confirmed S. Typhi or S. Paratyphi A gallbladder carriage (and non-carriage controls) using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) and supervised pattern recognition modeling. We were able to significantly discriminate Salmonella carriage samples from non-carriage control samples. We were also able to detect differential signatures between S. Typhi and S. Paratyphi A carriers. We additionally compared carriage metabolite profiles with profiles generated during acute infection; these data revealed substantial heterogeneity between metabolites associated with acute enteric fever and chronic carriage. Lastly, we found that Salmonella carriers could be significantly distinguished from non-carriage controls using only five metabolites, indicating the potential of these metabolites as diagnostic markers for detecting chronic Salmonella carriers. Conclusions/Significance Our novel approach has highlighted the potential of using metabolomics to search for diagnostic markers of chronic Salmonella carriage. We suggest further epidemiological investigations of these potential biomarkers in alternative endemic enteric fever settings. Enteric fever, caused by typhoidal Salmonella serovars, remains a substantial public health problem in many low- and middle-income countries. The human-restricted nature of these organisms combined with the development of new vaccines suggests that regional elimination of enteric fever should be possible. However, individuals that chronically carry Salmonella in their gallbladder, such as the notorious Typhoid Mary, complicates enteric fever transmission and maintain circulation of the organisms. The prospective detection of chronic Salmonella carriers is therefore a critical step for regional enteric fever elimination. However, there are currently no diagnostic methods routinely in use for this purpose. Here, we used a novel method for identifying chronic Salmonella carriers by comparing metabolite patterns in plasma samples from patients with chronic Salmonella carriage against non-carriage controls. We could significantly distinguish Salmonella carriers from non-carriers based on a large set of metabolites. Five metabolites were then highlighted, after comparing metabolite patterns obtained during chronic Salmonella carriage and acute enteric fever respectively, which could significantly distinguish Salmonella carriers from non-carriers. These potential biomarkers require further evaluation in epidemiological investigations of enteric fever in alternative endemic settings but this study provides a first step towards improved detection of Salmonella carriers.
Collapse
Affiliation(s)
- Elin Näsström
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Pär Jonsson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Nga Tran Vu Thieu
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tan Trinh Van
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Henrik Antti
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail: (SB); (HA)
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
- The Department of Medicine, The University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SB); (HA)
| |
Collapse
|
33
|
Delgado ML, Singh P, Funk JA, Moore JA, Cannell EM, Kanesfsky J, Manning SD, Scribner KT. Intestinal Microbial Community Dynamics of White-Tailed Deer (Odocoileus virginianus) in an Agroecosystem. MICROBIAL ECOLOGY 2017; 74:496-506. [PMID: 28293696 DOI: 10.1007/s00248-017-0961-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The intestinal microbiota has important functions that contribute to host health. The compositional dynamics of microbial communities are affected by many factors, including diet and presence of pathogens. In contrast to humans and domestic mammals, the composition and seasonal dynamics of intestinal microbiota of wildlife species remain comparatively understudied. White-tailed deer (Odocoileus virginianus) is an ecologically and economically important wildlife species that inhabits agricultural ecosystems and is known to be a reservoir of enteric pathogens. Nevertheless, there is a lack of knowledge of white-tailed deer intestinal microbiota diversity and taxonomic composition. This study's first objective was to characterize and compare the intestinal microbiota of 66 fecal samples from white-tailed deer collected during two sampling periods (March and June) using 16S rDNA pyrosequencing. Associations between community diversity and composition and factors including season, sex, host genetic relatedness, and spatial location were quantified. Results revealed that white-tailed deer intestinal microbiota was predominantly comprised of phyla Firmicutes and Proteobacteria, whose relative frequencies varied significantly between sampling periods. The second objective was to examine the associations between the presence of Escherichia coli and Salmonella, and microbiota composition and diversity. Results indicated that relative abundance of some microbial taxa varied when a pathogen was present. This study provides insights into microbial compositional dynamics of a wildlife species inhabiting coupled natural and agricultural landscapes. Data focus attention on the high prevalence of Proteobacteria particularly during the summer and highlight the need for future research regarding the role of white-tailed deer as a natural pathogen reservoir in agroecosystems.
