1
|
Sobhi M, Elsamahy T, Zakaria E, Gaballah MS, Zhu F, Hu X, Zhou C, Guo J, Huo S, Dong R. Characteristics, limitations and global regulations in the use of biogas digestate as fertilizer: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177855. [PMID: 39631337 DOI: 10.1016/j.scitotenv.2024.177855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The utilization of biogas digestate, the effluent of anaerobic digestion (AD), as an organic fertilizer offers promising advances for sustainable agriculture, but it also presents critical challenges that require careful regulatory oversight. This review explores the wide characteristics range of digestate, key limitations, and regulatory frameworks shaping the use of biogas digestate as fertilizer. While digestate is a rich source of essential macro and micronutrients required for promoting plants growth, its application risks leading to nutrient overload, contamination from heavy metals, pathogens, antibiotics, microplastics, and emerging contaminants. By exploring the current regulations managing the utilization of biogas digestate as fertilizer, the EU limits digestate application to 170 kg N/ha/year, with a higher allowance in the UK (up to 250 kg N/ha/year). In other major biogas-producing countries, there is no specific limit for digestate application, as it varies depending on individual cases. Heavy metals and pathogens are satisfactorily regulated in the policies of these countries. However, no specific limits exist for antibiotics and microplastics, despite their significant impact on human health and the environment. Moreover, regulations concerning other potential chemicals are limited. Expanding these regulations is recommended to mitigate associated health and environmental risks.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Mohamed S Gaballah
- School of Engineering and Technology & Institute for Great Lakes Research, Central Michigan University, ET 140, Mt. Pleasant, MI 48859, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
2
|
Allegrini M, Iocoli GA, Zabaloy MC. Combined use of digestate and inorganic fertilizer alleviates the burden of class 1 integrons in perennial ryegrass rhizosphere without compromising aerial biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47132-47143. [PMID: 38985425 DOI: 10.1007/s11356-024-34279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.
Collapse
Affiliation(s)
- Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario (UNR)-CONICET, Zavalla, Argentina
| | - Gastón Alejandro Iocoli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Shintani M, Vestergaard G, Milaković M, Kublik S, Smalla K, Schloter M, Udiković-Kolić N. Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Environ Microbiol 2023; 25:3035-3051. [PMID: 37655671 DOI: 10.1111/1462-2920.16481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Croatia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | | |
Collapse
|
4
|
Wang X, Zhang L, Gu J, Feng Y, He K, Jiang H. Effects of soil solarization combined with manure-amended on soil ARGs and microbial communities during summer fallow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121950. [PMID: 37279818 DOI: 10.1016/j.envpol.2023.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Soil solarization (SS) is a technique for managing pathogens and weeds, which involves covering with transparent plastic to increase soil temperature during summer fallow (SF). However, SS also alters the diversity of bacterial communities. Therefore, during SF, various organic modifiers are used in combination with SS to improve its efficacy. Organic amendments may contain antibiotic resistance genes (ARGs). Greenhouse vegetable production (GVP) soils are vital to ensure food security and ecological balance. However, comprehensive study on the effects of SS combined with different types of manure on ARGs in GVP soils during SF remains unclear. Therefore, this study employed high-throughput qPCR to explore the effects of different organic amendments combined with SS on the abundance changes of ARGs and mobile genetic elements (MGEs) in GVP soils during SF. The abundance and diversity of ARGs and MGEs in GVP soils with different manure fertilization and SS decreased during SF. Horizontal gene transfer via MGEs (especially integrases 45.80%) induced by changes in environmental factors (NO3--N 14.7% and NH4+-N) was the main factor responsible for the changes in ARGs. Proteobacteria (14.3%) and Firmicutes were the main potential hosts of ARGs. Network analysis suggested that Ornithinimicrobium, Idiomarina and Corynebacterium had positive correlations with aminoglycosides, MLSB, and tetracycline resistance genes. These results provide new insights to understand the fate of ARGs in the GVP soils by manure-amended combined with SS during SF, which may help to reduce the spread of ARGs.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yucheng Feng
- Department of C, rop, Soil & Environmental Sciences (formerly Agronomy and Soils), Auburn University, Auburn, AL36849, USA
| | - Kai He
- Tobacco Monopoly Bureau (Branch), Longhui, Shaoyang, Hunan, 422208, China
| | - Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Major N, Jechalke S, Nesme J, Goreta Ban S, Černe M, Sørensen SJ, Ban D, Grosch R, Schikora A, Schierstaedt J. Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:126-135. [PMID: 36242814 DOI: 10.1016/j.wasman.2022.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage sludge (MSS) and other biosolids are of high interest for agriculture. These nutrient-rich organic materials can potentially serve as organic fertilizers. Besides an increase of organic matter in soil, other positive effects were shown after their application. Especially the positive influence on circular economy increased the attention paid to management of MSS in recent years. Unfortunately, the use of sewage sludge has some drawbacks. Biosolids are frequently polluted with heavy metals, xenobiotic organic compounds and industrial chemicals, which may be hazardous for the environment and humans. Here, we investigated the influence of stabilization method and the size of wastewater treatment plant on the structure of microbial communities as well as the abundance of antibiotic resistance genes (ARG) and mobile genetic elements (MGE). All tested ARG and MGE were detectable in almost all of the samples. Interestingly, the presence of MGE as well as particular heavy metals correlated positively with the presence of several ARG. We conclude that the distribution of ARG and MGE in biosolids originated from municipal wastewater treatment plants, cannot be explained by the size of the facility or the applied stabilization method. Moreover, we postulate that the presence of pollutants and long-term impacts should be assessed prior to a possible use of sewage sludge as fertilizer.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany.
