1
|
Hale M, Takehara KK, Thouvenel CD, Moustafa DA, Repele A, Fontana MF, Netland J, McNamara S, Gibson RL, Goldberg JB, Rawlings DJ, Pepper M. Monoclonal antibodies derived from B cells in subjects with cystic fibrosis reduce Pseudomonas aeruginosa burden in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588618. [PMID: 38645147 PMCID: PMC11030358 DOI: 10.1101/2024.04.08.588618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across 3 donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Kennidy K. Takehara
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | | | - Dina A. Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Andrea Repele
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Mary F. Fontana
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Sharon McNamara
- Cystic Fibrosis Center, University of Washington/Seattle Children’s Hospital, Seattle, WA
| | - Ronald L. Gibson
- Cystic Fibrosis Center, University of Washington/Seattle Children’s Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
2
|
Guo H, Geddes EJ, Opperman TJ, Heuck AP. Cell-Based Assay to Determine Type 3 Secretion System Translocon Assembly in Pseudomonas aeruginosa Using Split Luciferase. ACS Infect Dis 2023; 9:2652-2664. [PMID: 37978950 DOI: 10.1021/acsinfecdis.3c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multi-drug-resistant Pseudomonas aeruginosa poses a serious threat to hospitalized patients. This organism expresses an arsenal of virulence factors that enables it to readily establish infections and disseminate in the host. The Type 3 secretion system (T3SS) and its associated effectors play a crucial role in the pathogenesis of P. aeruginosa, making them attractive targets for the development of novel therapeutic agents. The T3SS translocon, composed of PopD and PopB, is an essential component of the T3SS secretion apparatus. In the properly assembled translocon, the N-terminus of PopD protrudes into the cytoplasm of the target mammalian cell, which can be exploited as a molecular indicator of functional translocon assembly. In this article, we describe a novel whole-cell-based assay that employs the split NanoLuc luciferase detection system to provide a readout for translocon assembly. The assay demonstrates a favorable signal/noise ratio (13.6) and robustness (Z' = 0.67), making it highly suitable for high-throughput screening of small-molecule inhibitors targeting T3SS translocon assembly.
Collapse
Affiliation(s)
- Hanling Guo
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Emily J Geddes
- Microbiotix, Inc., Worcester, Massachusetts 01605, United States
| | | | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Qin P, Luan Y, Yang J, Chen X, Wu T, Li Y, Munang'andu HM, Shao G, Chen X. Comparative secretome analysis reveals cross-talk between type III secretion system and flagella assembly in Pseudomonas plecoglossicida. Heliyon 2023; 9:e22669. [PMID: 38144336 PMCID: PMC10746435 DOI: 10.1016/j.heliyon.2023.e22669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas plecoglossicida has caused visceral granulomas disease in several farmed fish species, including large yellow croaker (Larimichthys crocea), which results in severe economic losses. Type III secretion systems (T3SS) are protein secretion and translocation nanomachines widely employed by many Gram-negative bacterial pathogens for infection and pathogenicity. However, the exact role of T3SS in the pathogenesis of P. plecoglossicida infection is still unclear. In this study, a T3SS translocators deletion strain (△popBD) of P. plecoglossicida was constructed to investigate the function of T3SS. Then comparative secretome analysis of the P. plecoglossicida wild-type (WT) and △popBD mutant strains was conducted by label-free quantitation (LFQ) mass spectrometry. The results show that knockout of T3SS translocators popB and popD has an adverse effect on the effector protein ExoU secretion, flagella assembly, and biofilm formation. Further experimental validations also confirmed that popB-popD deletion could affect the P. plecoglossicida flagella morphology/formation, adherence, mobility, and biofilm formation. These data indicate that a cross-talk exists between the P. plecoglossicida T3SS and the flagella system. Our results, therefore, will facilitate the further under-standing of the pathogenic mechanisms leading to visceral granulomas disease caused by P. plecoglossicida.
Collapse
Affiliation(s)
- Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingjia Luan
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinmei Yang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingfu Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tong Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yousheng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
4
|
Chen P, Goldberg MB. Recent insights into type-3 secretion system injectisome structure and mechanism of human enteric pathogens. Curr Opin Microbiol 2023; 71:102232. [PMID: 36368294 PMCID: PMC10510281 DOI: 10.1016/j.mib.2022.102232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Type-3 secretion system injectisomes are multiprotein complexes that translocate bacterial effector proteins from the cytoplasm of gram-negative bacteria directly into the cytosol of eukaryotic host cells. These systems are present in more than 30 bacterial species, including numerous human, animal, and plant pathogens. We review recent discoveries of structural and molecular mechanisms of effector protein translocation through the injectisomes and recent advances in the understanding of mechanisms of activation of effector protein secretion.
Collapse
Affiliation(s)
- Poyin Chen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Blasey N, Rehrmann D, Riebisch AK, Mühlen S. Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 12:1065561. [PMID: 36704108 PMCID: PMC9872159 DOI: 10.3389/fcimb.2022.1065561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.
Collapse
|
6
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
7
|
Reig S, Le Gouellec A, Bleves S. What Is New in the Anti–Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert? Front Cell Infect Microbiol 2022; 12:909731. [PMID: 35880080 PMCID: PMC9308001 DOI: 10.3389/fcimb.2022.909731] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are considered “critical-priority” bacteria by the World Health Organization (WHO) since 2017 taking into account criteria such as patient mortality, global burden disease, and worldwide trend of multi-drug resistance (MDR). Indeed P. aeruginosa can be particularly difficult to eliminate from patients due to its combinatory antibiotic resistance, multifactorial virulence, and ability to over-adapt in a dynamic way. Research is active, but the course to a validated efficacy of a new treatment is still long and uncertain. What is new in the anti–P. aeruginosa clinical development pipeline since the 2017 WHO alert? This review focuses on new solutions for P. aeruginosa infections that are in active clinical development, i.e., currently being tested in humans and may be approved for patients in the coming years. Among 18 drugs of interest in December 2021 anti–P. aeruginosa development pipeline described here, only one new combination of β-lactam/β-lactamase inhibitor is in phase III trial. Derivatives of existing antibiotics considered as “traditional agents” are over-represented. Diverse “non-traditional agents” including bacteriophages, iron mimetic/chelator, and anti-virulence factors are significantly represented but unfortunately still in early clinical stages. Despite decade of efforts, there is no vaccine currently in clinical development to prevent P. aeruginosa infections. Studying pipeline anti–P. aeruginosa since 2017 up to now shows how to provide a new treatment for patients can be a difficult task. Given the process duration, the clinical pipeline remains unsatisfactory leading best case to the approval of new antibacterial drugs that treat CRPA in several years. Beyond investment needed to build a robust pipeline, the Community needs to reinvent medicine with new strategies of development to avoid the disaster. Among “non-traditional agents”, anti-virulence strategy may have the potential through novel and non-killing modes of action to reduce the selective pressure responsible of MDR.
