1
|
Metabolic Reprogramming of Innate Immune Cells as a Possible Source of New Therapeutic Approaches in Autoimmunity. Cells 2022; 11:cells11101663. [PMID: 35626700 PMCID: PMC9140143 DOI: 10.3390/cells11101663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Immune cells undergo different metabolic pathways or immunometabolisms to interact with various antigens. Immunometabolism links immunological and metabolic processes and is critical for innate and adaptive immunity. Although metabolic reprogramming is necessary for cell differentiation and proliferation, it may mediate the imbalance of immune homeostasis, leading to the pathogenesis and development of some diseases, such as autoimmune diseases. Here, we discuss the effects of metabolic changes in autoimmune diseases, exerted by the leading actors of innate immunity, and their role in autoimmunity pathogenesis, suggesting many immunotherapeutic approaches.
Collapse
|
2
|
Altered Phenotype of Circulating Dendritic Cells and Regulatory T Cells from Patients with Acute Myocarditis. J Immunol Res 2022; 2022:8873146. [PMID: 35265721 PMCID: PMC8901353 DOI: 10.1155/2022/8873146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) and regulatory T cells (Tregs) play an essential role in myocarditis. However, a particular DC phenotype in this disease has not been assessed. Herein, we aim to evaluate myeloid (mDCs) and plasmacytoid DC (pDC) phenotype, as well as Treg levels from myocarditis patients and healthy controls. Using multiparametric flow cytometry, we evaluated the levels of myeloid DCs (mDCs), plasmacytoid DCs (pDCs), and Tregs in peripheral blood from myocarditis patients (n = 16) and healthy volunteers (n = 16) and performed correlation analysis with clinical parameters through Sperman test. DCs from myocarditis patients showed a higher expression of costimulatory molecules while a diminished expression of the inhibitory receptors, ILT2 and ILT4. Even more, Treg cells from myocarditis patients displayed higher levels of FOXP3 compared to controls. Clinically, the increased levels of mDCs and their higher expression of costimulatory molecules correlate with a worse myocardial function, higher levels of acute phase reactants, and higher cardiac enzymes. This study shows an activating phenotype of circulating DCs from myocarditis patients. This proinflammatory status may contribute to the pathogenesis and immune deregulation in acute myocarditis.
Collapse
|
3
|
Gulino GR, Van Mechelen M, Lories R. Cellular and molecular diversity in spondyloarthritis. Semin Immunol 2021; 58:101521. [PMID: 34763975 DOI: 10.1016/j.smim.2021.101521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The spondyloarthritides are a cluster of inflammatory rheumatic diseases characterized by different diagnostic entities with heterogeneous phenotypes. The current classification system groups spondyloarthritis patients in two main categories, axial and peripheral spondyloarthritis, providing a framework wherein the clinical picture guides the treatment. However, the heterogeneity of the clinical manifestations of the pathologies, even when residing in the same group, highlights the importance of analyzing the smallest features of each entity to understand how different cellular subsets evolve, what the underlying mechanisms are and what biological markers can be identified and validated to evaluate the stage of disease and the corresponding efficacy of treatments. In this review, we will focus mostly on axial spondyloarthritis, report current knowledge concerning the cellular populations involved in its pathophysiology, and their molecular diversity. We will discuss the implications of such a diversity, and their meaning in terms of patients' stratification.
Collapse
Affiliation(s)
- G R Gulino
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium
| | - M Van Mechelen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium
| | - R Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium.
| |
Collapse
|
4
|
Chakraborty P, Chowdhury R, Bhakta A, Mukhopahyay P, Ghosh S. Microbiology of periodontal disease in adolescents with Type 1 diabetes. Diabetes Metab Syndr 2021; 15:102333. [PMID: 34784572 DOI: 10.1016/j.dsx.2021.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Diabetes and periodontal disease are chronic disorders with complex interplay. Periodontal microbiota may play a major role in the development of periodontal disease (PD). The study was framed to identify oral microorganisms and assess oral biofilm in children & adolescents with T1DM and PD. METHODS In this cross-sectional study we recruited a total of 60 subjects aged 10-18 years (in 3 groups of 20 each). Group 1: Diabetes with periodontal disease (DMPD), Group 2: Diabetes without periodontal disease (DM), Group 3: Periodontal disease without Diabetes (PD).Gingival plaque samples were collected and processed for culture based microbial identification and biofilm assay. RESULTS The microbial diversity in the DMPD group was higher. Staphylococcus warneri was the only organism specifically isolated from DMPD group. Staphylococcus vitulinus, Streptococcus sanguinis, Pseudomonas aeruginosa, was commonly isolated from both DMPD and PD group especially higher incidence in DMPD group (P ≤ 0.001).There was a strong positive correlation between poor glycaemic control and biofilm formation in both Groups 1 & 2 (DMPD and DM) patients (Spearman's Rho: 0.868, P < 0.001). CONCLUSION Children & adolescents with T1DM with worse glycaemic control, associated with higher abundance of biofilm formation and greater microbial diversity, especially in those with T1DM with PD.
