1
|
Sao Emani C, Reiling N. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of Mycobacterium tuberculosis against chemical stress. Front Microbiol 2024; 15:1359188. [PMID: 38516013 PMCID: PMC10956863 DOI: 10.3389/fmicb.2024.1359188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
2
|
Zhu C, Dong J, Duan Y, Jia H, Zhang L, Xing A, Du B, Sun Q, Huang Y, Zhang Z, Pan L, Li Z. Comparative analysis of genomic characteristics and immune response between Mycobacterium tuberculosis strains cultured continuously for 25 years and H37Rv. Pathog Dis 2024; 82:ftae014. [PMID: 38845379 PMCID: PMC11187990 DOI: 10.1093/femspd/ftae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated Mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jing Dong
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yuheng Duan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongyan Jia
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lanyue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Aiying Xing
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Boping Du
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Qi Sun
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yinxia Huang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zihui Li
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
3
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Loy DE, Bauman AA, Massoudi LM, Dolganov G, Strong M, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of Mycobacterium tuberculosis that survives prolonged multi-drug treatment in mice. mBio 2023; 14:e0236323. [PMID: 37905920 PMCID: PMC10746229 DOI: 10.1128/mbio.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.
Collapse
Affiliation(s)
- Elizabeth A. Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin J. Reid
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samuel T. Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah E. M. Born
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Monica R. Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Kendra N. Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Jeanne B. Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Dorothy E. Loy
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Camille M. Moore
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Stylianou E, Pinpathomrat N, Sampson O, Richard A, Korompis M, McShane H. A five-antigen Esx-5a fusion delivered as a prime-boost regimen protects against M.tb challenge. Front Immunol 2023; 14:1263457. [PMID: 37869008 PMCID: PMC10585038 DOI: 10.3389/fimmu.2023.1263457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
The development of tuberculosis (TB) vaccines has been hindered by the complex nature of Mycobacterium tuberculosis (M.tb) and the absence of clearly defined immune markers of protection. While Bacillus Calmette-Guerin (BCG) is currently the only licensed TB vaccine, its effectiveness diminishes in adulthood. In our previous research, we identified that boosting BCG with an intranasally administered chimpanzee adenovirus expressing the PPE15 antigen of M.tb (ChAdOx1.PPE15) improved its protection. To enhance the vaccine's efficacy, we combined PPE15 with the other three members of the Esx-5a secretion system and Ag85A into a multi-antigen construct (5Ag). Leveraging the mucosal administration safety of ChAdOx1, we targeted the site of M.tb infection to induce localized mucosal responses, while employing modified vaccinia virus (MVA) to boost systemic immune responses. The combination of these antigens resulted in enhanced BCG protection in both the lungs and spleens of vaccinated mice. These findings provide support for advancing ChAdOx1.5Ag and MVA.5Ag to the next stages of vaccine development.
Collapse
Affiliation(s)
- Elena Stylianou
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
5
|
Allué-Guardia A, Garcia-Vilanova A, Schami AM, Olmo-Fontánez AM, Hicks A, Peters J, Maselli DJ, Wewers MD, Wang Y, Torrelles JB. Exposure of Mycobacterium tuberculosis to human alveolar lining fluid shows temporal and strain-specific adaptation to the lung environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559381. [PMID: 37808780 PMCID: PMC10557635 DOI: 10.1101/2023.09.27.559381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Upon infection, Mycobacterium tuberculosis ( M.tb ) reaches the alveolar space and comes in close contact with human alveolar lining fluid (ALF) for an uncertain period of time prior to its encounter with alveolar cells. We showed that homeostatic ALF hydrolytic enzymes modify the M.tb cell envelope, driving M.tb -host cell interactions. Still, the contribution of ALF during M.tb infection is poorly understood. Here, we exposed 4 M.tb strains with different levels of virulence, transmissibility, and drug resistance (DR) to physiological concentrations of human ALF for 15-min and 12-h, and performed RNA sequencing. Gene expression analysis showed a temporal and strain-specific adaptation to human ALF. Differential expression (DE) of ALF-exposed vs. unexposed M.tb revealed a total of 397 DE genes associated with lipid metabolism, cell envelope and processes, intermediary metabolism and respiration, and regulatory proteins, among others. Most DE genes were detected at 12-h post-ALF exposure, with DR- M.tb strain W-7642 having the highest number of DE genes. Interestingly, genes from the KstR2 regulon, which controls the