Collapse
Affiliation(s)
- Sébastien Reig
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université-CNRS, UMR7255, Marseille, France
- *Correspondence: Sébastien Reig, ; Sophie Bleves,
| | - Audrey Le Gouellec
- Laboratoire Techniques de l’Ingénierie Médicale et de la Complexité (UMR5525), Centre National de la Recherche Scientifique, Université Grenoble Alpes, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Bleves
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université-CNRS, UMR7255, Marseille, France
- *Correspondence: Sébastien Reig, ; Sophie Bleves,
| |
Collapse
|
8
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Nasrin S, Hegerle N, Sen S, Nkeze J, Sen S, Permala-Booth J, Choi M, Sinclair J, Tapia MD, Johnson JK, Sow SO, Thaden JT, Fowler VG, Krogfelt KA, Brauner A, Protonotariou E, Christaki E, Shindo Y, Kwa AL, Shakoor S, Singh-Moodley A, Perovic O, Jacobs J, Lunguya O, Simon R, Cross AS, Tennant SM. Distribution of serotypes and antibiotic resistance of invasive Pseudomonas aeruginosa in a multi-country collection. BMC Microbiol 2022; 22:13. [PMID: 34991476 PMCID: PMC8732956 DOI: 10.1186/s12866-021-02427-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections and is frequently associated with healthcare-associated infections. Because of its ability to rapidly acquire resistance to antibiotics, P. aeruginosa infections are difficult to treat. Alternative strategies, such as a vaccine, are needed to prevent infections. We collected a total of 413 P. aeruginosa isolates from the blood and cerebrospinal fluid of patients from 10 countries located on 4 continents during 2005–2017 and characterized these isolates to inform vaccine development efforts. We determined the diversity and distribution of O antigen and flagellin types and antibiotic susceptibility of the invasive P. aeruginosa. We used an antibody-based agglutination assay and PCR for O antigen typing and PCR for flagellin typing. We determined antibiotic susceptibility using the Kirby-Bauer disk diffusion method. Results Of the 413 isolates, 314 (95%) were typed by an antibody-based agglutination assay or PCR (n = 99). Among the 20 serotypes of P. aeruginosa, the most common serotypes were O1, O2, O3, O4, O5, O6, O8, O9, O10 and O11; a vaccine that targets these 10 serotypes would confer protection against more than 80% of invasive P. aeruginosa infections. The most common flagellin type among 386 isolates was FlaB (41%). Resistance to aztreonam (56%) was most common, followed by levofloxacin (42%). We also found that 22% of strains were non-susceptible to meropenem and piperacillin-tazobactam. Ninety-nine (27%) of our collected isolates were resistant to multiple antibiotics. Isolates with FlaA2 flagellin were more commonly multidrug resistant (p = 0.04). Conclusions Vaccines targeting common O antigens and two flagellin antigens, FlaB and FlaA2, would offer an excellent strategy to prevent P. aeruginosa invasive infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02427-4.
Collapse
Affiliation(s)
- Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Hegerle
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shaichi Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph Nkeze
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunil Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myeongjin Choi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James Sinclair
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Mali, Bamako, Mali
| | - Joshua T Thaden
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Vance G Fowler
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Karen A Krogfelt
- Statens Serum Institut, Copenhagen, Denmark.,Department of Natural Sciences and Environment, Roskilde University, Roskilde, Denmark
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | | | - Eirini Christaki
- Department of Medicine, AHEPA University Hospital, Thessaloniki, Greece.,University of Cyprus Medical School, Nicosia, Cyprus
| | - Yuichiro Shindo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sadia Shakoor
- Departments of Pathology and Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Ashika Singh-Moodley
- National Institute for Communicable Diseases a Division of the National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olga Perovic
- National Institute for Communicable Diseases a Division of the National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Octavie Lunguya
- Department of Clinical Microbiology, National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo.,Department of Microbiology, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore St. - HSF1 Room 480, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:antibiotics10121530. [PMID: 34943742 PMCID: PMC8698887 DOI: 10.3390/antibiotics10121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.
Collapse
|
11
|
Cryo-EM structure of the needle filament tip complex of the Salmonella type III secretion injectisome. Proc Natl Acad Sci U S A 2021; 118:2114552118. [PMID: 34706941 DOI: 10.1073/pnas.2114552118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Type III secretion systems are multiprotein molecular machines required for the virulence of several important bacterial pathogens. The central element of these machines is the injectisome, a ∼5-Md multiprotein structure that mediates the delivery of bacterially encoded proteins into eukaryotic target cells. The injectisome is composed of a cytoplasmic sorting platform, and a membrane-embedded needle complex, which is made up of a multiring base and a needle-like filament that extends several nanometers from the bacterial surface. The needle filament is capped at its distal end by another substructure known as the tip complex, which is crucial for the translocation of effector proteins through the eukaryotic cell plasma membrane. Here we report the cryo-EM structure of the Salmonella Typhimurium needle tip complex docked onto the needle filament tip. Combined with a detailed analysis of structurally guided mutants, this study provides major insight into the assembly and function of this essential component of the type III secretion protein injection machine.
Collapse
|
12
|
Outer Membrane Vesicles Displaying a Heterologous PcrV-HitA Fusion Antigen Promote Protection against Pulmonary Pseudomonas aeruginosa Infection. mSphere 2021; 6:e0069921. [PMID: 34612675 PMCID: PMC8510544 DOI: 10.1128/msphere.00699-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Along with surging threats and antibiotic resistance of Pseudomonas aeruginosa in health care settings, it is imperative to develop effective vaccines against P. aeruginosa infection. In this study, we used an Asd (aspartate-semialdehyde dehydrogenase)-based balanced-lethal host-vector system of a recombinant Yersinia pseudotuberculosis mutant to produce self-adjuvanting outer membrane vesicles (OMVs). The OMVs were used as a carrier to deliver the heterologous PcrV-HitAT (PH) fusion antigen of P. aeruginosa for vaccine evaluation. Intramuscular vaccination with OMVs carrying the PH antigen (referred to rOMV-PH) afforded 73% protection against intranasal challenge with 5 × 106 (25 50% lethal doses) of the cytotoxic PA103 strain and complete protection against a noncytotoxic PAO1 strain. In contrast, vaccination with the PH-deficient OMVs or PH antigen alone failed to offer effective protection against the same challenge. Immune analysis showed that the rOMV-PH vaccination induced potent humoral and Th1/Th17 responses compared to the PH vaccination. The rOMV-PH vaccination rapidly cleared P. aeruginosa burdens with coordinated production of proinflammatory cytokines in mice. Moreover, antigen-specific CD4+ and CD8+ T cells and their producing cytokines (tumor necrosis factor alpha and interleukin-17A), rather than antibodies, were essential for protection against pneumonic P. aeruginosa infection. Our studies demonstrated that the recombinant Y. pseudotuberculosis OMVs delivering heterologous P. aeruginosa antigens could be a new promising vaccine candidate for preventing the spread of drug-resistant P. aeruginosa. IMPORTANCE Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.