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
7
|
Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Appl Environ Microbiol 2022; 88:e0112122. [PMID: 36094214 PMCID: PMC9552606 DOI: 10.1128/aem.01121-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h-1 versus 0.15 h-1) led to higher conjugation frequencies (10-4 versus 10-6 transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework.
Collapse
|
8
|
Wolters B, Hauschild K, Blau K, Mulder I, Heyde BJ, Sørensen SJ, Siemens J, Jechalke S, Smalla K, Nesme J. Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes? Environ Microbiol 2022; 24:1573-1589. [PMID: 35192222 PMCID: PMC9306954 DOI: 10.1111/1462-2920.15938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/04/2023]
Abstract
Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.
Collapse
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kristin Hauschild
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ines Mulder
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Benjamin Justus Heyde
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Siemens
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute of Phytopathology, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Du S, Ge AH, Liang ZH, Xiang JF, Xiao JL, Zhang Y, Liu YR, Zhang LM, Shen JP. Fumigation practice combined with organic fertilizer increase antibiotic resistance in watermelon rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150426. [PMID: 34818756 DOI: 10.1016/j.scitotenv.2021.150426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Chemical fumigants and organic fertilizer are commonly used in facility agriculture to control soil-borne diseases and promote soil health. However, there is a lack of evidence for the effect of non-antibiotic fumigants on the distribution of antibiotic resistance genes (ARGs) in plant rhizosphere soils. Here, the response of a wide spectrum of ARGs and mobile genetic elements (MGEs) to dazomet fumigation practice in the rhizosphere soil of watermelon was investigated along its branching, flowering and fruiting growth stages in plastic shelters using high-throughput quantitative PCR approach. Our results indicated that soil fumigation combined with organic fertilizer application significantly increased the relative abundance of ARGs and MGEs in the rhizosphere soil of watermelon plant. The positive correlations between the relative abundance of ARGs and MGEs suggested that soil fumigation might increase the horizontal gene transfer (HGT) potential of ARGs. This result was further confirmed by the enhanced associations between ARG and MGE subtypes in the networks of fumigation treatments. Moreover, bipartite associations between ARGs/MGEs and microbial communities (bacteria and fungi) revealed a higher percentage of linkage between MGEs and microbial taxa in the fumigated soils. Structural equation model analysis further suggested that the increases in antibiotic resistance after fumigation and organic fertilizer application were mainly driven by MGEs and fungal community. Together, our results provide vital evidence that dazomet fumigation process combined with organic fertilizer in plastic shelters has the great potential to promote ARGs' dissemination in the rhizosphere, and raise cautions of the acquired resistance by soil-borne fungal pathogen and the potential spreading of ARGs along soil-plant continuum.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Huai Liang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ji-Fang Xiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ji-Ling Xiao
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yi Zhang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
10
|
Hazra M, Durso LM. Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Antibiotics (Basel) 2022; 11:114. [PMID: 35052991 PMCID: PMC8773441 DOI: 10.3390/antibiotics11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Lisa M. Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE 68583, USA;
| |
Collapse
|
11
|
Long range PCR reveals the genetic cargo of IncP-1 plasmids in the complex microbial community of an on-farm biopurification system treating pesticide contaminated wastewater. Appl Environ Microbiol 2021; 88:e0164821. [PMID: 34878814 DOI: 10.1128/aem.01648-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC, a main insertion site of adaptive trait determinants, is amplified and its content analysed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA, encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main selective trait imposed on that community. Instead these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.
Collapse
|
12
|
Remus-Emsermann MNP, Aicher D, Pelludat C, Gisler P, Drissner D. Conjugation Dynamics of Self-Transmissible and Mobilisable Plasmids into E. coli O157:H7 on Arabidopsis thaliana Rosettes. Antibiotics (Basel) 2021; 10:antibiotics10080928. [PMID: 34438978 PMCID: PMC8388966 DOI: 10.3390/antibiotics10080928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Many antibiotic resistance genes present in human pathogenic bacteria are believed to originate from environmental bacteria. Conjugation of antibiotic resistance conferring plasmids is considered to be one of the major reasons for the increasing prevalence of antibiotic resistances. A hotspot for plasmid-based horizontal gene transfer is the phyllosphere, i.e., the surfaces of aboveground plant parts. Bacteria in the phyllosphere might serve as intermediate hosts with transfer capability to human pathogenic bacteria. In this study, the exchange of mobilisable and self-transmissible plasmids via conjugation was evaluated. The conjugation from the laboratory strain Escherichia coli S17-1, the model phyllosphere coloniser Pantoea eucalypti 299R, and the model pathogen E. coli O157:H7 to the recipient strain E. coli O157:H7::MRE103 (EcO157:H7red) in the phyllosphere of Arabidopsis thaliana was determined. The results suggest that short-term occurrence of a competent donor is sufficient to fix plasmids in a recipient population of E. coli O157:H7red. The spread of self-transmissible plasmids was limited after initial steep increases of transconjugants that contributed up to 10% of the total recipient population. The here-presented data of plasmid transfer will be important for future modelling approaches to estimate environmental spread of antibiotic resistance in agricultural production environments.