degradation of cholesterol C and D rings, were significantly upregulated in all strains post-ALF exposure. These results indicate that M.tb -ALF contact drives initial metabolic and physiologic changes in M.tb , with potential implications in infection outcome. IMPORTANCE Tuberculosis, caused by airborne pathogen Mycobacterium tuberculosis ( M.tb ), is one of the leading causes of mortality worldwide. Upon infection, M.tb reaches the alveoli and gets in contact with human alveolar lining fluid (ALF), where ALF hydrolases modify the M.tb cell envelope driving subsequent M.tb -host cell interactions. Still, the contributions of ALF during infection are poorly understood. We exposed 4 M.tb strains to ALF for 15-min and 12-h and performed RNA sequencing, demonstrating a temporal and strain-specific adaptation of M.tb to ALF. Interestingly, genes associated with cholesterol degradation were highly upregulated in all strains. This study shows for the first time that ALF drives global metabolic changes in M.tb during the initial stages of the infection, with potential implications in disease outcome. Biologically relevant networks and common and strain-specific bacterial determinants derived from this study could be further investigated as potential therapeutic candidates.
Collapse
|
6
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Bauman AA, Massoudi LM, Dolganov G, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531356. [PMID: 36945388 PMCID: PMC10028792 DOI: 10.1101/2023.03.06.531356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.
Collapse
Affiliation(s)
- Elizabeth A Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin J Reid
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel T Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E M Born
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica R Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Kendra N Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jeanne B Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Allison A Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, CA, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, CA, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory T Robertson
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camille M Moore
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Nicholas D Walter
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Abstract
Animal tuberculosis (TB) is an emergent disease caused by Mycobacterium bovis, one of the animal-adapted ecotypes of the Mycobacterium tuberculosis complex (MTC). In this work, whole-genome comparative analyses of 70 M. bovis were performed to gain insights into the pan-genome architecture. The comparison across M. bovis predicted genome composition enabled clustering into the core- and accessory-genome components, with 2736 CDS for the former, while the accessory moiety included 3897 CDS, of which 2656 are restricted to one/two genomes only. These analyses predicted an open pan-genome architecture, with an average of 32 CDS added by each genome and show the diversification of discrete M. bovis subpopulations supported by both core- and accessory-genome components. The functional annotation of the pan-genome classified each CDS into one or several COG (Clusters of Orthologous Groups) categories, revealing ‘transcription’ (total average CDSs, n=258), ‘lipid metabolism and transport’ (n=242), ‘energy production and conversion’ (n=214) and ‘unknown function’ (n=876) as the most represented. The closer analysis of polymorphisms in virulence-related genes in a restrict group of M. bovis from a multi-host system enabled the identification of clade-monomorphic non-synonymous SNPs, illustrating clade-specific virulence landscapes and correlating with disease severity. This first comparative pan-genome study of a diverse collection of M. bovis encompassing all clonal complexes indicates a high percentage of accessory genes and denotes an open, dynamic non-conservative pan-genome structure, with high evolutionary potential, defying the canons of MTC biology. Furthermore, it shows that M. bovis can shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion, adaptation and persistence.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Mekonnen D, Derbie A, Mihret A, Yimer SA, Tønjum T, Gelaw B, Nibret E, Munshae A, Waddell SJ, Aseffa A. Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review. Lipids Health Dis 2021; 20:129. [PMID: 34602073 PMCID: PMC8487580 DOI: 10.1186/s12944-021-01550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the main etiology of tuberculosis (TB), is predominantly an intracellular pathogen that has caused infection, disease and death in humans for centuries. Lipid droplets (LDs) are dynamic intracellular organelles that are found across the evolutionary tree of life. This review is an evaluation of the current state of knowledge regarding Mtb-LD formation and associated Mtb transcriptome directly from sputa.Based on the LD content, Mtb in sputum may be classified into three groups: LD positive, LD negative and LD borderline. However, the clinical and evolutionary importance of each state is not well elaborated. Mounting evidence supports the view that the presence of LD positive Mtb bacilli in sputum is a biomarker of slow growth, low energy state, towards lipid degradation, and drug tolerance. In Mtb, LD may