Collapse
|
13
|
Sierocki R, Jneid B, Orsini Delgado ML, Plaisance M, Maillère B, Nozach H, Simon S. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections. PLoS Negl Trop Dis 2021; 15:e0009231. [PMID: 33711056 PMCID: PMC7990167 DOI: 10.1371/journal.pntd.0009231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/24/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents. Salmonella and Shigella are responsible for gastrointestinal diseases and continue to remain a serious health hazard in South and South-East Asia and African countries, even more with the new emergence of multi drug resistances. Developed vaccines are either not commercialized (for Shigella) or cover only a limited number of serotypes (for Salmonella). There is thus a crucial need to develop cross-protective therapies. By targeting proteins SipD and IpaD belonging respectively to the injectisome of Salmonella and Shigella and necessary to their virulence, we have shown that a monoclonal antibody (mAb) directed against a conserved common region of their apical part provides good cross-protection prophylactic efficacy. We have determined the region targeted by this mAb which could explain why it is conserved among Salmonella and Shigella bacteria.
Collapse
Affiliation(s)
- Raphaël Sierocki
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Marc Plaisance
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
14
|
Wang Y, Cheng X, Wan C, Wei J, Gao C, Zhang Y, Zeng H, Peng L, Luo P, Lu D, Zou Q, Gu J. Development of a Chimeric Vaccine Against Pseudomonas aeruginosa Based on the Th17-Stimulating Epitopes of PcrV and AmpC. Front Immunol 2021; 11:601601. [PMID: 33552056 PMCID: PMC7859429 DOI: 10.3389/fimmu.2020.601601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Pulmonary infection caused by Pseudomonas aeruginosa (PA) has created an urgent need for an efficient vaccine, but the protection induced by current candidates is limited, partially because of the high variability of the PA genome. Antigens targeting pulmonary Th17 responses are able to provide antibody-independent and broad-spectrum protection; however, little information about Th17-stimulating antigens in PA is available. Herein, we identified two novel PA antigens that effectively induce Th17-dependent protection, namely, PcrV (PA1706) and AmpC (PA4110). Compared to intramuscular immunization, intranasal immunization enhanced the protection of rePcrV due to activation of a Th17 response. The Th17-stimulating epitopes of PcrV and AmpC were identified, and the recombinant protein PVAC was designed and generated by combining these Th17-stimulating epitopes. PVAC was successfully produced in soluble form and elicited broad protective immunity against PA. Our results provide an alternative strategy for the development of Th17-based vaccines against PA and other pathogens.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xin Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chuang Wan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jinning Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chen Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System Needle Complex. Curr Top Microbiol Immunol 2020; 427:67-90. [PMID: 31667599 DOI: 10.1007/82_2019_178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.
Collapse
Affiliation(s)
- Sean Miletic
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany
| | | | - Thomas C Marlovits
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany.
| |
Collapse
|
16
|
Fakoor MH, Mousavi Gargari SL, Owlia P, Sabokbar A. Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model. Infect Drug Resist 2020; 13:1651-1661. [PMID: 32606816 PMCID: PMC7294051 DOI: 10.2147/idr.s244081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa infection is the major cause of death in burn patients. Thus, in this study, a chimeric vaccine harboring the OprF185–350–OprI22–83–PcrV was designed and expressed in Escherichia coli. The immunogenicity of the recombinant chimer, OprI, OprF, and PcrV was studied in a burned mouse model. Methodology Recombinant proteins including the proposed chimer, OprF, OprI, and PcrV were expressed in the E.coli. Mice were immunized with the purified recombinant proteins, and the antibody titre was estimated in the sera obtained from immunized mice. Immunized and control mice were challenged with 2, 5, and 10xLD50 of the P. aeruginosa strains (PAO1, PAK, and R5), and microbial counts were measured in the skin, liver, spleen, and kidney of the studied mice. Results Results showed that the antibody titre (total IgG) was significantly increased by injection of 10 μg of chimeric protein in the experimental groups compared to the control groups. The antibody survival titre was high until 235 days after administration of the second booster. The survival rate of the mice infected with 10xLD50 was significantly increased and the number of bacteria was reduced, especially in the internal organs (kidney, spleen, and liver) compared to the mice immunized with any of the OprF, OprI, and PcrV proteins alone. Conclusion The findings of our study revealed that the chimeric protein is a promising vaccine candidate for control of the P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
17
|
Jneid B, Rouaix A, Féraudet-Tarisse C, Simon S. SipD and IpaD induce a cross-protection against Shigella and Salmonella infections. PLoS Negl Trop Dis 2020; 14:e0008326. [PMID: 32463817 PMCID: PMC7282677 DOI: 10.1371/journal.pntd.0008326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
Salmonella and Shigella species are food- and water-borne pathogens that are responsible for enteric infections in both humans and animals and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics require the development of broadly protective therapies. Those bacteria utilize a Type III Secretion System (T3SS), necessary for their pathogenicity. The structural proteins composing the T3SS are common to all virulent Salmonella and Shigella spp., particularly the needle-tip proteins SipD (Salmonella) and IpaD (Shigella). We investigated the immunogenicity and protective efficacy of SipD and IpaD administered by intranasal and intragastric routes, in a mouse model of Salmonella enterica serotype Typhimurium (S. Typhimurium) intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins. Mice immunized with SipD or IpaD were protected against lethal intestinal challenge with S. Typhimurium or Shigella flexneri (100 Lethal Dose 50%). We have shown that SipD and IpaD are able to induce a cross-protection in a murine model of infection by Salmonella and Shigella. We provide the first demonstration that Salmonella and Shigella T3SS SipD and IpaD are promising antigens for the development of a cross-protective Salmonella-Shigella vaccine. These results open the way to the development of cross-protective therapeutic molecules.
Collapse
Affiliation(s)
- Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Audrey Rouaix
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Cécile Féraudet-Tarisse
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
18
|
Sawa T, Kinoshita M, Inoue K, Ohara J, Moriyama K. Immunoglobulin for Treating Bacterial Infections: One More Mechanism of Action. Antibodies (Basel) 2019; 8:antib8040052. [PMID: 31684203 PMCID: PMC6963986 DOI: 10.3390/antib8040052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The mechanisms underlying the effects of immunoglobulins on bacterial infections are thought to involve bacterial cell lysis via complement activation, phagocytosis via bacterial opsonization, toxin neutralization, and antibody-dependent cell-mediated cytotoxicity. Nevertheless, recent advances in the study of the pathogenicity of Gram-negative bacteria have raised the possibility of an association between immunoglobulin and bacterial toxin secretion. Over time, new toxin secretion systems like the type III secretion system have been discovered in many pathogenic Gram-negative bacteria. With this system, the bacterial toxins are directly injected into the cytoplasm of the target cell through a special secretory apparatus without any exposure to the extracellular environment, and therefore with no opportunity for antibodies to neutralize the toxin. However, antibodies against the V-antigen, which is located on the needle-shaped tip of the bacterial secretion apparatus, can inhibit toxin translocation, thus raising the hope that the toxin may be susceptible to antibody targeting. Because multi-drug resistant bacteria are now prevalent, inhibiting this secretion mechanism is an attractive alternative or adjunctive therapy against lethal bacterial infections. Thus, it is not unreasonable to define the blocking effect of anti-V-antigen antibodies as the fifth mechanism for immunoglobulin action against bacterial infections.