Collapse
Affiliation(s)
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute, Narendrapur, Kolkata, India
| | | | | | - Sujoy Ghosh
- Dept. of Endocrinology, IPGME&R, Kolkata, India
| |
Collapse
|
5
|
Ortega Moreno L, Fernández-Tomé S, Chaparro M, Marin AC, Mora-Gutiérrez I, Santander C, Baldan-Martin M, Gisbert JP, Bernardo D. Profiling of Human Circulating Dendritic Cells and Monocyte Subsets Discriminates Between Type and Mucosal Status in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:268-274. [PMID: 32548643 DOI: 10.1093/ibd/izaa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intestinal dendritic cells (DC) and macrophages drive disease progression in patients with inflammatory bowel disease (IBD). We aimed to characterize the activation and homing profile of human circulating DC and monocyte subsets in healthy control patients (CP) and IBD patients. METHODS Eighteen CP and 64 patients with IBD were categorized by diagnoses of Crohn disease (CD) and ulcerative colitis (UC), either endoscopically active (inflamed) or quiescent. Circulating type 1 conventional DC, type 2 conventional DC, plasmacytoid DC, classical monocytes, nonclassical monocytes, and intermediate monocytes were identified by flow cytometry in each individual and characterized for the expression of 18 markers. Association between DC/monocytes and IBD risk was tested by logistic regression. Discriminant canonical analyses were performed to classify the patients in their own endoscopy category considering all markers on each subset. RESULTS CCRL1, CCR3, and CCR5 expression on circulating type 1 DC; CCRL1 expression on nonclassical monocytes; and CCR9 and β7 expression on classical monocytes allowed us to discriminate among the different study groups. Indeed, the same markers (excluding β7) were also associated with IBD when all DC and monocyte subsets were considered at the same time. CONCLUSIONS Monitoring the phenotype of human circulating DC and monocyte subsets may provide novel tools as biomarkers for disease diagnosis (CD/UC) or mucosal status (inflamed/noninflamed) in the absence of an invasive colonoscopy.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Samuel Fernández-Tomé
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Chaparro
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia C Marin
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Irene Mora-Gutiérrez
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Cecilio Santander
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Montserrat Baldan-Martin
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Bernardo
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Mucosal Immunology Lab, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
6
|
Zhang W, Yang M, Yu L, Hu Y, Deng Y, Liu Y, Xiao S, Ding Y. Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression. Am J Reprod Immunol 2020; 83:e13239. [PMID: 32215978 DOI: 10.1111/aji.13239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Dendritic cells are the primary antigen-presenting cells that contact trophoblasts at the beginning of pregnancy. Excessive DCs maturity is described in some pregnancy complications, such as pre-eclampsia and fetal growth restriction, which are characterized by impaired trophoblast invasion. However, the mechanism is unclear. The long non-coding RNA long non-coding RNA DC (lnc-DC) is expressed exclusively in conventional human DCs and induces DC differentiation and maturation by promoting signal transducer and activator of transcription 3 (STAT3) phosphorylation. Our previous investigation proved lnc-DC and p-STAT3 are elevated in pre-eclampsia. This research is to study the mechanism of lnc-DC and trophoblast invasion. METHOD OF STUDY We transfected DCs with lnc-DC shRNA or a lentivirus for lnc-DC overexpression and cocultured these treated DCs with trophoblast under different conditions. Transwell assay and wound healing assay were used to detect the trophoblast invasion ability. We also tested the matured DCs and Th1 cells as well as the p-STAT3. RESULTS We found that lnc-DC promoted DC maturation and inhibited trophoblast invasion without the involvement of CD4+ T cells. And the p-STAT3 agonist could reverse the lnc-DC function. CONCLUSION Mature DCs may be involved in altering trophoblast invasion through the overexpression of lnc-DC, which increases p-STAT3 levels and the tissue inhibitor of metalloproteinase-1 (TIMP-1)/matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-2 (TIMP-2)/matrix metalloproteinase-2 (MMP-2) ratios. Thus, lnc-DC is a promising novel target for regulating trophoblast invasion.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Yun Hu
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Yali Deng
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Songyuan Xiao
