1
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
2
|
Liu J, Hu X. Fungal extracellular vesicle-mediated regulation: from virulence factor to clinical application. Front Microbiol 2023; 14:1205477. [PMID: 37779707 PMCID: PMC10540631 DOI: 10.3389/fmicb.2023.1205477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal disease (IFD) poses a significant threat to immunocompromised patients and remains a global challenge due to limited treatment options, high mortality and morbidity rates, and the emergence of drug-resistant strains. Despite advancements in antifungal agents and diagnostic techniques, the lack of effective vaccines, standardized diagnostic tools, and efficient antifungal drugs contributes to the ongoing impact of invasive fungal infections (IFI). Recent studies have highlighted the presence of extracellular vesicles (EVs) released by fungi carrying various components such as enzymes, lipids, nucleic acids, and virulence proteins, which play roles in both physiological and pathological processes. These fungal EVs have been shown to interact with the host immune system during the development of fungal infections whereas their functional role and potential application in patients are not yet fully understood. This review summarizes the current understanding of the biologically relevant findings regarding EV in host-pathogen interaction, and aim to describe our knowledge of the roles of EV as diagnostic tools and vaccine vehicles, offering promising prospects for the treatment of IFI patients.
Collapse
Affiliation(s)
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Farr A, Effendy I, Tirri BF, Hof H, Mayser P, Petricevic L, Ruhnke M, Schaller M, Schäfer APA, Willinger B, Mendling W. Vulvovaginal Candidosis (Excluding Mucocutaneous Candidosis): Guideline of the German (DGGG), Austrian (OEGGG) and Swiss (SGGG) Society of Gynecology and Obstetrics (S2k-Level, AWMF Registry Number 015/072, September 2020). Geburtshilfe Frauenheilkd 2021; 81:398-421. [PMID: 33867561 DOI: 10.1055/a-1345-8793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023] Open
Abstract
Aim The aim of this official guideline, published and coordinated by the German (DGGG), Austrian (OEGGG) and Swiss (SGGG) Societies of Gynecology and Obstetrics in collaboration with the DMykG, DDG and AGII societies, was to provide consensus-based recommendations obtained by evaluating the relevant literature for the diagnosis, treatment and management of women with vulvovaginal candidosis. Methods This S2k guideline represents the structured consensus of a representative panel of experts with a range of different professional backgrounds commissioned by the Guideline Committee of the above-mentioned societies. Recommendations This guideline gives recommendations for the diagnosis, management, counseling, prophylaxis and screening of vulvovaginal candidosis.
Collapse
Affiliation(s)
- Alex Farr
- Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Austria
| | - Isaak Effendy
- Hautklinik, Klinikum der Stadt Bielefeld, Bielefeld, Germany
| | | | - Herbert Hof
- MVZ Labor Limbach und Kollegen, Heidelberg, Germany
| | - Peter Mayser
- Facharzt für Haut- und Geschlechtskrankheiten, Biebertal, Germany
| | - Ljubomir Petricevic
- Universitätsklinik für Frauenheilkunde, Medizinische Universität Wien, Wien, Austria
| | - Markus Ruhnke
- Klinik für Hämatologie, Onkologie und Palliativmedizin, Helios Klinikum Aue, Aue, Germany
| | - Martin Schaller
- Hautklinik, Zentrum für Dermato-Onkologie, Universität Tübingen, Tübingen, Germany
| | | | - Birgit Willinger
- Abteilung für Klinische Mikrobiologie, Medizinische Universität Wien, Wien, Austria
| | - Werner Mendling
- Deutsches Zentrum für Infektionen in Gynäkologie und Geburtshilfe, Wuppertal, Germany
| |
Collapse
|
4
|