Collapse
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Keita Inoue
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Junya Ohara
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Kiyoshi Moriyama
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| |
Collapse
|
19
|
Ranjbar M, Behrouz B, Norouzi F, Mousavi Gargari SL. Anti-PcrV IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound models. Mol Immunol 2019; 116:98-105. [PMID: 31634816 DOI: 10.1016/j.molimm.2019.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly acquires antibiotic resistance; thus, developing an effective therapeutic approach is the most promising strategy for combating infection. Type III secretion system (T3SS) translocates bacterial toxins into the cytosol of the targeted eukaryotic cells, which plays important roles in the virulence of P. aeruginosa infections in both acute pneumonia and burn wound models. The PcrV protein, a T3SS translocating protein, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In the present study, we evaluated the protective efficacy of chicken egg yolk antibodies (IgY) raised against recombinant PcrV (r-PcrV) in both acute pneumonia and burn wound models. R-PcrV protein was generated by expressing the pcrV gene (cloned in pET-28a vector) in E. coli BL-21. Anti-PcrV IgY was obtained by immunization of hen. Anti-PcrV IgY induced greater protection in P. aeruginosamurine acute pneumonia and burn wound models than control IgY (C-IgY) and PBS groups. Anti-PcrV IgY improved opsonophagocytic killing and inhibition of bacterial invasion of host cells. Taken together, our data provide evidence that anti-PcrV IgY can be a promising therapeutic candidate for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Mahya Ranjbar
- Department of Microbiology, Shahed University, Faculty of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Fatemeh Norouzi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | |
Collapse
|
20
|
Muthuramalingam M, Middaugh CR, Picking WD. The cytoplasmic portion of the T3SS inner membrane ring components sort into distinct families based on biophysical properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:787-793. [PMID: 31195141 DOI: 10.1016/j.bbapap.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
Abstract
Type III secretion systems are used by many Gram-negative bacteria to inject effector proteins into eukaryotic cells to subvert their normal activities. Structurally conserved portions of the type III secretion apparatus include a: basal body located within the bacterial envelope; an exposed needle with tip complex that delivers effectors across the target cell membrane; and cytoplasmic sorting platform that selects cargo and powers secretion. While structurally conserved, the individual proteins that make up this nanomachine are typically not interchangeable though they do tend to fall into families. Here we selected a single domain from the inner membrane ring of the basal body from six different type III secretion systems (called SctD using a proposed unifying nomenclature). The selected domain creates an integral interface between the basal body and the sorting platform. Therefore, it represents a pivotal point between two distinct assemblies. All six protein domains possess a structural motif called a forkhead-associated-like (FHA-like) domain but differ greatly in their sequences and solution behaviors. These differences are used here to define family boundaries for these FHA-like domains. The data parallel, though not precisely, family boundaries defined by other proteins within the apparatus and by phylogenetic analysis. Ultimately, differences in the families are likely to reflect differences in the activities of these type III secretion systems or the host niches in which these pathogens are found.
Collapse
Affiliation(s)
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, United States of America
| | - William D Picking
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, United States of America.
| |
Collapse
|
21
|
Phase 1 study of MEDI3902, an investigational anti–Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect 2019; 25:629.e1-629.e6. [DOI: 10.1016/j.cmi.2018.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022]
|
22
|
Wan C, Zhang J, Zhao L, Cheng X, Gao C, Wang Y, Xu W, Zou Q, Gu J. Rational Design of a Chimeric Derivative of PcrV as a Subunit Vaccine Against Pseudomonas aeruginosa. Front Immunol 2019; 10:781. [PMID: 31068928 PMCID: PMC6491502 DOI: 10.3389/fimmu.2019.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major cause of nosocomial infections, which remain an unsolved problem in the clinic despite conventional antibiotic treatment. A PA vaccine could be both an effective and economical strategy to address this issue. Many studies have shown that PcrV, a structural protein of the type 3 secretion system (T3SS) from PA, is an ideal target for immune prevention and therapy. However, difficulties in the production of high-quality PcrV likely hinder its further application in the vaccine industry. Thus, we hypothesized that an optimized PcrV derivative with a rational design could be produced. In this study, the full-length PcrV was divided into four domains with the guidance of its structure, and the Nter domain (Met1-Lys127) and H12 domain (Leu251-Ile294) were found to be immunodominant. Subsequently, Nter and H12 were combined with a flexible linker to generate an artificial PcrV derivative (PcrVNH). PcrVNH was successfully produced in E. coli and behaved as a homogenous monomer. Moreover, immunization with PcrVNH elicited a multifactorial immune response and conferred broad protection in an acute PA pneumonia model and was equally effective to full-length PcrV. In addition, passive immunization with anti-PcrVNH antibodies alone also showed significant protection, at least based on inhibition of the T3SS and mediation of opsonophagocytic killing activities. These results provide an additional example for the rational design of antigens and suggest that PcrVNH is a promising vaccine candidate for the control of PA infection.
Collapse
Affiliation(s)
- Chuang Wan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liqun Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xin Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chen Gao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wanting Xu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
23
|
The Edwardsiella piscicida Type III Translocon Protein EseC Inhibits Biofilm Formation by Sequestering EseE. Appl Environ Microbiol 2019; 85:AEM.02133-18. [PMID: 30770403 DOI: 10.1128/aem.02133-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is one of the most important virulence factors of the fish pathogen Edwardsiella piscicida It contains three translocon proteins, EseB, EseC, and EseD, required for translocation of effector proteins into host cells. We have previously shown that EseB forms filamentous appendages on the surface of E. piscicida, and these filamentous structures mediate bacterial cell-cell interactions promoting autoaggregation and biofilm formation. In the present study, we show that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida At 18 h postsubculture, a ΔeseC strain developed strong autoaggregation and mature biofilm formation, accompanied by enhanced formation of EseB filamentous appendages. This is in contrast to the weak autoaggregation and immature biofilm formation seen in the E. piscicida wild-type strain. EseE, a protein that directly binds to EseC and also positively regulates the transcription of the escC-eseE operon, was liberated and showed increased levels in the absence of EseC. This led to augmented transcription of the escC-eseE operon, thereby increasing the steady-state protein levels of intracellular EseB, EseD, and EseE, as well as biofilm formation. Notably, the levels of intracellular EseB and EseD produced by the ΔeseE and ΔeseC ΔeseE strains were similar but remarkably lower than those produced by the wild-type strain at 18 h postsubculture. Taken together, we have shown that the translocon protein EseC inhibits biofilm formation through sequestering EseE, a positive regulator of the escC-eseE operon.IMPORTANCE Edwardsiella piscicida, previously known as Edwardsiella tarda, is a Gram-negative intracellular pathogen that mainly infects fish. The type III secretion system (T3SS) plays a pivotal role in its pathogenesis. The T3SS translocon protein EseB is required for the assembly of filamentous appendages on the surface of E. piscicida The interactions between the appendages facilitate autoaggregation and biofilm formation. In this study, we explored the role of the other two translocon proteins, EseC and EseD, in biofilm formation. We have demonstrated that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida, providing new insights into the regulatory mechanism involved in E. piscicida biofilm formation.
