1
|
Elalouf A, Elalouf H, Rosenfeld A. Modulatory immune responses in fungal infection associated with organ transplant - advancements, management, and challenges. Front Immunol 2023; 14:1292625. [PMID: 38143753 PMCID: PMC10748506 DOI: 10.3389/fimmu.2023.1292625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Organ transplantation stands as a pivotal achievement in modern medicine, offering hope to individuals with end-stage organ diseases. Advancements in immunology led to improved organ transplant survival through the development of immunosuppressants, but this heightened susceptibility to fungal infections with nonspecific symptoms in recipients. This review aims to establish an intricate balance between immune responses and fungal infections in organ transplant recipients. It explores the fundamental immune mechanisms, recent advances in immune response dynamics, and strategies for immune modulation, encompassing responses to fungal infections, immunomodulatory approaches, diagnostics, treatment challenges, and management. Early diagnosis of fungal infections in transplant patients is emphasized with the understanding that innate immune responses could potentially reduce immunosuppression and promise efficient and safe immuno-modulating treatments. Advances in fungal research and genetic influences on immune-fungal interactions are underscored, as well as the potential of single-cell technologies integrated with machine learning for biomarker discovery. This review provides a snapshot of the complex interplay between immune responses and fungal infections in organ transplantation and underscores key research directions.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, Israel
| | - Hadas Elalouf
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Godoy P, Darlington PJ, Whiteway M. Genetic Screening of Candida albicans Inactivation Mutants Identifies New Genes Involved in Macrophage-Fungal Cell Interactions. Front Microbiol 2022; 13:833655. [PMID: 35450285 PMCID: PMC9016338 DOI: 10.3389/fmicb.2022.833655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans, an important fungal pathogen of humans, displays different morphologies, such as yeast, pseudo-hyphae and hyphae, which are recognized unequally by phagocytic cells of the innate immune response. Once C. albicans cells invade host tissues, immune cells such as macrophages are attracted to the site of infection and activated to recognize, engulf and kill the pathogen. We have investigated this fungal cell-macrophage interface by using high-throughput screening of the C. albicans GRACE library to identify genes that can influence this interaction and modify the kinetics of engulfment. Compared with the wild-type (WT) strain, we identified generally faster rates of engulfment for those fungal strains with constitutive pseudo-hyphal and hyphal phenotypes, whereas yeast-form-locked strains showed a reduced and delayed recognition and internalization by macrophages. We identified a number of GRACE strains that showed normal morphological development but exhibited different recognition and engulfment kinetics by cultured macrophages and characterized two mutants that modified interactions with the murine and human-derived macrophages. One mutant inactivated an uncharacterized C. albicans open reading frame that is the ortholog of S. cerevisiae OPY1, the other inactivated CaKRE1. The modified interaction was monitored during a 4 h co-culture. Early in the interaction, both opy1 and kre1 mutant strains showed reduced recognition and engulfment rates by macrophages when compared with WT cells. At fungal germ tube initiation, the engulfment kinetics increased for both mutants and WT cells, however the WT cells still showed a higher internalization by macrophages up to 2 h of interaction. Subsequently, between 2 and 4 h of the interaction, when most macrophages contain engulfed fungal cells, the engulfment kinetics increased for the opy1 mutant and further decreased for the kre1 mutant compared with Ca-WT. It appears that fungal morphology influences macrophage association with C. albicans cells and that both OPY1 and KRE1 play roles in the interaction of the fungal cells with phagocytes.