Farr A, Effendy I, Frey Tirri B, Hof H, Mayser P, Petricevic L, Ruhnke M, Schaller M, Schaefer APA, Sustr V, Willinger B, Mendling W. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses 2021; 64:583-602. [PMID: 33529414 PMCID: PMC8248160 DOI: 10.1111/myc.13248] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Approximately 70-75% of women will have vulvovaginal candidosis (VVC) at least once in their lifetime. In premenopausal, pregnant, asymptomatic and healthy women and women with acute VVC, Candida albicans is the predominant species. The diagnosis of VVC should be based on clinical symptoms and microscopic detection of pseudohyphae. Symptoms alone do not allow reliable differentiation of the causes of vaginitis. In recurrent or complicated cases, diagnostics should involve fungal culture with species identification. Serological determination of antibody titres has no role in VVC. Before the induction of therapy, VVC should always be medically confirmed. Acute VVC can be treated with local imidazoles, polyenes or ciclopirox olamine, using vaginal tablets, ovules or creams. Triazoles can also be prescribed orally, together with antifungal creams, for the treatment of the vulva. Commonly available antimycotics are generally well tolerated, and the different regimens show similarly good results. Antiseptics are potentially effective but act against the physiological vaginal flora. Neither a woman with asymptomatic colonisation nor an asymptomatic sexual partner should be treated. Women with chronic recurrent Candida albicans vulvovaginitis should undergo dose-reducing maintenance therapy with oral triazoles. Unnecessary antimycotic therapies should always be avoided, and non-albicans vaginitis should be treated with alternative antifungal agents. In the last 6 weeks of pregnancy, women should receive antifungal treatment to reduce the risk of vertical transmission, oral thrush and diaper dermatitis of the newborn. Local treatment is preferred during pregnancy.
Collapse
Affiliation(s)
- Alex Farr
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Isaak Effendy
- Klinikum Bielefeld Rosenhohe, Department of Dermatology and Allergology, Bielefeld, Germany
| | | | - Herbert Hof
- Labor Dr. Limbach und Kollegen, Heidelberg, Germany
| | - Peter Mayser
- Facharzt für Dermatologie und Allergologie, Biebertal, Germany
| | - Ljubomir Petricevic
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Markus Ruhnke
- Department of Hematology, Oncology and Palliative Medicine, Helios Hospital Aue, Aue, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Valentina Sustr
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Werner Mendling
- Deutsches Zentrum fuer Infektionen in Gynaekologie und Geburtshilfe, Wuppertal, Germany
| |
Collapse
|
5
|
Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY. Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance-An Update. Genes (Basel) 2018; 9:genes9110540. [PMID: 30405082 PMCID: PMC6266447 DOI: 10.3390/genes9110540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Kin Chin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Won Fen Wong
- Department of Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| |
Collapse
|
6
|
Roselletti E, Perito S, Gabrielli E, Mencacci A, Pericolini E, Sabbatini S, Cassone A, Vecchiarelli A. NLRP3 inflammasome is a key player in human vulvovaginal disease caused by Candida albicans. Sci Rep 2017; 7:17877. [PMID: 29259175 PMCID: PMC5736597 DOI: 10.1038/s41598-017-17649-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
The expression of host inflammatory and Candida albicans putative virulence factors was studied in women with vulvovaginal candidiasis (VVC; twenty) or colonized by the fungus but asymptomatic (carriers; fifteen) or non-colonized asymptomatic (ten subjects). Overexpression of genes encoding NLRP3 and caspase-1 inflammasome components sharply differentiated VVC patients from asymptomatic colonized or non-colonized women. Inflammasome expression was coupled with neutrophils recruitment in the vagina of VVC women and IL-1β and IL-8 production. Both cytokines were present, though to a lower concentration, also in the vaginal fluid of colonized and non-colonized women. Secretory aspartyl proteinases (SAPs) and hyphae associated genes HWP1 and ECE1 were upregulated in VVC but with some differences among infected women. The most overexpressed SAP gene was SAP2, that correlated with neutrophils accumulation. Our data provide clinical evidence that the intracytoplasmic activation of NLRP3 inflammasome complex plays a critical, pathogenesis-relevant role in human VVC.