Collapse
|
24
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
25
|
Picking WD, Barta ML. The Tip Complex: From Host Cell Sensing to Translocon Formation. Curr Top Microbiol Immunol 2019; 427:173-199. [PMID: 31218507 DOI: 10.1007/82_2019_171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type III secretion systems are used by some Gram-negative bacteria to inject effector proteins into targeted eukaryotic cells for the benefit of the bacterium. The type III secretion injectisome is a complex nanomachine comprised of four main substructures including a cytoplasmic sorting platform, an envelope-spanning basal body, an extracellular needle and an exposed needle tip complex. Upon contact with a host cell, secretion is induced, resulting in the formation of a translocon pore in the host membrane. Translocon formation completes the conduit needed for effector secretion into the host cell. Control of type III secretion occurs in response to environmental signals, with the final signal being host cell contact. Secretion control occurs primarily at two sites-the cytoplasmic sorting platform, which determines secretion hierarchy, and the needle tip complex, which is critical for sensing and responding to environmental signals. The best-characterized injectisomes are those from Yersinia, Shigella and Salmonella species where there is a wealth of information on the tip complex and the two translocator proteins. Of these systems, the best characterized from a secretion regulation standpoint is Shigella. In the Shigella system, the tip complex and the first secreted translocon both contribute to secretion control and, thus, both are considered components of the tip complex. In this review, all three of these type III secretion systems are described with discussion focused on the structure and formation of the injectisome tip complex and what is known of the transition from nascent tip complex to assembled translocon pore.
Collapse
Affiliation(s)
- William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, 66047, KS, USA.
| | - Michael L Barta
- Higuchi Biosciences, 2099 Constant Ave., Lawrence, 66047, KS, USA.,Catalent Pharma Solutions, 10245 Hickman Mills Drive, Kansas City, 64137, MO, USA
| |
Collapse
|
26
|
Merakou C, Schaefers MM, Priebe GP. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surg Infect (Larchmt) 2018; 19:757-768. [PMID: 30388058 DOI: 10.1089/sur.2018.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The gram-negative bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections, mostly in hospitalized and immunocompromised patients, those with burns, surgical wounds, or combat-related wounds, and in people with cystic fibrosis. The increasing antibiotic resistance of P. aeruginosa confers a pressing need for vaccines, yet there are no P. aeruginosa vaccines approved for human use, and recent promising candidates have failed in large clinical trials. Discussion: In this review, we summarize recent clinical trials and pre-clinical studies of P. aeruginosa vaccines and provide a suggested framework for the makeup of a future successful vaccine. Murine models of infection suggest that antibodies, specifically opsonophagocytic killing antibodies (OPK), antitoxin antibodies, and anti-attachment antibodies, combined with T cell immunity, specifically TH17 responses, are needed for broad and potent protection against P. aeruginosa infection. A better understanding of the human immune response to P. aeruginosa infections, and to vaccine candidates, will eventually pave the way to a successful vaccine for this wily pathogen.
Collapse
Affiliation(s)
- Christina Merakou
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Matthew M Schaefers
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Gregory P Priebe
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts.,3 Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
27
|
|
28
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
29
|
Inouye BM, Hughes FM, Sexton SJ, Purves JT. The Emerging Role of Inflammasomes as Central Mediators in Inflammatory Bladder Pathology. Curr Urol 2017; 11:57-72. [PMID: 29593464 DOI: 10.1159/000447196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022] Open
Abstract
Irritative voiding symptoms (e.g. increased frequency and urgency) occur in many common pathologic conditions such as urinary tract infections and bladder outlet obstruction, and these conditions are well-established to have underlying inflammation that directly triggers these symptoms. However, it remains unclear as to how such diverse stimuli individually generate a common inflammatory process. Jürg Tschopp provided substantial insight into this conundrum when, working with extracts from THP-1 cells, he reported the existence of the inflammasome. He described it as a structure that senses multiple diverse signals from intracellular/extracellular sources and pathogens and triggers inflammation by the maturation and release of the pro-inflammatory cytokines interleukin-1β and interleukin-18. Recently, many of these sensors were found in the bladder and the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3, has been shown to be a central mediator of inflammation in several urological diseases. In this review, we introduce the nucleotide-binding domain, leucine-rich-containing family, pyrin domaincontaining-3 inflammasome, highlight its emerging role in several common urologic conditions, and speculate on the potential involvement of other inflammasomes in bladder pathology.
Collapse
Affiliation(s)
- Brian M Inouye
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie J Sexton
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
30
|
Portaliou AG, Tsolis KC, Loos MS, Balabanidou V, Rayo J, Tsirigotaki A, Crepin VF, Frankel G, Kalodimos CG, Karamanou S, Economou A. Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J 2017; 36:3517-3531. [PMID: 29109154 PMCID: PMC5709732 DOI: 10.15252/embj.201797515] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.
Collapse
Affiliation(s)
- Athina G Portaliou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Maria S Loos
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vassileia Balabanidou
- Institute of Molecular Biology and Biotechnology, FORTH (Foundation of Research and Technology), University of Crete, Heraklion, Greece
| | - Josep Rayo
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Alexandra Tsirigotaki
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Valerie F Crepin
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Deng X, Li M, Pan X, Zheng R, Liu C, Chen F, Liu X, Cheng Z, Jin S, Wu W. Fis Regulates Type III Secretion System by Influencing the Transcription of exsA in Pseudomonas aeruginosa Strain PA14. Front Microbiol 2017; 8:669. [PMID: 28469612 PMCID: PMC5395579 DOI: 10.3389/fmicb.2017.00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Fis is a versatile DNA binding protein in bacteria. It has been demonstrated in multiple bacteria that Fis plays crucial roles in regulating bacterial virulence factors and optimizing bacterial adaptation to various environments. However, the role of Fis in Pseudomonas aeruginosa virulence as well as gene regulation remains largely unknown. Here, we found that Fis was required for the virulence of P. aeruginosa in a murine acute pneumonia model. Transcriptome analysis revealed that expression of T3SS genes, including master regulator ExsA, was defective in a fis::Tn mutant. We further demonstrate that the continuous transcription of exsC, exsE, exsB, and exsA driven by the exsC promoter was required for the activation of T3SS. Fis was found to specifically bind to the exsB-exsA intergenic region and plays an essential role in the transcription elongation from exsB to exsA. Therefore, we found a novel role of Fis in the regulation of exsA expression.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Ruiping Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Fei Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China.,Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| |
Collapse
|
32
|
Abstract
Type III secretion (T3S) systems are found in a large number of gram-negative bacteria where they function to manipulate the biology of infected hosts. Hosts targeted by T3S systems are widely distributed in nature and are represented by animals and plants. T3S systems are found in diverse genera of bacteria and they share a common core structure and function. Effector proteins are delivered by T3S systems into targeted host cells without prior secretion of the effectors into the environment. Instead, an assembled translocon structure functions to translocate effectors across eukaryotic cell membranes. In many cases, T3S systems are essential virulence factors and in some instances they promote symbiotic interactions.