serve as a source of chemical energy, scavenger of toxic compounds, prevent destruction of Mtb through autophagy, delay trafficking of lysosomes towards the phagosome, and contribute to Mtb persistence. It is suggest that LD is a key player in the induction of a spectrum of phenotypic and metabolic states of Mtb in the macrophage, granuloma and extracellular sputum microenvironment. Tuberculosis patients with high proportion of LD positive Mtb in pretreatment sputum was associated with higher rate of poor treatment outcome, indicating that LD may have a clinical application in predicting treatment outcome.The propensity for LD formation among Mtb lineages is largely unknown. The role of LD on Mtb transmission and disease phenotype (pulmonary TB vs extra-pulmonary TB) is not well understood. Thus, further studies are needed to understand the relationships between LD positivity and Mtb lineage, Mtb transmission and clinical types.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Awoke Derbie
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Jimma Road, ALERT Compound, PO Box 1005, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo, PO Box 1071, Blindern, NO-0316, Oslo, Norway
- Coalition for Epidemic Preparedness Innovations, CEPI, P.O. Box 123, Torshov, 0412, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, PO Box 1071, Blindern, NO-0316, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, PO Box 4950, Nydalen, NO-0424, Oslo, Norway
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Endalkachew Nibret
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshae
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Jimma Road, ALERT Compound, PO Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Pattanaik KP, Ganguli G, Naik SK, Sonawane A. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol 2021; 130:133-141. [PMID: 33419561 DOI: 10.1016/j.molimm.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) employs distinct strategies to circumvent host immune responses during the infection process. Various Mtb cell-wall associated and secretory proteins are known to play a critical role in the orchestration of host innate immune responses through modulation of signaling pathways. Mtb genome encodes for 23 (EsxA-EsxW) proteins belonging to the ESAT-6 like family; however, most of them are functionally unknown. Here, we show that Mtb EsxL induces tumor necrosis factor-alpha (TNF-α) production by activating nuclear translocation of nuclear factor-κB (NF-κB) via interaction with Toll-like Receptor 2 (TLR2). Blocking or silencing of TLR2 abrogated nuclear translocation of NF-kB and TNF-α production. Treatment with recombinant purified EsxL (rEsxL) activated mitogen-activated protein kinase (MAPK) pathway by inducing the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase (p38) pathways. At the same time, inhibition of ERK and p38 down-regulated the expression of TNF-α in rEsxL exposed murine macrophages. Besides TNF-α, EsxL also induced the production of IL-6 proinflammatory cytokine. Taken together, these results suggest that EsxL is able to induce TNF-α secretion via TLR2 through activation of NF-κB and MAPK signaling. This study will help in deducing therapeutic strategies for better control of the disease.
Collapse
Affiliation(s)
| | - Geetanjali Ganguli
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Sumanta Kumar Naik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, IIT Indore, Madhya Pradesh, India.
| |
Collapse
|
10
|
Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis, antimicrobials, immunity, and lung-gut microbiota crosstalk: current updates and emerging advances. Ann N Y Acad Sci 2020; 1467:21-47. [PMID: 31989644 DOI: 10.1111/nyas.14300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
Increasingly, gut microbiota distortions are being implicated in the pathogenesis of several infectious and noninfectious diseases. Specifically, in the absence of an eubiotic microbiota, mice are more prone to colonization and infection by Mycobacterium tuberculosis (Mtb). In this qualitative analysis, the following were observed: (1) antimicrobials cause long-term gut microbiota perturbations; (2) Mtb causes limited and transient disturbances to the lung-gut microbiota; (3) pathogens (e.g., Helicobacter hepaticus) affect microbiota integrity and reduce resistance to Mtb; (4) dysbiosis depletes bacterial species regulating proper immune functioning, reducing resistance to Mtb; (5) dysregulated immune cells fail to express important pathogen-recognition receptors (e.g., macrophage-inducible C-type lectin; MINCLE) and Mtb-killing cytokines (e.g., IFN-γ, TNF-α, and IL-17), with hampered phagocytic capability; (6) autophagy is central to the immune system's clearance of Mtb, control of inflammation, and immunity-microbiome balance; (7) microbiota-produced short-chain fatty acids, which are reduced by dysbiosis, affect immune cells and increase Mtb proliferation; (8) commensal species (e.g., Lactobacillus plantarum) and microbiota metabolites (e.g., indole propionic acid) reduce tuberculosis progression; and (9) fecal transplants mostly restored eubiosis, increased immune resistance to Mtb, restricted dissemination of Mtb, and reduced tuberculosis-associated organ pathologies. Overuse of antimicrobials, as shown in mice, is a risk factor for reactivating latent or treated tuberculosis.