Collapse
Affiliation(s)
- M Lisette Delgado
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA.
| | - Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State University, 194 Food Safety & Toxicology Building, East Lansing, MI, 48824, USA
| | - Julie A Funk
- College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI, 48824, USA
| | - Jennifer A Moore
- Department of Biology, Grand Valley State University, 1 Campus Drive, Allendale, MI, 49401, USA
| | - Emily M Cannell
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA
| | - Jeannette Kanesfsky
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, 194 Food Safety & Toxicology Building, East Lansing, MI, 48824, USA
| | - Kim T Scribner
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
34
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
35
|
Ktsoyan ZA, Mkrtchyan MS, Zakharyan MK, Mnatsakanyan AA, Arakelova KA, Gevorgyan ZU, Sedrakyan AM, Hovhannisyan AI, Arakelyan AA, Aminov RI. Systemic Concentrations of Short Chain Fatty Acids Are Elevated in Salmonellosis and Exacerbation of Familial Mediterranean Fever. Front Microbiol 2016; 7:776. [PMID: 27252692 PMCID: PMC4877380 DOI: 10.3389/fmicb.2016.00776] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota-produced short chain fatty acids (SCFAs) play an important role in the normal human metabolism and physiology. Although the gradients of SCFAs from the large intestine, where they are largely produced, to the peripheral blood as well as the main routes of SCFA metabolism by different organs are known well for the healthy state, there is a paucity of information regarding how these are affected in disease. In particular, how the inflammation caused by infection or autoinflammatory disease affect the concentration of SCFAs in the peripheral venous blood. In this work, we revealed that diseases caused either by infectious agents (two Salmonella enterica serovars, S. Enteritidis, and S. Typhimurium) or by the exacerbation of an autoinflammatory disease, familial Mediterranean fever (FMF), both result in a significantly elevated systemic concentration of SCFAs. In the case of salmonellosis the concentration of SCFAs in peripheral blood was significantly and consistently higher, from 5- to 20-fold, compared to control. In the case of FMF, however, a significant increase of SCFAs in the peripheral venous blood was detected only in the acute phase of the disease, with a lesser impact in remission. It seems counterintuitive that the dysbiotic conditions, with a reduced number of gut microorganisms, produce such an effect. This phenomenon, however, must be appraised within the context of how the inflammatory diseases affect the normal physiology. We discuss a number of factors that may contribute to the “leak” and persistence of gut-produced SCFAs into the systemic circulation in infectious and autoinflammatory diseases.
Collapse
Affiliation(s)
- Zhanna A Ktsoyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Mkhitar S Mkrtchyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Magdalina K Zakharyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Armine A Mnatsakanyan
- Clinical Hospital of Infectious Diseases Nork, Ministry of Health of Republic of Armenia Yerevan, Armenia
| | - Karine A Arakelova
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Zaruhi U Gevorgyan
- Clinical Hospital of Infectious Diseases Nork, Ministry of Health of Republic of Armenia Yerevan, Armenia
| | - Anahit M Sedrakyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Alvard I Hovhannisyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Arsen A Arakelyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Rustam I Aminov
- School of Medicine and Dentistry, University of Aberdeen Aberdeen, UK
| |
Collapse
|
36
|
Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, Petrucci P, Martinelli N, Moscati L, Manuali E, Pavone S, Picciolini M, Ammendola S, Gabai G, Battistoni A, Pezzotti G, Alborali GL, Napolioni V, Pasquali P, Magistrali CF. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota. Front Cell Infect Microbiol 2016; 5:106. [PMID: 26835435 PMCID: PMC4722131 DOI: 10.3389/fcimb.2015.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/28/2015] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.