Collapse
Affiliation(s)
- Pablo Godoy
- Centre of Structural and Functional Genomics, Biology Department, Concordia University - Loyola Campus, Montreal, QC, Canada.,Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Peter John Darlington
- Perform Centre, Department of Health, Kinesiology and Applied Physiology, Montreal, QC, Canada
| | - Malcolm Whiteway
- Centre of Structural and Functional Genomics, Biology Department, Concordia University - Loyola Campus, Montreal, QC, Canada
| |
Collapse
|
3
|
Branco J, Martins-Cruz C, Rodrigues L, Silva RM, Araújo-Gomes N, Gonçalves T, Miranda IM, Rodrigues AG. The transcription factor Ndt80 is a repressor of Candida parapsilosis virulence attributes. Virulence 2021; 12:601-614. [PMID: 33538224 PMCID: PMC7872087 DOI: 10.1080/21505594.2021.1878743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Candida parapsilosis is an emergent opportunistic yeast among hospital settings that affects mainly neonates and immunocompromised patients. Its most remarkable virulence traits are the ability to adhere to prosthetic materials, as well as the formation of biofilm on abiotic surfaces. The Ndt80 transcription factor was identified as one of the regulators of biofilm formation by C. parapsilosis; however, its function in this process was not yet clarified. By knocking out NDT80 (CPAR2-213640) gene, or even just one single copy of the gene, we observed substantial alterations of virulence attributes, including morphogenetic changes, adhesion and biofilm growth profiles. Both ndt80Δ and ndt80ΔΔ mutants changed colony and cell morphologies from smooth, yeast-shaped to crepe and pseudohyphal elongated forms, exhibiting promoted adherence to polystyrene microspheres and notably, forming a higher amount of biofilm compared to wild-type strain. Interestingly, we identified transcription factors Ume6, Cph2, Cwh41, Ace2, Bcr1, protein kinase Mkc1 and adhesin Als7 to be under Ndt80 negative regulation, partially explaining the phenotypes displayed by the ndt80ΔΔ mutant. Furthermore, ndt80ΔΔ pseudohyphae adhered more rapidly and were more resistant to murine macrophage attack, becoming deleterious to such cells after phagocytosis. Unexpectedly, our findings provide the first evidence for a direct role of Ndt80 as a repressor of C. parapsilosis virulence attributes. This finding shows that C. parapsilosis Ndt80 functionally diverges from its homolog in the close related fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Cláudia Martins-Cruz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Lisa Rodrigues
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Raquel M Silva
- Faculdade De Medicina Dentária, CIIS - Centro De Investigação Interdisciplinar Em Saúde, Universidade Católica Portuguesa , Viseu, Portugal
| | - Nuno Araújo-Gomes
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Teresa Gonçalves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Acácio G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto , Porto, Portugal
| |
Collapse
|
4
|
Pál SE, Tóth R, Nosanchuk JD, Vágvölgyi C, Németh T, Gácser A. A Candida parapsilosis Overexpression Collection Reveals Genes Required for Pathogenesis. J Fungi (Basel) 2021; 7:jof7020097. [PMID: 33572958 PMCID: PMC7911391 DOI: 10.3390/jof7020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Relative to the vast data regarding the virulence mechanisms of Candida albicans, there is limited knowledge on the emerging opportunistic human pathogen Candida parapsilosis. The aim of this study was to generate and characterize an overexpression mutant collection to identify and explore virulence factors in C. parapsilosis. With the obtained mutants, we investigated stress tolerance, morphology switch, biofilm formation, phagocytosis, and in vivo virulence in Galleria mellonella larvae and mouse models. In order to evaluate the results, we compared the data from the C. parapsilosis overexpression collection analysis to the results derived from previous deletion mutant library characterizations. Of the 37 overexpression C. parapsilosis mutants, we identified eight with altered phenotypes compared to the controls. This work is the first report to identify CPAR2_107240, CPAR2_108840, CPAR2_302400, CPAR2_406400, and CPAR2_602820 as contributors to C. parapsilosis virulence by regulating functions associated with host-pathogen interactions and biofilm formation. Our findings also confirmed the role of CPAR2_109520, CPAR2_200040, and CPAR2_500180 in pathogenesis. This study was the first attempt to use an overexpression strategy to systematically assess gene function in C. parapsilosis, and our results demonstrate that this approach is effective for such investigations.
Collapse
Affiliation(s)
- Sára E. Pál
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
5
|
Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio 2020; 11:mBio.02435-20. [PMID: 33024045 PMCID: PMC7542370 DOI: 10.1128/mbio.02435-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another. Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.