Collapse
Affiliation(s)
- Elena Roselletti
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy
| | - Stefano Perito
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy
| | - Elena Gabrielli
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy
| | - Antonella Mencacci
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy
| | - Eva Pericolini
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy.,Department of Diagnostic Medicine, Clinical and Health Public, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Samuele Sabbatini
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy
| | - Antonio Cassone
- Polo d'Innovazione di Genomica, Genetica e Biologia, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy
| | - Anna Vecchiarelli
- Department of Medicine, University of Perugia, 06132, Sant'Andrea delle Fratte, Perugia, Italy.
| |
Collapse
|
7
|
Paulovičová E, Paulovičová L, Hrubiško M, Krylov VB, Argunov DA, Nifantiev NE. Immunobiological Activity of Synthetically Prepared Immunodominant Galactomannosides Structurally Mimicking Aspergillus Galactomannan. Front Immunol 2017; 8:1273. [PMID: 29081774 PMCID: PMC5645502 DOI: 10.3389/fimmu.2017.01273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
The study is oriented at the in vitro evaluation of the immunobiological activity and efficacy of synthetically prepared isomeric pentasaccharides representing fragments of Aspergillus fumigatus cell-wall galactomannan and containing β-(1→5)-linked tetragalactofuranoside chain attached to O-6 (GM-1) or O-3 (GM-2) of a spacer-armed mannopyranoside residue. These compounds were studied as biotinylated conjugates which both demonstrated immunomodulatory activities on the RAW 264.7 cell line murine macrophages as in vitro innate immunity cell model. Immunobiological studies revealed time- and concentration-dependent efficient immunomodulation. The proliferation of RAW 264.7 macrophages was induced at higher concentration (100 µg/mL) of studied glycoconjugates and longer exposure (48 h), with more pronounced efficacy for GM-1. The increase of proliferation followed the previous increase of IL-2 production. The cytokine profile of the macrophages treated with the glycoconjugates was predominantly pro-inflammatory Th1 type with significant increase of TNFα, IL-6, and IL-12 release for both glycoconjugates. The RAW 264.7 macrophages production of free radicals was not significantly affected by glycoconjugates stimulation. The phagocytic activity of RAW 264.7 cells was reduced following GM-1 treatment and was significantly increased after 24 h stimulation with GM-2, contrary to 48 h stimulation. Moreover, the synthetically prepared galactomannoside derivatives have been evaluated as efficient serodiagnostic antigens recognized by specific Ig isotypes, and significant presence of specific IgM antibodies in serum of patients suffering from vulvovaginitis was observed.
Collapse
Affiliation(s)
- Ema Paulovičová
- Cell Culture Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Hrubiško
- Department of Clinical Immunology and Allergy, Oncology Institute of St. Elisabeth, Bratislava, Slovakia
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Maekawa T, Ishijima AS, Ida M, Izumo T, Ono Y, Shibata H, Abe S. Prophylactic Effect of Lactobacillus pentosus strain S-PT84 on Candida Infection and Gastric Inflammation in a Murine Gastrointestinal Candidiasis Model [Errata]. Med Mycol J 2017; 57:E81-E92. [PMID: 27904074 DOI: 10.3314/mmj.16-00012e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously showed a prophylactic effect of Lactobacillus pentosus strain S-PT84 against oral candidiasis in mice. In the present study, we evaluated the protective effect of S-PT84 against Candida infection of the gastrointestinal tract. As the first step, we used an in vitro assay to compare the inhibitory effects of several lactobacilli (S-PT84 and Lactobacillus pentosus type strain JCM1558T, Lactobacillus gasseri type strain JCM1131T and Lactobacillus casei type strain JCM1134T) on mycelial growth of Candida albicans. S-PT84 directly adhered to Candida cells and showed the strongest growth-inhibitory activity among the tested Lactobacillus strains. In the second experiment, we used an in vivo assay to evaluate the effect of S-PT84 ingestion on severity score of stomach lesion and gastric inflammation in a mouse model of gastrointestinal candidiasis. The severity scores were significantly improved by oral administration of S-PT84 (6 mg/ 200 μL), consistent with decreased coverage of stomach lesions by patchy whitish plaques. The attenuation of stomach lesion severity by S-PT84 was more pronounced than that obtained with L. gasseri type strain JCM1131T, consistent with the results of the above in vitro study. Histological analysis also indicated that S-PT84 prevented the adhesion of C. albicans to the stomach surface and suppressed stomach inflammation caused by neutrophil infiltration. Furthermore, S-PT84 also suppressed the vascular permeability observed in Candida-infected stomach. These results suggest that oral administration of S-PT84 might be effective not only in inhibiting Candida infection but also in preventing gastric inflammation induced by Candida infection.