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Rabelo MDS, El-Awady A, Moura Foz A, Hisse Gomes G, Rajendran M, Meghil MM, Lowry S, Romito GA, Cutler CW, Susin C. Influence of T2DM and prediabetes on blood DC subsets and function in subjects with periodontitis. Oral Dis 2019; 25:2020-2029. [PMID: 31541516 DOI: 10.1111/odi.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the myeloid and plasmacytoid DC counts and maturation status among subjects with/without generalized periodontitis (GP) and type 2 diabetes mellitus (T2DM). METHODS The frequency and maturation status of myeloid and plasmacytoid blood DCs were analyzed by flow cytometry in four groups of 15 subjects: healthy controls, T2DM with generalized CP (T2DM + GP), prediabetes with GP (PD + GP), and normoglycemics with GP (NG + GP). RT-PCR was used to determine levels of Porphyromonas gingivalis in the oral biofilms and within panDCs. The role of exogenous glucose effects on differentiation and apoptosis of healthy human MoDCs was explored in vitro. RESULTS Relative to controls and to NG + GP, T2DM + GP showed significantly lower CD1c + and CD303 + DC counts, while CD141 + DCs were lower in T2DM + GP relative to controls. Blood DC maturation required for mobilization and immune responsiveness was not observed. A statistically significant trend was observed for P. gingivalis levels in the biofilms of groups as follows: controls <NG+GP < PD+GP < T2DM+GP. Moreover, significantly higher P. gingivalis levels were observed in blood DCs of NG + GP than controls, whereas no differences were observed between controls and PD + GP/T2DM + GP. In vitro differentiation of MoDCs was significantly decreased, and apoptosis was increased by physiologically relevant glucose levels. CONCLUSION Type 2 diabetes mellitus appears to inhibit important DC immune homeostatic functions, including expansion and bacterial scavenging, which might be mediated by hyperglycemia.
Collapse
Affiliation(s)
- Mariana de Sousa Rabelo
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Ahmed El-Awady
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Adriana Moura Foz
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Giovane Hisse Gomes
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Mythilpriya Rajendran
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Lowry
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Giuseppe Alexandre Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Christopher W Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Cristiano Susin
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Iannetta M, Savinelli S, Rossi R, Mascia C, Marocco R, Vita S, Zuccalà P, Zingaropoli MA, Mengoni F, Massetti AP, Falciano M, d'Ettorre G, Ciardi MR, Mastroianni CM, Vullo V, Lichtner M. Myeloid and lymphoid activation markers in AIDS and non-AIDS presenters. Immunobiology 2018; 224:231-241. [PMID: 30522891 DOI: 10.1016/j.imbio.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
Abstract
HIV infection is characterized by a state of chronic activation of the immune system, which is not completely reversed by antiretroviral treatment (ART). The aim of this study was to assess myeloid and lymphoid activation markers during HIV infection, before and one year after ART initiation, in AIDS and non-AIDS presenters. Treatment naïve HIV positive patients were enrolled in this study. Myeloid dendritic cell (mDC), plasmacytoid dendritic cell (pDC), slanDC, monocyte and T-lymphocyte cell counts and activation status, were assessed by flow cytometry in peripheral blood samples. Soluble (s)CD14 and sCD163 were assessed in plasma samples using ELISA assays. Statistical analyses were performed using GraphPad Prism and Minitab Express. Thirty-four ART naïve HIV-1 infected subjects were enrolled in this study (22 non-AIDS and 12 AIDS presenters). Seventeen healthy donors (HD) were included as control group. Although circulating mDC levels resulted unchanged, HLA-DR expression was decreased on mDCs of HIV positive subjects compared to HD (p < 0,0001). AIDS presenters showed the lowest level of expression of HLA-DR on mDCs. Circulating levels of pDCs were decreased in HIV patients compared to HD (p < 0,001), without any changes in HLA-DR expression. SlanDC cell counts were extremely reduced in AIDS presenters, compared to non-AIDS presenters and HD (p < 0,01 and p < 0,0001, respectively) and showed higher HLA-DR expression in HIV patients compared to HD (p < 0,01). Intermediate monocyte (IM) cell counts were increased in AIDS and non-AIDS presenters compared to HD (p < 0,001 and p < 0,001 respectively). Furthermore, IM expansion was directly correlated to HIV viral load (p = 0,036) and independent from CD4 cell counts and activation levels. Plasma concentrations of sCD14 and sCD163 resulted increased in HIV infected subjects compared to HD (p < 0,0001 and p < 0,001), with the highest levels observed in AIDS presenters. After 1 year, ART was able to increase pDC and decrease IM absolute cell counts and modify HLA-DR expression on mDCs and slanDCs, approaching the levels observed in HD. ART reduced also CD4 and CD8 activation levels. In conclusion, in untreated HIV infected subjects circulating dendritic cells resulted altered either in numbers or in HLA-DR expression, especially in AIDS presenters. IM absolute counts were equally increased in AIDS and non-AIDS presenters. ART was able to reduce myeloid and lymphoid inflammation in both advanced and non-advanced HIV patients, confirming the role of ART in hampering disease progression and immune activation associated non-AIDS events.
Collapse
Affiliation(s)
- Marco Iannetta
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Savinelli
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Raffaella Rossi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudia Mascia
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| | - Serena Vita
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| | - Paola Zuccalà
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fabio Mengoni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Paola Massetti
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mario Falciano
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| |
Collapse
|
9
|
Bernardo D, Chaparro M, Gisbert JP. Human Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Mol Nutr Food Res 2018; 62:e1700931. [PMID: 29336524 DOI: 10.1002/mnfr.201700931] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a serious, costly, and persistent health problem with an estimated prevalence in Western countries around 0.5% of the general population; its socioeconomic impact is comparable with that for chronic diseases such as diabetes. Conventional treatment involves escalating drug regimens with concomitant side effects followed, in some cases, by surgical interventions, which are often multiple, mainly in Crohn's disease. The goal of finding a targeted gut-specific immunotherapy for IBD patients is therefore an important unmet need. However, to achieve this goal we first must understand how dendritic cells (DC), the most potent antigen present cells of the immune system, control the immune tolerance in the gastrointestinal tract and how their properties are altered in those patients suffering from IBD. In this review, we summarize the current available information regarding human intestinal DC subsets composition, phenotype, and function in the human gastrointestinal tract describing how, in the IBD mucosa, DC display pro-inflammatory properties, which drive disease progression. A better understanding of the mechanisms inducing DC abnormal profile in IBD may provide us with novel tools to perform tissue specific immunomodulation.
Collapse
Affiliation(s)
- David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
10
|
Long J, Cai Q, Steinwandel M, Hargreaves MK, Bordenstein SR, Blot WJ, Zheng W, Shu XO. Association of oral microbiome with type 2 diabetes risk. J Periodontal Res 2017; 52:636-643. [PMID: 28177125 DOI: 10.1111/jre.12432] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The oral microbiome may help to maintain systemic health, including how it affects blood glucose levels; however, direct evidence linking the oral microbiome with diabetes is lacking. MATERIAL AND METHODS We compared the oral microbiome profiles of 98 participants with incident diabetes, 99 obese non-diabetics and 97 normal weight non-diabetics, via deep sequencing of the 16S rRNA gene. RESULTS We found that the phylum Actinobacteria was present significantly less abundant among patients with diabetes than among the controls (p = 3.9 × 10-3 ); the odds ratio (OR) and 95% confidence interval (CI) was 0.27 (0.11-0.66) for those individuals who had relative abundance higher than the median value. Within this phylum, five families and seven genera were observed, and most of them were less abundant among patients with diabetes. Notably, genera Actinomyces and Atopobium were associated with 66% and 72% decreased risk of diabetes with p-values of 8.9 × 10-3 and 7.4 × 10-3 , respectively. Stratified analyses by race showed that most taxa in this phylum were associated with diabetes in both black and white participants. This phylum was also less abundant among non-diabetic obese subjects compared to normal weight individuals, particularly genera Mobiluncus, Corynebacterium and Bifidobacterium, which showed p < 0.05. CONCLUSION Our study revealed that multiple bacteria taxa in the phylum Actinobacteria are associated with the risk of type 2 diabetes. Some are also associated with the prevalence of obesity, suggesting that the oral microbiome may play an important role in diabetes etiology.