Collapse
Affiliation(s)
- Rosanna Drumo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di SanitàRome, Italy; Department of Comparative Biomedicine and Food Science, University of PaduaPadua, Italy
| | - Michele Pesciaroli
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di SanitàRome, Italy; VISAVET Health Surveillance Centre, Universidad Complutense MadridMadrid, Spain
| | - Jessica Ruggeri
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Michela Tarantino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Barbara Chirullo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Claudia Pistoia
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Paola Petrucci
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Nicola Martinelli
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Livia Moscati
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Elisabetta Manuali
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Silvia Pavone
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Matteo Picciolini
- Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Serena Ammendola
- Department of Biology, University of Roma Tor Vergata Rome, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua Padua, Italy
| | | | - Giovanni Pezzotti
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| | - Giovanni L Alborali
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Valerio Napolioni
- Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Paolo Pasquali
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità Rome, Italy
| | - Chiara F Magistrali
- Research and Development Area, Istituto Zooprofilattico Sperimentale dell'Umbria e della Marche Perugia, Italy
| |
Collapse
|
37
|
Gibani MM, Jin C, Darton TC, Pollard AJ. Control of Invasive Salmonella Disease in Africa: Is There a Role for Human Challenge Models? Clin Infect Dis 2015; 61 Suppl 4:S266-71. [PMID: 26449941 PMCID: PMC4596929 DOI: 10.1093/cid/civ673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Invasive Salmonella disease in Africa is a major public health concern. With evidence of the transcontinental spread of the Salmonella Typhi H58 haplotype, improved estimates of the burden of infection and understanding of the complex interplay of factors affecting disease transmission are needed to assist with efforts aimed at disease control. In addition to Salmonella Typhi, invasive nontyphoidal Salmonella are increasingly recognized as an important cause of febrile illness and mortality in sub-Saharan Africa. Human experimental oral challenge studies with Salmonella can be used as a model to offer unique insights into host-pathogen interactions as well as a platform to efficiently test new diagnostic and vaccine candidates. In this article, we review the background and use of human challenge studies to date and discuss how findings from these studies may lead to progress in the control of invasive Salmonella disease in Africa.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, United Kingdom
| |
Collapse
|
38
|
Chirullo B, Pesciaroli M, Drumo R, Ruggeri J, Razzuoli E, Pistoia C, Petrucci P, Martinelli N, Cucco L, Moscati L, Amadori M, Magistrali CF, Alborali GL, Pasquali P. Salmonella Typhimurium exploits inflammation to its own advantage in piglets. Front Microbiol 2015; 6:985. [PMID: 26441914 PMCID: PMC4585093 DOI: 10.3389/fmicb.2015.00985] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.
Collapse
Affiliation(s)
- Barbara Chirullo
- Unit of Prophyilaxis and Control of Bacterial Zoonoses, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità Rome, Italy
| | - Michele Pesciaroli
- Unit of Prophyilaxis and Control of Bacterial Zoonoses, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità Rome, Italy ; VISAVET Health Surveillance Centre, Universidad Complutense Madrid Madrid, Spain
| | - Rosanna Drumo
- Unit of Prophyilaxis and Control of Bacterial Zoonoses, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità Rome, Italy ; Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova Padova, Italy
| | - Jessica Ruggeri
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Elisabetta Razzuoli
- S.S. Genova, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Genoa, Italy
| | - Claudia Pistoia
- Unit of Prophyilaxis and Control of Bacterial Zoonoses, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità Rome, Italy
| | - Paola Petrucci
- Unit of Prophyilaxis and Control of Bacterial Zoonoses, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità Rome, Italy
| | - Nicola Martinelli
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Lucilla Cucco
- Research and Development area, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche Perugia, Italy
| | - Livia Moscati
- Research and Development area, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche Perugia, Italy
| | - Massimo Amadori
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Chiara F Magistrali
- Research and Development area, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche Perugia, Italy
| | - Giovanni L Alborali
- Department of Veterinary Diagnostic, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Brescia, Italy
| | - Paolo Pasquali
- Unit of Prophyilaxis and Control of Bacterial Zoonoses, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
39
|
Interactions of Salmonella enterica subspecies enterica serovar Typhimurium with gut bacteria. Anaerobe 2015; 33:90-7. [DOI: 10.1016/j.anaerobe.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/19/2022]
|
40