Collapse
Affiliation(s)
- Danielle L Jessen Condry
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Matthew L Nilles
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
33
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
34
|
De Tavernier E, Detalle L, Morizzo E, Roobrouck A, De Taeye S, Rieger M, Verhaeghe T, Correia A, Van Hegelsom R, Figueirido R, Noens J, Steffensen S, Stöhr T, Van de Velde W, Depla E, Dombrecht B. High Throughput Combinatorial Formatting of PcrV Nanobodies for Efficient Potency Improvement. J Biol Chem 2016; 291:15243-55. [PMID: 27226529 DOI: 10.1074/jbc.m115.684241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/06/2022] Open
Abstract
Improving potencies through concomitant blockage of multiple epitopes and avid binding by fusing multiple (different) monovalent Nanobody building blocks via linker sequences into one multivalent polypeptide chain is an elegant alternative to affinity maturation. We explored a large and random formatting library of bivalent (combinations of two identical) and biparatopic (combinations of two different) Nanobodies for functional blockade of Pseudomonas aeruginosa PcrV. PcrV is an essential part of the P. aeruginosa type III secretion system (T3SS), and its oligomeric nature allows for multiple complex binding and blocking options. The library screening yielded a large number of promising biparatopic lead candidates, revealing significant (and non-trivial) preferences in terms of Nanobody building block and epitope bin combinations and orientations. Excellent potencies were confirmed upon further characterization in two different P. aeruginosa T3SS-mediated cytotoxicity assays. Three biparatopic Nanobodies were evaluated in a lethal mouse P. aeruginosa challenge pneumonia model, conferring 100% survival upon prophylactic administration and reducing lung P. aeruginosa burden by up to 2 logs. At very low doses, they protected the mice from P. aeruginosa infection-related changes in lung histology, myeloperoxidase production, and lung weight. Importantly, the most potent Nanobody still conferred protection after therapeutic administration up to 24 h post-infection. The concept of screening such formatting libraries for potency improvement is applicable to other targets and biological therapeutic platforms.
Collapse
Affiliation(s)
| | | | - Erika Morizzo
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | | | - Melanie Rieger
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | - Tom Verhaeghe
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | | | | | - Jeroen Noens
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | - Thomas Stöhr
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | - Erik Depla
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | |
Collapse
|
35
|
Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem Sci 2016; 41:175-189. [DOI: 10.1016/j.tibs.2015.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
|
36
|
Zhu M, Zhao J, Kang H, Kong W, Liang H. Modulation of Type III Secretion System in Pseudomonas aeruginosa: Involvement of the PA4857 Gene Product. Front Microbiol 2016; 7:7. [PMID: 26858696 PMCID: PMC4729953 DOI: 10.3389/fmicb.2016.00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious acute or chronic infections in humans. Acute infections typically involve the type III secretion systems (T3SSs) and bacterial motility, whereas chronic infections are often associated with biofilm formation and the type VI secretion system. To identify new genes required for pathogenesis, a transposon mutagenesis library was constructed and the gene PA4857, named tspR, was found to modulate T3SS gene expression. Deletion of P. aeruginosa tspR reduced the virulence in a mouse acute lung infection model and diminished cytotoxicity. Suppression of T3SS gene expression in the tspR mutant resulted from compromised translation of the T3SS master regulator ExsA. TspR negatively regulated two small RNAs, RsmY and RsmZ, which control RsmA. Our data demonstrated that defects in T3SS expression and biofilm formation in retS mutant could be partially restored by overexpression of tspR. Taken together, our results demonstrated that the newly identified retS-tspR pathway is coordinated with the retS-gacS system, which regulates the genes associated with acute and chronic infections and controls the lifestyle choice of P. aeruginosa.
Collapse
Affiliation(s)
- Miao Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Department of Life Science, Northwest University Xi'an, China
| | - Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Department of Life Science, Northwest University Xi'an, China
| | - Huaping Kang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Department of Life Science, Northwest University Xi'an, China
| | - Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Department of Life Science, Northwest University Xi'an, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Department of Life Science, Northwest University Xi'an, China
| |
Collapse
|
37
|
Ramírez-Estrada S, Borgatta B, Rello J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 2016; 9:7-18. [PMID: 26855594 PMCID: PMC4725638 DOI: 10.2147/idr.s50669] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.
Collapse
Affiliation(s)
| | - Bárbara Borgatta
- Critical Care Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CRIPS, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jordi Rello
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedad Respiratoria – CIBERES, Madrid, Spain
| |
Collapse
|
38
|
Basu A, Das A, Mondal A, Datta S. Structural analysis of inter-genus complexes of V-antigen and its regulator and their stabilization by divalent metal ions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:113-28. [PMID: 26463823 DOI: 10.1007/s00249-015-1081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Gram-negative bacteria like Yersinia, Pseudomonas, and Aeromonas need type III secretion system (T3SS) for their pathogenicity. V-antigen and its regulator are essential for functioning of T3SS. There is significant functional conservation amongst V-antigen and its regulator belonging to the Ysc family. In this study, we have structurally characterized the inter-genus complexes of V-antigen and its regulator. ConSurf analysis demonstrates that V-antigens belonging to the Ysc family show high structural identity predominantly confined to the two long helical regions. The regulator of V-antigen shows high conservation in its first intramolecular coiled-coil domain, responsible for interaction with V-antigen. ∆LcrG(1-70) localizes within the groove formed by long helices of LcrV, as observed in PcrV-∆PcrG(13-72) interaction. Inter-genus complexes of LcrV-PcrG and PcrV-LcrG exhibited elongated conformation and 1:1 heterodimeric state like the native complex of PcrV-PcrG and LcrV-LcrG. Both native and inter-genus complexes showed rigid tertiary structure, solvent-exposed hydrophobic patches, and cooperative melting behavior with high melting temperature. LcrV-PcrG and PcrV-LcrG showed nanomolar affinity of interaction, identical to PcrV-PcrG interaction, but stronger than LcrV-LcrG interaction. Calcium (a secretion blocker of T3SS) propels all the complexes towards a highly monodisperse form. Calcium and magnesium increase the helicity of the native and inter-genus complexes, and causes helix-helix stabilization. Stabilization of helices leads to a slight increase in the melting temperature by 1.5-2.0 °C. However, calcium does not alter the affinity of interaction of V-antigen and its regulator, emphasizing the effect of divalent of cations at the structural level without any regulatory implications. Therefore, the structural conservation of these inter-genus complexes could be the basis for their functional complementation.
Collapse
Affiliation(s)
- Abhishek Basu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Atanu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Abhisek Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Saumen Datta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
39
|
Sawa T, Ito E, Nguyen VH, Haight M. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa. Hum Vaccin Immunother 2015; 10:2843-52. [PMID: 25483637 DOI: 10.4161/21645515.2014.971641] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes fatal acute lung infections in critically ill individuals. Its pathogenesis is associated with bacterial virulence conferred by the type III secretion system (TTSS), through which P. aeruginosa causes necrosis of the lung epithelium and disseminates into the circulation, resulting in bacteremia, sepsis, and mortality. TTSS allows P. aeruginosa to directly translocate cytotoxins into eukaryotic cells, inducing cell death. The P. aeruginosa V-antigen PcrV, a homolog of the Yersinia V-antigen LcrV, is an indispensable contributor to TTS toxin translocation. Vaccination against PcrV ensures the survival of challenged mice and decreases lung inflammation and injury. Both the rabbit polyclonal anti-PcrV antibody and the murine monoclonal anti-PcrV antibody, mAb166, inhibit TTS toxin translocation. mAb166 IgG was cloned, and a molecular engineered humanized anti-PcrV IgG antigen-binding fragment, KB001, was developed for clinical use. KB001 is currently undergoing Phase-II clinical trials for ventilator-associated pneumonia in France and chronic pneumonia in cystic fibrosis in USA. In these studies, KB001 has demonstrated its safety, a favorable pharmacokinetic profile, and promising potential as a nonantibiotic strategy to reduce airway inflammation and damage in P. aeruginosa pneumonia.