Collapse
|
9
|
Nirmala M, Smitha SG, Kamath GJ. A Study to Assess The Efficacy of Local Application of Oral Probiotic in Treating Recurrent Aphthous Ulcer and Oral Candidiasis. Indian J Otolaryngol Head Neck Surg 2017; 71:113-117. [PMID: 31741944 DOI: 10.1007/s12070-017-1139-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
To study the efficacy of local application of oral probiotics in improving oral health in recurrent aphthous ulcer and oral candidiasis. Eighty patients with diagnosis of recurrent aphthous ulcer and oral candidiasis were included in the study. They were divided into group A = 40 patients (patients treated with oral application of probiotic as an adjuvant) and group B = 40 patients (patients treated without probiotic). Both the groups were divided into two subgroups, group AU and group BU for recurrent aphthous ulcer and group AC and BC for oral candidiasis. Clinical signs and symptoms were assessed at the beginning of the study and at the end of the study. Pregnant or lactating women, patients with localised or systemic diseases such as Steven Johnson syndrome, ulcerative colitis, Behcet's syndrome and patients on chemotherapy or radiotherapy were excluded from the study. Bacillus Clausii, was used as a probiotic in our study. Patients in group A showed significant improvement in erythema (p = 0.001), pain reduction (p = 0.0001), decreased oral thrush (p = 0.006) and burning sensation in the mouth (p = 0.005) on day 5, whereas there was no significant difference on day 10 follow up. The study demonstrated the efficacy and rapidity of response to oral probiotic as an adjuvant in treating aphthous ulcer and oral candidiasis. Hence, oral application of probiotics can be used as an adjuvant in treating various oral pathology.
Collapse
Affiliation(s)
- M Nirmala
- Kempegowda Institute of Medical Sciences, K.R Road, V.V Puram, Bengaluru, Karnataka 560004 India
| | - S G Smitha
- Kempegowda Institute of Medical Sciences, K.R Road, V.V Puram, Bengaluru, Karnataka 560004 India
| | - Ganga J Kamath
- Kempegowda Institute of Medical Sciences, K.R Road, V.V Puram, Bengaluru, Karnataka 560004 India
| |
Collapse
|
10
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
11
|
Maekawa T, Ishijima AS, Ida M, Izumo T, Ono Y, Shibata H, Abe S. Prophylactic Effect of Lactobacillus pentosus strain S-PT84 on Candida Infection and Gastric Inflammation in a Murine Gastrointestinal Candidiasis Model. Med Mycol J 2016; 57:E81-E92. [PMID: 27904056 DOI: 10.3314/mmj.16-00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously showed a prophylactic effect of Lactobacillus pentosus strain S-PT84 against oral candidiasis in mice. In the present study, we evaluated the protective effect of S-PT84 against Candida infection of the gastrointestinal tract. As the first step, we used an in vitro assay to compare the inhibitory effects of several lactobacilli (S-PT84 and Lactobacillus pentosus type strain JCM1558T, Lactobacillus gasseri type strain JCM1131T and Lactobacillus casei type strain JCM1134T) on mycelial growth of Candida albicans. S-PT84 directly adhered to Candida cells and showed the strongest growth-inhibitory activity among the tested Lactobacillus strains. In the second experiment, we used an in vivo assay to evaluate the effect of S-PT84 ingestion on severity score of stomach lesion and gastric inflammation in a mouse model of gastrointestinal candidiasis. The severity scores were significantly improved by oral administration of S-PT84 (6 mg/ 200 μL), consistent with decreased coverage of stomach lesions by patchy whitish plaques. The attenuation of stomach lesion severity by S-PT84 was more pronounced than that obtained with L. gasseri type strain JCM1131T, consistent with the results of the above in vitro study. Histological analysis also indicated that S-PT84 prevented the adhesion of C. albicans to the stomach surface and suppressed stomach inflammation caused by neutrophil infiltration. Furthermore, S-PT84 also suppressed the vascular permeability observed in Candida-infected stomach. These results suggest that oral administration of S-PT84 might be effective not only in inhibiting Candida infection but also in preventing gastric inflammation induced by Candida infection.