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
41
|
Jones C, Darton TC, Pollard AJ. Why the development of effective typhoid control measures requires the use of human challenge studies. Front Microbiol 2014; 5:707. [PMID: 25566221 PMCID: PMC4267421 DOI: 10.3389/fmicb.2014.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/27/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| |
Collapse
|
42
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
43
|
Kato I, Boleij A, Kortman GAM, Roelofs R, Djuric Z, Severson RK, Tjalsma H. Partial associations of dietary iron, smoking and intestinal bacteria with colorectal cancer risk. Nutr Cancer 2013; 65:169-77. [PMID: 23441604 DOI: 10.1080/01635581.2013.748922] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Smoking and high red meat intake have been associated with colorectal cancer (CRC) risk. Increased iron exposure may be a common factor, favoring the colonization of certain bacterial pathogens that preferentially grow in an iron-rich luminal environment. We analyzed the data from a population-based case-control study of CRC and measured antibody levels against flagelin of Salmonella (FliC), one of the irontrophic bacteria, in 2 independent blood collections. The risk of CRC synergistically increased by combined exposures to heme iron intake and pack-yr (PY) of cigarette smoking (P value for the interaction = 0.039 on the continuous scale). There was a marginally significant interaction between heme iron intake and PY in increasing FliC antibody in the U.S. control subjects (P = 0.055), although no iron or smoking data were available for Dutch samples. Furthermore, FliC antibody levels were significantly higher in patients with colorectal polyps and cancer than in controls in both Dutch (3.93 vs. 2.23) (P = 0.014) and U.S. samples (6.65 vs. 4.37) (P < 0.001). Potential roles of iron from cigarette smoking and dietary heme in CRC through altering irontrophic luminal bacterial population may warrant further investigation.
Collapse
Affiliation(s)
- Ikuko Kato
- Karmanos Cancer Institute, and Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
45
|
Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci U S A 2013; 110:14420-5. [PMID: 23946425 DOI: 10.1073/pnas.1308085110] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial communication plays an important role in many population-based phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixed-microbial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine.
Collapse
|
46
|
Møller C, Ilg Y, Aabo S, Christensen B, Dalgaard P, Hansen T. Effect of natural microbiota on growth of Salmonella spp. in fresh pork – A predictive microbiology approach. Food Microbiol 2013; 34:284-95. [DOI: 10.1016/j.fm.2012.10.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/21/2012] [Accepted: 10/30/2012] [Indexed: 01/11/2023]
|
47
|
Bearson SMD, Allen HK, Bearson BL, Looft T, Brunelle BW, Kich JD, Tuggle CK, Bayles DO, Alt D, Levine UY, Stanton TB. Profiling the gastrointestinal microbiota in response to Salmonella: low versus high Salmonella shedding in the natural porcine host. INFECTION GENETICS AND EVOLUTION 2013; 16:330-40. [PMID: 23535116 DOI: 10.1016/j.meegid.2013.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 01/08/2023]
Abstract
Controlling Salmonella in the food chain is complicated by the ability of Salmonella to colonize livestock without causing clinical symptoms/disease. Salmonella-carrier animals are a significant reservoir for contamination of naïve animals, the environment, and our food supply. Salmonella carriage and shedding in pigs varies greatly both experimentally and on-farm. To investigate the dynamics between the porcine intestinal microbiota and Salmonella shedding, we temporally profiled the microbiota of pigs retrospectively classified as low and high Salmonella-shedders. Fifty-four piglets were collectively housed, fed and challenged with 10(9)Salmonella enterica serovar Typhimurium. Bacterial quantitation of Salmonella in swine feces was determined, and total fecal DNA was isolated for 16S rRNA gene sequencing from groups of high-shedder, low-shedder, and non-inoculated pigs (n=5/group; 15 pigs total). Analyses of bacterial community structures revealed significant differences between the microbiota of high-shedder and low-shedder pigs before inoculation and at 2 and 7 days post-inoculation (d.p.i.); microbiota differences were not detected between low-shedder and non-inoculated pigs. Because the microbiota composition prior to Salmonella challenge may influence future shedding status, the "will-be" high and low shedder phylotypes were compared, revealing higher abundance of the Ruminococcaceae family in the "will-be" low shedders. At 2d.p.i., a significant difference in evenness for the high shedder microbiota compared to the other two groups was driven by decreases in Prevotella abundance and increases in various genera (e.g. Catenibacterium, Xylanibacter). By 21 d.p.i., the microbial communities of high-shedder and low-shedder pigs were no longer significantly different from one another, but were both significantly different from non-inoculated pigs, suggesting a similar Salmonella-induced alteration in maturation of the swine intestinal microbiota regardless of shedding status. Our results correlate microbial shifts with Salmonella shedding status in pigs, further defining the complex interactions among the host, pathogen, and microbiota of this important public health issue and food safety concern.