Collapse
Affiliation(s)
- J Long
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Q Cai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Steinwandel
- International Epidemiology Institute, Rockville, MD, USA
| | - M K Hargreaves
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - S R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - W J Blot
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,International Epidemiology Institute, Rockville, MD, USA
| | - W Zheng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - X O Shu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
El-Awady AR, Arce RM, Cutler CW. Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontol 2000 2017; 69:160-80. [PMID: 26252408 PMCID: PMC4530502 DOI: 10.1111/prd.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.
Collapse
|
12
|
Berthelot JM, Claudepierre P. Trafficking of antigens from gut to sacroiliac joints and spine in reactive arthritis and spondyloarthropathies: Mainly through lymphatics? Joint Bone Spine 2016; 83:485-90. [DOI: 10.1016/j.jbspin.2015.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
|
13
|
Wu H, Chen J, Song S, Yuan P, Liu L, Zhang Y, Zhou A, Chang Y, Zhang L, Wei W. β2-adrenoceptor signaling reduction in dendritic cells is involved in the inflammatory response in adjuvant-induced arthritic rats. Sci Rep 2016; 6:24548. [PMID: 27079168 PMCID: PMC4832233 DOI: 10.1038/srep24548] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation of the synovium, which leads to the progressive destruction of cartilage and bone. Adrenoreceptor (AR) signaling may play an important role in modulating dendritic cell (DC), which may be involved in the pathogenesis of RA. We examined the effect of the β-AR agonist isoprenaline (ISO) on DC function, the impact of the β2-AR agonist salbutamol on adjuvant-induced arthritic (AA) rats, and changes in β2-AR signaling in DCs during the course of AA. ISO inhibited the expression of the surface molecules CD86 and MHC-II, inhibited the stimulation of T lymphocyte proliferation by DC and TNF-α secretion, and promoted DC antigen uptake and IL-10 secretion. The effects of ISO on MHC-II expression, DC stimulation of T lymphocyte proliferation, and DC antigen uptake were mediated by β2-AR. Treatment with salbutamol ameliorated the severity of AA and histopathology of the joints and inhibited proliferation of thymus lymphocytes and FLS in vivo. β2-AR signaling was weaker in AA rats compared to the control. Elevated GRK2 and decreased β2-AR expression in DC cytomembranes were observed in AA and may have decreased the anti-inflammatory effect of β2-AR signaling. Decreased β2-AR signaling may be relevant to the exacerbation of arthritis inflammation.
Collapse
Affiliation(s)
- Huaxun Wu
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shasha Song
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Pingfan Yuan
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lihua Liu
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yunfang Zhang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Aiwu Zhou
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| |
Collapse
|
14
|
Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells. Viruses 2015; 7:5831-43. [PMID: 26569288 PMCID: PMC4664982 DOI: 10.3390/v7112909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 01/31/2023] Open
Abstract
Toscana virus (TOSV) is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS) cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs) and cytokine levels in plasma and cerebrospinal fluid (CSF) from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS.
Collapse
|
15
|
Arjunan P, El-Awady A, Dannebaum RO, Kunde-Ramamoorthy G, Cutler CW. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants. Mol Oral Microbiol 2015; 31:78-93. [PMID: 26466817 DOI: 10.1111/omi.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis.