Collapse
|
12
|
Paulovičová E, Paulovičová L, Pilišiová R, Jančinová V, Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. The evaluation of β-(1 → 3)-nonaglucoside as an anti-Candida albicans immune response inducer. Cell Microbiol 2016; 18:1294-307. [PMID: 27310441 DOI: 10.1111/cmi.12631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Synthetically prepared bovine serum albumin (BSA) conjugate of linear β-(1 → 3)-nonaglucoside ligand (G9) has been applied as a biological response immunomodulator in vivo and ex vivo. Active immunization of Balb/c mice revealed effective induction of specific humoral responses in comparison with Candida β-D-glucan and Candida whole cells. Induced post-vaccination serum exhibited a growth-inhibition effect on the multi-azole-resistant clinical strain Candida albicans CCY 29-3-164 in experimental mucocutaneous infection ex vivo. Evaluation of immune cell proliferation and the cytotoxic potential of the G9-ligand has revealed its bioavailability and an immunostimulative effect in vaccination-sensitized Balb/c mice splenocytes and RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ružena Pilišiová
- Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Jančinová
- Department of Cellular Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 84236, Bratislava, Slovakia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Karelin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Huai Y, Dong S, Zhu Y, Li X, Cao B, Gao X, Yang M, Wang L, Mao C. Genetically Engineered Virus Nanofibers as an Efficient Vaccine for Preventing Fungal Infection. Adv Healthc Mater 2016; 5:786-94. [PMID: 26890982 DOI: 10.1002/adhm.201500930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/24/2015] [Indexed: 12/19/2022]
Abstract
Candida albicans (CA) is a kind of fungus that can cause high morbidity and mortality in immunocompromised patients. However, preventing CA infection in these patients is still a daunting challenge. Herein, inspired from the fact that immunization with secreted aspartyl proteinases 2 (Sap2) can prevent the infection, it is proposed to use filamentous phage, a human-safe virus nanofiber specifically infecting bacteria (≈900 nm long and 7 nm wide), to display an epitope peptide of Sap2 (EPS, with a sequence of Val-Lys-Tyr-Thr-Ser) on its side wall and thus serve as a vaccine for preventing CA infection. The engineered virus nanofibers and recombinant Sap2 (rSap2) are then separately used to immunize mice. The humoral and cellular immune responses in the immunized mice are evaluated. Surprisingly, the virus nanofibers significantly induce mice to produce strong immune response as rSap2 and generate antibodies that can bind Sap2 and CA to inhibit the CA infection. Consequently, immunization with the virus nanofibers in mice dramatically increases the survival rate of CA-infected mice. All these results, along with the fact that the virus nanofibers can be mass-produced by infecting bacteria cost-effectively, suggest that virus nanofibers displaying EPS can be a vaccine candidate against fungal infection.