Collapse
|
48
|
Loss of culturability of Salmonella enterica subsp. enterica serovar Typhimurium upon cell-cell contact with human fecal bacteria. Appl Environ Microbiol 2013; 79:3257-63. [PMID: 23503308 DOI: 10.1128/aem.00092-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss of culturability of Salmonella enterica subsp. enterica serovar Typhimurium has been observed in mixed cultures with anaerobic fecal bacteria under conditions that allow local interaction between cells, such as cell contact. A reduction of a population of culturable S. Typhimurium on the order of ∼10(4) to 10(5) CFU/ml was observed in batch anaerobic mixed cultures with fecal samples from different human donors. Culturability was not affected either in supernatants collected at several times from fecal cultures, when separated from fecal bacteria by a membrane of 0.45-μm pore size, or when in contact with inactivated fecal bacterial cells. Loss of culturability kinetics was characterized by a sharp reduction of several logarithmic units followed by a pronounced tail. A mathematical model was developed to describe the rate of loss of culturability as a function of the frequency of encounters between populations and the probability of inactivation after encounter. The model term F(S · F)(1/2) quantifies the effect of the concentration of both populations, fecal bacteria (F) and S. Typhimurium (S), on the loss of culturability of S. Typhimurium by cell contact with fecal bacteria. When the value of F(S · F)(1/2) decreased below ca. 10(15) (CFU/ml)(2), the frequency of encounters sharply decreased, leading to the deceleration of the inactivation rate and to the tailing off of the S. Typhimurium population. The probability of inactivation after encounter, P, was constant, with an estimated value of ∼10(-5) for all data sets. P might be characteristic of the mechanism of growth inhibition after a cell encounter.
Collapse
|
49
|
Amalaradjou MAR, Bhunia AK. Modern approaches in probiotics research to control foodborne pathogens. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:185-239. [PMID: 23034117 PMCID: PMC7150249 DOI: 10.1016/b978-0-12-394598-3.00005-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Foodborne illness is a serious public health concern. There are over 200 known microbial, chemical, and physical agents that are known to cause foodborne illness. Efforts are made for improved detection, control and prevention of foodborne pathogen in food, and pathogen associated diseases in the host. Several commonly used approaches to control foodborne pathogens include antibiotics, natural antimicrobials, bacteriophages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a potential intervention strategy for the prevention and control of foodborne infections. This review focuses on the use of probiotics and bioengineered probiotics to control foodborne pathogens, their antimicrobial actions, and their delivery strategies. Although probiotics have been demonstrated to be effective in antagonizing foodborne pathogens, challenges exist in the characterization and elucidation of underlying molecular mechanisms of action and in the development of potential delivery strategies that could maintain the viability and functionality of the probiotic in the target organ.
Collapse
|
50
|
Gunn JS. Salmonella host-pathogen interactions: a special topic. Front Microbiol 2011; 2:191. [PMID: 21954397 PMCID: PMC3175612 DOI: 10.3389/fmicb.2011.00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 12/15/2022] Open
Affiliation(s)
- John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| |
Collapse
|