Collapse
Affiliation(s)
- John Osei Sekyere
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Nontuthuko E Maningi
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Petrus B Fourie
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Identification and Evaluation of Novel Protective Antigens for the Development of a Candidate Tuberculosis Subunit Vaccine. Infect Immun 2018; 86:IAI.00014-18. [PMID: 29661928 PMCID: PMC6013653 DOI: 10.1128/iai.00014-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/06/2018] [Indexed: 12/03/2022] Open
Abstract
The development of a vaccine against tuberculosis (TB), a disease caused by Mycobacterium tuberculosis, is urgently needed. The only currently available vaccine, M. bovis BCG, has variable efficacy. One approach in the global vaccine development effort is focused on boosting BCG using subunit vaccines. The identification of novel antigens for inclusion in subunit vaccines is a critical step in the TB vaccine development pathway. We selected four novel mycobacterial antigens recognized during the course of human infection. A replication-deficient chimpanzee adenovirus (ChAdOx1) was constructed to express each antigen individually, and these vectors were evaluated for protective efficacy in murine M. tuberculosis challenge experiments. One antigen, PPE15 (Rv1039c), conferred significant and reproducible protection when administered alone and as a boost to BCG vaccination. We identified immunodominant epitopes to define the protective immune responses using tetramers and intravascular staining. Lung parenchymal CD4+ and CD8+ CXCR3+ KLRG1− T cells, previously associated with protection against M. tuberculosis, were enriched in the vaccinated groups compared to the control groups. Further work to evaluate the protective efficacy of PPE15 in more stringent preclinical animal models, together with the identification of further novel protective antigens using this selection strategy, is now merited.
Collapse
|
12
|
Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTM, Lan NN, Lan NH, Nhu NTQ, Hai HT, Ha VTN, Thwaites G, Edwards DJ, Nath AP, Pham K, Ascher DB, Farrar J, Khor CC, Teo YY, Inouye M, Caws M, Dunstan SJ. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet 2018; 50:849-856. [PMID: 29785015 PMCID: PMC6143168 DOI: 10.1038/s41588-018-0117-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
To examine the transmission dynamics of Mycobacterium tuberculosis (Mtb) isolated from tuberculosis patients in Ho Chi Minh City, Vietnam, we sequenced the whole genomes of 1,635 isolates and compared these with 3,144 isolates from elsewhere. The data identify an underlying burden of disease caused by the endemic Mtb lineage 1 associated with the activation of long-term latent infection, and a threefold higher burden associated with the more recently introduced Beijing lineage and lineage 4 Mtb strains. We find that Beijing lineage Mtb is frequently transferred between Vietnam and other countries, and detect higher levels of transmission of Beijing lineage strains within this host population than the endemic lineage 1 Mtb. Screening for parallel evolution of Beijing lineage-associated SNPs in other Mtb lineages as a signal of positive selection, we identify an alteration in the ESX-5 type VII-secreted protein EsxW, which could potentially contribute to the enhanced transmission of Beijing lineage Mtb in Vietnamese and other host populations.