Collapse
Affiliation(s)
- Yanyan Huai
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Shuai Dong
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
| | - Ye Zhu
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Xin Li
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Binrui Cao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Xiang Gao
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Yuhangtang Road 866 Hangzhou 310058 China
| | - Li Wang
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
14
|
Vemula MH, Ganji R, Sivangala R, Jakkala K, Gaddam S, Penmetsa S, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-Specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients. Front Microbiol 2016; 7:418. [PMID: 27065979 PMCID: PMC4814508 DOI: 10.3389/fmicb.2016.00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis, the tuberculosis (TB) causing bacilli in human is cleared by cell-mediated immunity (CMI) with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI) is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches toward vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M. tuberculosis Zinc metalloprotease-1 (Zmp1), a secretory protein essential for intracellular survival and pathogenesis of M. tuberculosis. We observed that Zmp1 was secreted by in vitro grown M. tuberculosis under granuloma-like stress conditions (acidic, oxidative, iron deficiency, and nutrient deprivation) and generated Th2 cytokine microenvironment upon exogenous treatment of peripheral blood mononulear cells PBMCs with recombinant Zmp1 (rZmp1). This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n = 121) as against healthy control (n = 62), household contacts (n = 89) and non-specific infection controls (n = 23). A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL) to paucibacillary smear-negative pulmonary tuberculosis (PTB) cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen candidates for prime-boost vaccination strategies or extrapolated as markers for disease detection and progression.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Ramya Sivangala
- Department of Immunology, Bhagwan Mahavir Medical Research Center Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Sumanlatha Gaddam
- Department of Immunology, Bhagwan Mahavir Medical Research CenterHyderabad, India; Department of Genetics, Osmania UniversityHyderabad, India
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|
15
|
Abstract
There has been a global upsurge in fungal infections due to rise in immunodeficiencies, debilitation and situations of violated anatomical barriers. The available antifungal repertoire has limited activity and is fraught with toxicity concerns. Drug resistance has also shown a rapid upward trend. This has resulted in increased treatment failures, mortality and health care costs. Novel effective and safe antimycotics are needed. Analogues of existing antifungal compounds and new molecules are being developed. New targets are being explored for their putative role in curtailing fungal infections. Newer antigens as vaccine candidates are being researched into. Focused efforts in this direction have yielded encouraging results. This review illuminates the various antifungal strategies which hold promise for the future.
Collapse
|
16
|
Yang J, Yang F, Yang H, Wang G. Water-soluble polysaccharide isolated with alkali from the stem of Physalis alkekengi L.: Structural characterization and immunologic enhancement in DNA vaccine. Carbohydr Polym 2015; 121:248-53. [DOI: 10.1016/j.carbpol.2014.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/22/2014] [Accepted: 12/05/2014] [Indexed: 11/28/2022]
|
17
|
Mendling W, Friese K, Mylonas I, Weissenbacher ER, Brasch J, Schaller M, Mayser P, Effendy I, Ginter-Hanselmayer G, Hof H, Cornely O, Ruhnke M. Vulvovaginal Candidosis (excluding chronic mucocutaneous candidosis). Guideline of the German Society of Gynecology and Obstetrics (AWMF Registry No. 015/072, S2k Level, December 2013). Geburtshilfe Frauenheilkd 2015; 75:342-354. [PMID: 27065484 PMCID: PMC4813053 DOI: 10.1055/s-0035-1545741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- W. Mendling
- Deutsches Zentrum für Infektionen in Gynäkologie und Geburtshilfe, Wuppertal
| | - K. Friese
- Klinikum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, München
| | - I. Mylonas
- Klinikum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, München
| | | | - J. Brasch
- Universitätsklinikum Kiel, Klinik für Dermatologie, Kiel
| | | | - P. Mayser
- Universitätsklinikum Giessen, Klinik für Dermatologie, Venerologie und Allergologie, Giessen
| | - I. Effendy
- Klinikum Bielefeld, Hautklinik, Bielefeld
| | | | - H. Hof
- Labor Limbach, Heidelberg
| | - O. Cornely
- Uniklinik Köln, Klinik I für Innere Medizin, Köln
| | - M. Ruhnke
- Medizinische Klinik mit Schwerpunkt Onkologie und Hämatologie, Charité, Berlin
| |
Collapse
|
18
|
Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response. Infect Immun 2015; 83:1940-8. [PMID: 25712931 DOI: 10.1128/iai.02895-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
We recently demonstrated that the secreted aspartyl proteinases (Saps), Sap2 and Sap6, of Candida albicans have the potential to induce the canonical activation of the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 via caspase-1 activation. We also observed that the activation of caspase-1 is partially independent from the NLRP3 activation pathway. In this study, we examined whether Sap2 and Sap6 are also able to activate the noncanonical inflammasome pathway in murine macrophages. Our data show that both Sap2 and Sap6 can activate caspase-11 through type I interferon (IFN) production. Caspase-11 cooperates to activate caspase-1, with a subsequent increase of IL-1β secretion. Endocytosis and internalization of Saps are required for the induction of type I IFN production, which is essential for induction of noncanonical inflammasome activation. Our study indicates a sophisticated interplay between caspase-1 and caspase-11 that connects the canonical and noncanonical pathways of inflammasome activation in response to C. albicans Saps.