Collapse
|
6
|
Intravital Imaging Reveals Divergent Cytokine and Cellular Immune Responses to Candida albicans and Candida parapsilosis. mBio 2019; 10:mBio.00266-19. [PMID: 31088918 PMCID: PMC6520444 DOI: 10.1128/mbio.00266-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In modern medicine, physicians are frequently forced to balance immune suppression against immune stimulation to treat patients such as those undergoing transplants and chemotherapy. More-targeted therapies designed to preserve immunity and prevent opportunistic fungal infection in these patients could be informed by an understanding of how fungi interact with professional and nonprofessional immune cells in mucosal candidiasis. In this study, we intravitally imaged these host-pathogen dynamics during Candida infection in a transparent vertebrate model host, the zebrafish. Single-cell imaging revealed an unexpected partitioning of the inflammatory response between phagocytes and epithelial cells. Surprisingly, we found that in vivo cytokine profiles more closely match in vitro responses of epithelial cells rather than phagocytes. Furthermore, we identified a disconnect between canonical inflammatory cytokine production and phagocyte recruitment to the site of infection, implicating noncytokine chemoattractants. Our study contributes to a new appreciation for the specialization and cross talk among cell types during mucosal infection. Candida yeasts are common commensals that can cause mucosal disease and life-threatening systemic infections. While many of the components required for defense against Candida albicans infection are well established, questions remain about how various host cells at mucosal sites assess threats and coordinate defenses to prevent normally commensal organisms from becoming pathogenic. Using two Candida species, C. albicans and C. parapsilosis, which differ in their abilities to damage epithelial tissues, we used traditional methods (pathogen CFU, host survival, and host cytokine expression) combined with high-resolution intravital imaging of transparent zebrafish larvae to illuminate host-pathogen interactions at the cellular level in the complex environment of a mucosal infection. In zebrafish, C. albicans grows as both yeast and epithelium-damaging filaments, activates the NF-κB pathway, evokes proinflammatory cytokines, and causes the recruitment of phagocytic immune cells. On the other hand, C. parapsilosis remains in yeast morphology and elicits the recruitment of phagocytes without inducing inflammation. High-resolution mapping of phagocyte-Candida interactions at the infection site revealed that neutrophils and macrophages attack both Candida species, regardless of the cytokine environment. Time-lapse monitoring of single-cell gene expression in transgenic reporter zebrafish revealed a partitioning of the immune response during C. albicans infection: the transcription factor NF-κB is activated largely in cells of the swimbladder epithelium, while the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) is expressed in motile cells, mainly macrophages. Our results point to different host strategies for combatting pathogenic Candida species and separate signaling roles for host cell types.
Collapse
|
7
|
Candida spp. and phagocytosis: multiple evasion mechanisms. Antonie van Leeuwenhoek 2019; 112:1409-1423. [PMID: 31079344 DOI: 10.1007/s10482-019-01271-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
Invasive fungal infections are a global health problem, mainly in hospitals, where year by year hundreds of patients die because of these infections. Commensal yeasts may become pathogenic to human beings, affecting mainly immunocompromised patients. During infectious processes, the immune system uses phagocytes to eliminate invader microorganisms. In order to prevent or neutralize phagocyte attacks, pathogenic yeasts can use virulence factors to survive, as well as to colonize and infect the host. In this review, we describe how Candida spp., mainly Candida albicans, interact with phagocytes and use several factors that contribute to immune evasion. Polymorphism, biofilm formation, gene expression and enzyme production mediate distinct functions such as adhesion, invasion, oxidative stress response, proteolysis and escape from phagocytes. Fungal and human cells have similar structures and mechanisms that decrease the number of potential targets for antifungal drugs. Therefore, research on host-pathogen interaction may aid in the discovery of new targets and in the development of new drugs or treatments for these diseases and thus to save lives.
Collapse
|
8
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
9
|
Tóth A, Zajta E, Csonka K, Vágvölgyi C, Netea MG, Gácser A. Specific pathways mediating inflammasome activation by Candida parapsilosis. Sci Rep 2017; 7:43129. [PMID: 28225025 PMCID: PMC5320503 DOI: 10.1038/srep43129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
Candida albicans and C. parapsilosis are human pathogens causing severe infections. The NLRP3 inflammasome plays a crucial role in host defence against C. albicans, but it has been previously unknown whether C. parapsilosis activates this complex. Here we show that C. parapsilosis induces caspase-1 activation and interleukin-1β (IL-1β) secretion in THP-1, as well as primary, human macrophages. IL-1β secretion was dependent on NLRP3, K+-efflux, TLR4, IRAK, Syk, caspase-1, caspase-8 and NADPH-oxidase. Importantly, while C. albicans induced robust IL-1β release after 4 h, C. parapsilosis was not able to stimulate the production of IL-1β after this short incubation period. We also found that C. parapsilosis was phagocytosed to a lesser extent, and induced significantly lower ROS production and lysosomal cathepsin B release compared to C. albicans, suggesting that the low extent of inflammasome activation by C. parapsilosis may result from a delay in the so-called "signal 2". In conclusion, this is the first study to examine the molecular pathways responsible for the IL-1β production in response to a non-albicans Candida species, and these results enhance our understanding about the immune response against C. parapsilosis.