Collapse
Affiliation(s)
- P Arjunan
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - A El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - R O Dannebaum
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - G Kunde-Ramamoorthy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Biochemistry, National University of Singapore, Singapore
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
16
|
Hardardottir I, Olafsdottir ES, Freysdottir J. Dendritic cells matured in the presence of the lycopodium alkaloid annotine direct T cell responses toward a Th2/Treg phenotype. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:277-282. [PMID: 25765833 DOI: 10.1016/j.phymed.2014.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Annotine is a lycopodane-type alkaloid isolated from the Icelandic club moss Lycopodium annotinum ssp. alpestre. Annotine does not inhibit acetylcholinesterase, as some other lycopodium alkaloids do, and other bioactivities have not been reported. The aim of this study was to determine the effects of annotine on maturation of dendritic cells (DCs) and their ability to activate allogeneic CD4(+) T cells. Human monocyte-derived DCs were matured in the absence or presence of annotine at a concentration of 1, 10 or 100 μg/ml. The effect of the annotine on maturation of the DCs was determined by measuring concentration of cytokines in culture supernatant by ELISA and expression of surface molecules by flow cytometry. DCs matured in the absence or presence of annotine at 100 µg/ml were also co-cultured with allogeneic CD4(+) T cells and concentration of cytokines in supernatants determined by ELISA and expression of surface molecules by flow cytometry. When cultured alone, DCs matured in the presence of annotine secreted less of the pro-inflammatory cytokines IL-6 and IL-23 and had a tendency toward less secretion of IL-12p40 than DCs matured in the absence of annotine. However, when DCs were matured in the presence of annotine and then co-cultured with allogeneic CD4(+) T cells they secreted more IL-12p40 and had a tendency toward secreting more IL-6 than DCs matured in the absence of annotine and then co-cultured with T cells. Allogeneic CD4(+) T cells co-cultured with DCs matured in the presence of annotine secreted more IL-13 than T cells co-cultured with DCs matured in the absence of annotine, but stimulating the DCs in the presence of annotine did not affect T cell secretion of IFN-γ and IL-17. There was also more IL-10 in co-cultures of T cells and DCs matured in the presence of annotine than in co-cultures of T cells and DCs matured in the absence of annotine. These results show that annotine increases the ability of DCs to direct the differentiation of allogeneic CD4(+) T cells toward a Th2/Treg phenotype, which may be of interest in the development of new treatments for Th1- and/or Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ingibjorg Hardardottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland
| | | | - Jona Freysdottir
- Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland.
| |
Collapse
|
17
|
Chen J, Wu H, Wang Q, Chang Y, Liu K, Wei W. Ginsenoside metabolite compound K suppresses T-cell priming via modulation of dendritic cell trafficking and costimulatory signals, resulting in alleviation of collagen-induced arthritis. J Pharmacol Exp Ther 2015; 353:71-9. [PMID: 25630466 DOI: 10.1124/jpet.114.220665] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ginsenoside metabolite compound K (CK; 20-O-d-glucopyranosyl-20(S)-protopanaxadiol), a novel ginsenoside metabolite, belongs to the dammarane-type triterpene saponins, according to its structure. The anti-inflammatory activity of CK has been identified in several studies. Our study demonstrated that CK exerted an anti-inflammatory effect in collagen-induced arthritis (CIA) and adjuvant-induced arthritis animal models, and this effect was due to inhibition of the abnormal activation and differentiation of T cells. However, the mechanism of CK in suppressing T-cell activation remains unclear. In this study, CK had a therapeutic effect in mice with CIA, decreased the percentage of activated T cells and dendritic cells (DCs), and increased the percentage of naive T cells in lymph nodes. The inhibitory effect on T-cell activation of CK was related to suppression of accumulation of DCs in lymph nodes. CK decreased CCL21 levels in lymph nodes and CCR7 expression in DCs and suppressed CCL21/CCR7-mediated migration of DCs, thus reducing accumulation of DCs in lymph nodes. In addition, signals for T-cell activation including major histocompatibility complex class II and costimulatory molecules, such as CD80 and CD86, were suppressed by CK, and the proliferation of T cells induced by DCs was inhibited by CK. In conclusion, this study demonstrated that CK downregulated DC priming of T-cell activation in CIA, and suppression of CCL21/CCR7-mediated DC migration and signaling between T cells and DCs might be the potential mechanism. These results provide an interesting, novel insight into the potential mechanism by which CK contributes to the anti-inflammatory effect in autoimmune conditions.
Collapse
Affiliation(s)
- Jingyu Chen
- Institute of Clinical Pharmacology of Anhui Medical University and Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology of Anhui Medical University and Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology of Anhui Medical University and Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yan Chang
- Institute of Clinical Pharmacology of Anhui Medical University and Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Kangkang Liu
- Institute of Clinical Pharmacology of Anhui Medical University and Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology of Anhui Medical University and Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| |
Collapse
|