Collapse
|
19
|
Abstract
Concomitant with the increased prevalence of immunocompromised persons, invasive fungal infections have become considerably more frequent in the last 50 years. High mortality rates caused by invasive mycoses and high morbidity because of intractable mucosal infections have created an unmet need for innovative prophylactic and therapeutic strategies against fungal pathogens. Several immunotherapeutics and vaccines are in development to address this need, although one has yet to reach the clinic. This review focuses on past and current immunotherapeutic and vaccine strategies being tested to either prevent or treat fungal infections, as well as the challenges associated with their development.
Collapse
Affiliation(s)
- Evelyn Santos
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
20
|
Yang H, Han S, Zhao D, Wang G. Adjuvant effect of polysaccharide from fruits of Physalis alkekengi L. in DNA vaccine against systemic candidiasis. Carbohydr Polym 2014; 109:77-84. [DOI: 10.1016/j.carbpol.2014.03.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/28/2014] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
|
21
|
Moragues MD, Rementeria A, Sevilla MJ, Eraso E, Quindos G. Candidaantigens and immune responses: implications for a vaccine. Expert Rev Vaccines 2014; 13:1001-12. [DOI: 10.1586/14760584.2014.932253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Evaluation of anti-Candida activity of Vitis vinifera L. seed extracts obtained from wine and table cultivars. BIOMED RESEARCH INTERNATIONAL 2014; 2014:127021. [PMID: 24864227 PMCID: PMC4017847 DOI: 10.1155/2014/127021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
Abstract
For the first time, grape seed extracts (GSEs), obtained from wine and table cultivars of Vitis vinifera L., cultured in experimental fields of Lazio and Puglia regions of Italy and grown in different agronomic conditions, have been tested on 43 Candida species strains. We demonstrated a significant correlation between the content of the flavan-3-ols in GSEs extracts, with a polymerization degree ≥4, and anti-Candida activity. Moreover, we demonstrated that GSEs, obtained from plants cultured with reduced irrigation, showed a content of polymeric flavan-3-ols >250 mg/g with geometric mean MIC values between 5.7 and 20.2 mg/L against Candida albicans reference strains. GSE, showing 573 mg/g of polymeric flavan-3-ols, has been tested in an experimental murine model of vaginal candidiasis by using noninvasive in vivo imaging technique. The results pointed out a significant inhibition of Candida albicans load 5 days after challenge. These findings indicate that GSEs with high content of polymeric flavan-3-ols can be used in mucosal infection as vaginal candidiasis.
Collapse
|
23
|
Herwald SE, Kumamoto CA. Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells. CURRENT FUNGAL INFECTION REPORTS 2014; 8:179-184. [PMID: 24839528 DOI: 10.1007/s12281-014-0178-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fungus Candida albicans is a frequent commensal colonizer of the human gastrointestinal (GI) tract, but is also an opportunistic pathogen. This review explores features that distinguish the colonizing and pathogenic forms of C. albicans. Candida albicans in a biofilm is used as an example of a pathogenic form of the organism, because biofilms are a common feature of device-associated C. albicans infections. Biofilms (complex, sessile communities of cells) have been the subject of several large-scale gene expression studies. Biofilms and commensal C. albicans colonizing the murine GI tract show a variety of differentially expressed genes. Cell surface proteins encoded by these differentially expressed genes are especially attractive as targets for new clinical prevention, diagnosis, or treatment tools that are specific for C. albicans in its pathogenic biofilm state.