Collapse
Affiliation(s)
- Adél Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Erik Zajta
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Katalin Csonka
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Patin EC, Jones AV, Thompson A, Clement M, Liao CT, Griffiths JS, Wallace LE, Bryant CE, Lang R, Rosenstiel P, Humphreys IR, Taylor PR, Jones GW, Orr SJ. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. THE JOURNAL OF IMMUNOLOGY 2016; 197:208-21. [PMID: 27259855 PMCID: PMC4911616 DOI: 10.4049/jimmunol.1501204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Adam V Jones
- University Dental Hospital, Cardiff and Vale University Health Board, Cardiff CF14 4XY, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chia-Te Liao
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - James S Griffiths
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Leah E Wallace
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; and
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Gareth W Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| |
Collapse
|
11
|
Glass KA, Longley SJ, Bliss JM, Shaw SK. Protection of Candida parapsilosis from neutrophil killing through internalization by human endothelial cells. Virulence 2016; 6:504-14. [PMID: 26039751 DOI: 10.1080/21505594.2015.1042643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Candida parapsilosis is a fungal pathogen that is associated with hematogenously disseminated disease in premature neonates, acutely ill or immunocompromised patients. In cell culture, C. parapsilosis cells are actively and avidly endocytosed by endothelial cells via actin polymerization mediated by N-WASP. Here we present evidence that C. parapsilosis that were internalized by endothelial cells remained alive, and avoided being acidified or otherwise damaged via the host cell. Internalized fungal cells reproduced intracellularly and eventually burst out of the host endothelial cell. When neutrophils were added to endothelium and C. parapsilosis, they patrolled the endothelial surface and efficiently killed most adherent fungal cells prior to endocytosis. But after endocytosis by endothelial cells, internalized fungal cells evaded neutrophil killing. Silencing endothelial N-WASP blocked endocytosis of C. parapsilosis and left fungal cells stranded on the cell surface, where they were susceptible to neutrophil killing. These observations suggest that for C. parapsilosis to escape from the bloodstream, fungi may adhere to and be internalized by endothelial cells before being confronted and phagocytosed by a patrolling leukocyte. Once internalized by endothelial cells, C. parapsilosis may safely replicate to cause further rounds of infection. Immunosurveillance of the intravascular lumen by leukocytes crawling on the endothelial surface and rapid killing of adherent yeast may play a major role in controlling C. parapsilosis dissemination and infected endothelial cells may be a significant reservoir for fungal persistence.
Collapse
Affiliation(s)
- Kyle A Glass
- a Department of Pediatrics; Women & Infants Hospital of Rhode Island ; Providence , RI , USA
| | | | | | | |
Collapse
|
12
|
Pérez-García LA, Csonka K, Flores-Carreón A, Estrada-Mata E, Mellado-Mojica E, Németh T, López-Ramírez LA, Toth R, López MG, Vizler C, Marton A, Tóth A, Nosanchuk JD, Gácser A, Mora-Montes HM. Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Front Microbiol 2016; 7:306. [PMID: 27014229 PMCID: PMC4781877 DOI: 10.3389/fmicb.2016.00306] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.
Collapse
Affiliation(s)
- Luis A Pérez-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Katalin Csonka
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Arturo Flores-Carreón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Eine Estrada-Mata
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Erika Mellado-Mojica
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Tibor Németh
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Luz A López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| | - Renata Toth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Csaba Vizler
- Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - Annamaria Marton
- Biological Research Centre, Hungarian Academy of Sciences Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato Guanajuato, Mexico
| |
Collapse
|
13
|
Affiliation(s)
- Joseph M Bliss
- a Department of Pediatrics ; Women & Infants Hospital of Rhode Island; Warren Alpert Medical School of Brown University ; Providence , RI USA
| |
Collapse
|
14
|
Abstract
The surveillance and elimination of fungal pathogens rely heavily on the sentinel behaviour of phagocytic cells of the innate immune system, especially macrophages and neutrophils. The efficiency by which these cells recognize, uptake and kill fungal pathogens depends on the size, shape and composition of the fungal cells and the success or failure of various fungal mechanisms of immune evasion. In this Review, we describe how fungi, particularly Candida albicans, interact with phagocytic cells and discuss the many factors that contribute to fungal immune evasion and prevent host elimination of these pathogenic microorganisms.
Collapse
Affiliation(s)
- Lars P Erwig
- Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.,GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Neil A R Gow
- Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
15
|
Tóth R, Alonso MF, Bain JM, Vágvölgyi C, Erwig LP, Gácser A. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response. Front Microbiol 2015; 6:1102. [PMID: 26528256 PMCID: PMC4602145 DOI: 10.3389/fmicb.2015.01102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/24/2015] [Indexed: 01/12/2023] Open
Abstract
Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host–pathogen interactions.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged Szeged, Hungary
| | - Maria F Alonso
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged Szeged, Hungary ; Botany and Microbiology Department, King Saud University Riyadh, Saudi Arabia
| | - Lars-Peter Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Attila Gácser
- Department of Microbiology, University of Szeged Szeged, Hungary
| |
Collapse
|
16
|
Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine 2015; 76:42-52. [PMID: 26276374 DOI: 10.1016/j.cyto.2015.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Rheumatology & Clinical Immunology, BST S702, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|