Collapse
Key Words
- CF, cystic fibrosis
- Fab, fragment antigen binding
- Fc, fragment crystallizable region
- MDR, multidrug resistant
- MDRP, multidrug resistant Pseudomonas aeruginosa
- P. aeruginosa, Pseudomonas aeruginosa
- PcrV
- Pseudomonas aeruginosa
- TTS, type III secretory
- TTSS, type III secretion system
- V-antigen
- VAP, ventilator-associated pneumonia
- antibody
- immunoglobulin G, IgG
- mAb, monoclonal antibody
- type III secretion system
Collapse
Affiliation(s)
- Teiji Sawa
- a Department of Anesthesiology ; Kyoto Prefectural University of Medicine ; Kyoto , Japan
| | | | | | | |
Collapse
|
40
|
Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 2014; 95:31-50. [PMID: 25353930 PMCID: PMC4539596 DOI: 10.1111/mmi.12843] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 01/14/2023]
Abstract
Type III secretion systems are found in many Gram-negative bacteria. They are activated by contact with eukaryotic cells and inject virulence proteins inside them. Host cell detection requires a protein complex located at the tip of the device's external injection needle. The Shigella tip complex (TC) is composed of IpaD, a hydrophilic protein, and IpaB, a hydrophobic protein, which later forms part of the injection pore in the host membrane. Here we used labelling and crosslinking methods to show that TCs from a ΔipaB strain contain five IpaD subunits while the TCs from wild-type can also contain one IpaB and four IpaD subunits. Electron microscopy followed by single particle and helical image analysis was used to reconstruct three-dimensional images of TCs at ∼ 20 Å resolution. Docking of an IpaD crystal structure, constrained by the crosslinks observed, reveals that TC organisation is different from that of all previously proposed models. Our findings suggest new mechanisms for TC assembly and function. The TC is the only site within these secretion systems targeted by disease-protecting antibodies. By suggesting how these act, our work will allow improvement of prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Martin Cheung
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculosis infection. Infect Immun 2014; 82:3033-44. [PMID: 24799630 DOI: 10.1128/iai.01687-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
YopE is a virulence factor that is secreted into host cells infected by Yersinia species. The YopE C-terminal domain has GTPase-activating protein (GAP) activity. The YopE N-terminal domain contains an epitope that is an immunodominant CD8(+) T cell antigen during primary infection of C57BL/6 mice with Yersinia pseudotuberculosis. The characteristics of the CD8(+) T cells generated in response to the epitope, which comprises YopE amino acid residues 69 to 77 (YopE(69-77)), and the features of YopE that are important for antigenicity during primary infection, are unknown. Following intravenous infection of naïve C57BL/6 mice with a yopE GAP mutant (the R144A mutant), flow cytometry analysis of splenocytes by tetramer and intracellular cytokine staining over a time course showed that YopE69-77-specific CD8(+) T cells producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) were generated by day 7, with a peak at day 14. In addition, ∼80% of YopE(69-77)-specific CD8(+) T cells were positive for KLRG1, a memory phenotype marker, at day 21. To determine if residues that regulate YopE activity by ubiquitination or membrane localization affect the antigenicity of YopE(69-77), mice were infected with a yopE ubiquitination or membrane localization mutant (the R62K or L55N I59N L63N mutant, respectively). These mutants elicited YopE(69-77)-specific CD8(+) T cells producing IFN-γ and TNF-α with kinetics and magnitudes similar to those of the parental R144A strain, indicating that primary infection primes effector CD8(+) T cells independently of the ubiquitination or membrane localization of YopE. Additionally, at day 7, there was an unexpected positive correlation between the numbers of YopE(69-77)-specific CD8(+) T cells and CD11b(+) cells, but not between the numbers of YopE(69-77)-specific CD8(+) T cells and bacterial cells, in spleens, suggesting that the innate immune response contributes to the immunodominance of YopE(69-77).
Collapse
|
42
|
Jiang M, Yao J, Feng G. Protective effect of DNA vaccine encoding pseudomonas exotoxin A and PcrV against acute pulmonary P. aeruginosa Infection. PLoS One 2014; 9:e96609. [PMID: 24788626 PMCID: PMC4006881 DOI: 10.1371/journal.pone.0096609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Infections with Pseudomonas aeruginosa have been a long-standing challenge for clinical therapy because of complex pathogenesis and resistance to antibiotics, thus attaching importance to explore effective vaccines for prevention and treatment. In the present study, we constructed a novel DNA vaccine by inserting mutated gene toxAm encoding Pseudomonas Exotoxin A and gene pcrV encoding tip protein of the type III secretion system into respective sites of a eukaryotic plasmid pIRES, named pIRES-toxAm-pcrV, and next evaluated the efficacy of the vaccine in murine acute Pseudomonas pneumonia models. Compared to DNA vaccines encoding single antigen, mice vaccinated with pIRES-toxAm-pcrV elicited higher levels of antigen-specific serum immunoglobulin G (IgG), enhanced splenic cell proliferation and cytokine secretion in response to Pseudomonas aeruginosa antigens, additionally PAO1 challenge in mice airway resulted in reduced bacteria burden and milder pathologic changes in lungs. Besides, it was observed that immunogenicity and protection could be promoted by the CpG ODN 1826 adjuvant. Taken together, it's revealed that recombinant DNA vaccine pIRES-toxAm-pcrV was a potential candidate for immunotherapy of Pseudomonas aeruginosa infection and the CpG ODN 1826 a potent stimulatory adjuvant for DNA vaccination.
Collapse
Affiliation(s)
- Mingzi Jiang
- Department of Respiratory, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Yao
- Department of Respiratory, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ganzhu Feng
- Department of Respiratory, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
43
|
Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors. Infect Immun 2014; 82:2300-9. [PMID: 24643544 DOI: 10.1128/iai.01705-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses.
Collapse
|
44
|
Direct neutralization of type III effector translocation by the variable region of a monoclonal antibody to Yersinia pestis LcrV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:667-73. [PMID: 24599533 DOI: 10.1128/cvi.00013-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plague is an acute infection caused by the Gram-negative bacterium Yersinia pestis. Antibodies that are protective against plague target LcrV, an essential virulence protein and component of a type III secretion system of Y. pestis. Secreted LcrV localizes to the tips of type III needles on the bacterial surface, and its function is necessary for the translocation of Yersinia outer proteins (Yops) into the cytosol of host cells infected by Y. pestis. Translocated Yops counteract macrophage functions, for example, by inhibiting phagocytosis (YopE) or inducing cytotoxicity (YopJ). Although LcrV is the best-characterized protective antigen of Y. pestis, the mechanism of protection by anti-LcrV antibodies is not fully understood. Antibodies bind to LcrV at needle tips, neutralize Yop translocation, and promote opsonophagocytosis of Y. pestis by macrophages in vitro. However, it is not clear if anti-LcrV antibodies neutralize Yop translocation directly or if they do so indirectly, by promoting opsonophagocytosis. To determine if the protective IgG1 monoclonal antibody (MAb) 7.3 is directly neutralizing, an IgG2a subclass variant, a deglycosylated variant, F(ab')2, and Fab were tested for the ability to inhibit the translocation of Yops into Y. pestis-infected macrophages in vitro. Macrophage cytotoxicity and cellular fractionation assays show that the Fc of MAb 7.3 is not required for the neutralization of YopJ or YopE translocation. In addition, the use of Fc receptor-deficient macrophages, and the use of cytochalasin D to inhibit actin polymerization, confirmed that opsonophagocytosis is not required for MAb 7.3 to neutralize translocation. These data indicate that the binding of the variable region of MAb 7.3 to LcrV is sufficient to directly neutralize Yop translocation.