Collapse
Affiliation(s)
- Sanna E Herwald
- Program in Molecular Microbiology and Medical Scientist Training Program, Sackler School of Graduate Biomedical Sciences and School of Medicine, Tufts University, Boston, MA, USA
| | - Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
24
|
López-Monteon A, Gómez-Figueroa FS, Ramos-Poceros G, Guzmán-Gómez D, Ramos-Ligonio A. Codetection of Trichomonas vaginalis and Candida albicans by PCR in urine samples in a low-risk population attended in a clinic first level in central Veracruz, Mexico. BIOMED RESEARCH INTERNATIONAL 2013; 2013:281892. [PMID: 24069593 PMCID: PMC3773406 DOI: 10.1155/2013/281892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study is to estimate the prevalence of Trichomonas vaginalis and Candida albicans in low-risk patients treated at a first level clinic (primary health care represents the first level of contact of individuals, families, and the community with the system national health). Using a cross-sectional study in patients treated in clinical laboratory of the Sanitary District no. 7 of the city of Orizaba during the months June-July, 252 urine samples were collected for the identification of T. vaginalis and C. albicans by PCR. Furthermore, we analyzed the sociodemographic characteristics of the studied population. We observed an overall prevalence of 23.41% (95% CI 22.10-24.72) for T. vaginalis and 38.88% (95% CI 37.73-40.03) for C. albicans. There was also presence of coinfection in 14.28% (95% CI 13.10-15.46), which was associated with the presence of pain. Most of the positive cases were observed in women house-maker (80%, 95% CI 50.36-48.98). The results of this study provide evidence that the majority of positive cases observed in the studied population are presented in an asymptomatic form and usually are not associated with any risk factor.
Collapse
Affiliation(s)
- A. López-Monteon
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, 94340 Orizaba, VER, Mexico
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, 91000 Xalapa, VER, Mexico
| | - F. S. Gómez-Figueroa
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, 94340 Orizaba, VER, Mexico
| | - G. Ramos-Poceros
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, 94340 Orizaba, VER, Mexico
| | - D. Guzmán-Gómez
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, 94340 Orizaba, VER, Mexico
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, 91000 Xalapa, VER, Mexico
| | - A. Ramos-Ligonio
- LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, 94340 Orizaba, VER, Mexico
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, 91000 Xalapa, VER, Mexico
| |
Collapse
|
25
|
|
26
|
Mendonça FHBP, Santos SSFD, Faria IDSD, Gonçalves e Silva CR, Jorge AOC, Leão MVP. Effects of probiotic bacteria on Candida presence and IgA anti-Candida in the oral cavity of elderly. Braz Dent J 2012; 23:534-8. [DOI: 10.1590/s0103-64402012000500011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imbalance in the resident microbiota may promote the growth of opportunistic microorganisms, such as yeasts of Candida genus and the development of diseases, especially in aged people. This study evaluated whether the consumption of the probiotic Yakult LB® (Lactobacillus casei and Bifidobacterium breve) was able to influence on the specific immunological response against Candida and on the presence of these yeasts in the oral cavity of 42 healthy aged individuals. Saliva samples were collected before and after the probiotic use for 30 days, 3 times a week. The samples were plated in Dextrose Saboraud Agar with chloramphenicol, the colony-forming units (CFU/mL) were counted and the Candida species were identified. Anti-Candida IgA analysis was conducted using the ELISA technique. ANOVA and Student's t-test were used for normally distributed data and the Wilcoxon test was used for data with non-normal distribution (α=0.05). The results showed a statistically significant reduction (p<0.05) in Candida prevalence (from 92.9% to 85.7%), in CFU/mL counts of Candida and in the number of non-albicans species after consumption of the probiotic. Immunological analysis demonstrated a significant increase (p<0.05) in anti-Candida IgA levels. In conclusion, probiotic bacteria reduced Candida numbers in the oral cavity of the elderly and increased specific secretory immune response against these yeasts, suggesting its possible use in controlling oral candidosis.
Collapse
|