Collapse
Affiliation(s)
- Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio 21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Paul McAdam
- Department of Biochemistry and Molecular Biology, Bio 21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Phan Vuong Khac Thai
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | | | - Dang Thi Minh Ha
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Lan
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Lan
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | | | - Hoang Thanh Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio 21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Artika P Nath
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Kym Pham
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio 21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yik Ying Teo
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Michael Inouye
- Systems Genomics Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratories, Cambridge, UK
| | - Maxine Caws
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Birat-Nepal Medical Trust, Kathmandu, Nepal
| | - Sarah J Dunstan
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
13
|
Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet 2018. [PMID: 29785015 DOI: 10.1038/s41588-018-0117-9.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine the transmission dynamics of Mycobacterium tuberculosis (Mtb) isolated from tuberculosis patients in Ho Chi Minh City, Vietnam, we sequenced the whole genomes of 1,635 isolates and compared these with 3,144 isolates from elsewhere. The data identify an underlying burden of disease caused by the endemic Mtb lineage 1 associated with the activation of long-term latent infection, and a threefold higher burden associated with the more recently introduced Beijing lineage and lineage 4 Mtb strains. We find that Beijing lineage Mtb is frequently transferred between Vietnam and other countries, and detect higher levels of transmission of Beijing lineage strains within this host population than the endemic lineage 1 Mtb. Screening for parallel evolution of Beijing lineage-associated SNPs in other Mtb lineages as a signal of positive selection, we identify an alteration in the ESX-5 type VII-secreted protein EsxW, which could potentially contribute to the enhanced transmission of Beijing lineage Mtb in Vietnamese and other host populations.
Collapse
|
14
|
Khademi F, Yousefi-Avarvand A, Derakhshan M, Meshkat Z, Tafaghodi M, Ghazvini K, Aryan E, Sankian M. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli. Rep Biochem Mol Biol 2017; 6:15-21. [PMID: 29090225 PMCID: PMC5643456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/31/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. METHODS An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. RESULTS The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. CONCLUSION An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.
Collapse
Affiliation(s)
- Farzad Khademi
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arshid Yousefi-Avarvand
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
A Duplicated ESAT-6 Region of ESX-5 Is Involved in Protein Export and Virulence of Mycobacteria. Infect Immun 2015; 83:4349-61. [PMID: 26303392 DOI: 10.1128/iai.00827-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
The ESX-5 secretion system of Mycobacterium tuberculosis is important for bacterial virulence and for the secretion of the large PE/PPE protein family, whose genes constitute 10% of the M. tuberculosis genome. A four-gene region of the ESX-5 system is duplicated three times in the M. tuberculosis genome, but the functions of these duplicates are unknown. Here we investigated one of these duplicates: the region carrying the esxI, esxJ, ppe15, and pe8 genes (ESX-5a). An ESX-5a deletion mutant in the model system M. marinum background was deficient in the secretion of some members of the PE/PPE family of proteins. Surprisingly, we also identified other proteins that are not members of this family, thus expanding the range of ESX-5 secretion substrates. In addition, we demonstrated that ESX-5a is important for the virulence of M. marinum in the zebrafish model. Furthermore, we showed the role of the M. tuberculosis ESX-5a region in inflammasome activation but not host cell death induction, which is different from the case for the M. tuberculosis ESX-5 system. In conclusion, the ESX-5a region is nonredundant with its ESX-5 paralog and is necessary for secretion of a specific subset of proteins in M. tuberculosis and M. marinum that are important for bacterial virulence of M. marinum. Our findings point to a role for the three ESX-5 duplicate regions in the selection of substrates for secretion via ESX-5, and hence, they provide the basis for a refined model of the molecular mechanism of this type VII secretion system.
Collapse
|
16
|
Villarreal DO, Walters J, Laddy DJ, Yan J, Weiner DB. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2015; 10:2188-98. [PMID: 25424922 DOI: 10.4161/hv.29574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
17
|
Draft Genome Sequence of Mycobacterium bovis Strain SP38, a Pathogenic Bacterium Isolated from a Bovine in Brazil. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00511-15. [PMID: 25999553 PMCID: PMC4440967 DOI: 10.1128/genomea.00511-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a draft genome sequence of Mycobacterium bovis strain SP38, isolated from the lungs of a cow in Brazil. The assembly of reads resulted in 36 contigs in a total of approximately 4.37 Mb. Comparison of M. bovis strains sequenced to date will aid in understanding bovine tuberculosis in Brazil.
Collapse
|
18
|
Ryndak MB, Singh KK, Peng Z, Laal S. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells. PLoS One 2015; 10:e0123745. [PMID: 25844539 PMCID: PMC4386821 DOI: 10.1371/journal.pone.0123745] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC) which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line) and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW). In contrast, significant downregulation of the DevR (DosR) regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune responses.
Collapse
Affiliation(s)
- Michelle B. Ryndak
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Krishna K. Singh
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Zhengyu Peng
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
- * E-mail:
| |
Collapse
|