Collapse
|
45
|
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines 2014; 13:507-19. [PMID: 24575895 DOI: 10.1586/14760584.2014.890053] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.
Collapse
|
46
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
47
|
Basu A, Das U, Dey S, Datta S. PcrG protects the two long helical oligomerization domains of PcrV, by an interaction mediated by the intramolecular coiled-coil region of PcrG. BMC STRUCTURAL BIOLOGY 2014; 14:5. [PMID: 24460624 PMCID: PMC3904411 DOI: 10.1186/1472-6807-14-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/17/2014] [Indexed: 01/21/2023]
Abstract
Background PcrV is a hydrophilic translocator of type three secretion system (TTSS) and a structural component of the functional translocon. C-terminal helix of PcrV is essential for its oligomerization at the needle tip. Conformational changes within PcrV regulate the effector translocation. PcrG is a cytoplasmic regulator of TTSS and forms a high affinity complex with PcrV. C-terminal residues of PcrG control the effector secretion. Result Both PcrV and PcrG-PcrV complex exhibit elongated conformation like their close homologs LcrV and LcrG-LcrV complex. The homology model of PcrV depicts a dumbbell shaped structure with N and C-terminal globular domains. The grip of the dumbbell is formed by two long helices (helix-7 and 12), which show high level of conservation both structurally and evolutionary. PcrG specifically protects a region of PcrV extending from helix-12 to helix-7, and encompassing the C-terminal globular domain. This fragment ∆PcrV(128–294) interacts with PcrG with high affinity, comparable to the wild type interaction. Deletion of N-terminal globular domain leads to the oligomerization of PcrV, but PcrG restores the monomeric state of PcrV by forming a heterodimeric complex. The N-terminal globular domain (∆PcrV(1–127)) does not interact with PcrG but maintains its monomeric state. Interaction affinities of various domains of PcrV with PcrG illustrates that helix-12 is the key mediator of PcrG-PcrV interaction, supported by helix-7. Bioinformatic analysis and study with our deletion mutant ∆PcrG(13–72) revealed that the first predicted intramolecular coiled-coil domain of PcrG contains the PcrV interaction site. However, 12 N-terminal amino acids of PcrG play an indirect role in PcrG-PcrV interaction, as their deletion causes 40-fold reduction in binding affinity and changes the kinetic parameters of interaction. ∆PcrG(13–72) fits within the groove formed between the two globular domains of PcrV, through hydrophobic interaction. Conclusion PcrG interacts with PcrV through its intramolecular coiled-coil region and masks the domains responsible for oligomerization of PcrV at the needle tip. Also, PcrG could restore the monomeric state of oligomeric PcrV. Therefore, PcrG prevents the premature oligomerization of PcrV and maintains its functional state within the bacterial cytoplasm, which is a pre-requisite for formation of the functional translocon.
Collapse
Affiliation(s)
| | | | | | - Saumen Datta
- Structural Biology and Bioinformatics division, Indian Institute of Chemical Biology, 4 Raja S,C, Mullick Road, Kolkata 700032 West Bengal, India.
| |
Collapse
|
48
|
Audia JP, Lindsey AS, Housley NA, Ochoa CR, Zhou C, Toba M, Oka M, Annamdevula NS, Fitzgerald MS, Frank DW, Alvarez DF. In the absence of effector proteins, the Pseudomonas aeruginosa type three secretion system needle tip complex contributes to lung injury and systemic inflammatory responses. PLoS One 2013; 8:e81792. [PMID: 24312357 PMCID: PMC3842252 DOI: 10.1371/journal.pone.0081792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| | - Ashley S. Lindsey
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nicole A. Housley
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Courtney R. Ochoa
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Michie Toba
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Masahiko Oka
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Naga S. Annamdevula
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama, United States of America
| | - Meshann S. Fitzgerald
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Diego F. Alvarez
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| |
Collapse
|
49
|
A type III secretion system inhibitor targets YopD while revealing differential regulation of secretion in calcium-blind mutants of Yersinia pestis. Antimicrob Agents Chemother 2013; 58:839-50. [PMID: 24247143 DOI: 10.1128/aac.01170-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous Gram-negative pathogens rely upon type III secretion (T3S) systems to cause disease. Several small-molecule inhibitors of the type III secretion systems have been identified; however, few targets of these inhibitors have been elucidated. Here we report that 2,2'-thiobis-(4-methylphenol) (compound D), inhibits type III secretion in Yersinia pestis, Yersinia pseudotuberculosis, and Pseudomonas aeruginosa. YopD, a protein involved in the formation of the translocon and regulatory processes of the type III secretion system, appears to play a role in the inhibition of secretion by compound D. The use of compound D in T3S regulatory mutants demonstrated a difference in secretion inhibition in the presence and absence of calcium. Interestingly, compound D was effective only under conditions without calcium, indicating that a secretion-active needle structure may be necessary for compound D to inhibit secretion.
Collapse
|
50
|
Wager B, Faudry E, Wills T, Attree I, Delcour AH. Current fluctuation analysis of the PopB and PopD translocon components of the Pseudomonas aeruginosa type III secretion system. Biophys J 2013; 104:1445-55. [PMID: 23561521 DOI: 10.1016/j.bpj.2013.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a major agent of hospital-acquired infections, and a pathogen of immunocompromised, cystic fibrosis and burn patients. It uses a type III secretion system for the injection of toxins directly into host cells, through a translocon assembled in the host cell membrane. The hydrophobic translocator subunits of this system, PopB and PopD, have membrane permeabilizing activity based on previous dye leakage experiments, but little is known about the mechanism of assembly and the pore properties of this translocon. Using electrophysiology, we have observed that an equimolar mixture of PopB and PopD induces current fluctuations in planar lipid bilayers, with a unitary conductance of 57 pS in 1 M KCl and numerous larger conductance levels. The activity depends on voltage magnitude and polarity, and increases with protein concentration and the duration of the voltage step. PopB alone is sufficient for producing current fluctuations. PopD rarely displays any transitions, but accelerates PopB onset of activity. The effects of pH, ionic strength, and lipid composition have also been explored. Our data provide new, to our knowledge, insights into the behavior of PopB and PopD by highlighting similarities with secreted pore-forming peptides, and by suggesting that PopB/PopD may form channels via the toroidal pore model. We believe that the events we report here represent the initial steps of insertion and assembly of these translocators in the membrane.
Collapse
Affiliation(s)
- Beau Wager
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|