Collapse
Affiliation(s)
- Mitja N. P. Remus-Emsermann
- Microbiology of Plant Foods, Agroscope, 8820 Waedenswil, Switzerland;
- School of Biological Sciences, University of Canterbury, Christchurch 8053, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8053, New Zealand
- Institute of Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany
- Correspondence: (M.N.P.R.-E.); (D.D.); Tel.: +49-3083-85-8031 (M.N.P.R.-E.); +49-7571-732-8278 (D.D.)
| | - David Aicher
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany;
| | - Cosima Pelludat
- Plant Pathology and Zoology in Fruit and Vegetable Production, Agroscope, 8820 Waedenswil, Switzerland;
| | - Pascal Gisler
- Microbiology of Plant Foods, Agroscope, 8820 Waedenswil, Switzerland;
| | - David Drissner
- Microbiology of Plant Foods, Agroscope, 8820 Waedenswil, Switzerland;
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany;
- Correspondence: (M.N.P.R.-E.); (D.D.); Tel.: +49-3083-85-8031 (M.N.P.R.-E.); +49-7571-732-8278 (D.D.)
| |
Collapse
|
13
|
Shintani M, Nour E, Elsayed T, Blau K, Wall I, Jechalke S, Spröer C, Bunk B, Overmann J, Smalla K. Plant Species-Dependent Increased Abundance and Diversity of IncP-1 Plasmids in the Rhizosphere: New Insights Into Their Role and Ecology. Front Microbiol 2020; 11:590776. [PMID: 33329469 PMCID: PMC7728920 DOI: 10.3389/fmicb.2020.590776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Eman Nour
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Tarek Elsayed
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Inessa Wall
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Cathrin Spröer
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
14
|
Ali N, Lin Y, Qing Z, Xiao D, Ud Din A, Ali I, Lian T, Chen B, Wen R. The Role of Agriculture in the Dissemination of Class 1 Integrons, Antimicrobial Resistance, and Diversity of Their Gene Cassettes in Southern China. Genes (Basel) 2020; 11:genes11091014. [PMID: 32872161 PMCID: PMC7564866 DOI: 10.3390/genes11091014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Integrons are hot spots for acquiring gene cassettes from the environment and play a major role in the bacterial evolution and dissemination of antimicrobial resistance (AMR), thus posing a serious threat. There are currently studies on integrons and antibiotic resistance genes; however, the presence and association of integrons in different agricultural crops and their subsequent dissemination and role in AMR have not been reported previously. This study examines the abundance of integrons, their gene cassette diversity in various crop soils, and their role in the dissemination of AMR in the southern region of China. Samples from different agri-crop soil, such as rice (R.S), sugarcane (S.S), citrus (C.S), banana (B.S), agricultural runoff (the point where the runoff of all sites meet (R.O)), and wild (non-agricultural) soil (W.S), were collected. Quantitative PCR was used to determine the abundance of integrons, and clone libraries were constructed to examine the gene cassette arrays. All the tested samples were found positive for Class-I (CL1) integrons and revealed a higher concentration and higher relative abundance of R.S than the others, with the least found at the W.S site. The W.S CL1 cassette arrays were found empty, and no putative conserved domains were found. The R.O was found to contain a high number of gene cassettes with various functions, while the smallest number of gene cassettes was found in the S.S among the crop soils. Most of the gene cassettes presented by the R.O were primarily shared with other sites, and the antibiotic-resistant genes were consistently observed to be dominant. The constructed clone libraries represented a diverse gene cassette array with 16% novel gene cassettes that play a vital role in pathogenesis, transportation, biosynthesis, and AMR. Most resistance-related gene cassettes were associated with the genes encoding resistance to quaternary ammonium compound (QAC) and aminoglycosides. This study highlights the significant differences in the abundance of integrons among various agricultural soils and offers deep insight into the pools of gene cassettes that play a key role in the dissemination of integrons and AMR.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
| | - Yinfu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
| | - Zhen Qing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
| | - Dan Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
| | - Ahmad Ud Din
- Drug Discovery Research Center, South West Medical University, Luzhou 646000, China;
| | - Izhar Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
| | - Tengxiang Lian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, South China Agricultural University, Guangzhou 510642, China;
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
- Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (N.A.); (Y.L.); (Z.Q.); (D.X.); (I.A.); (B.C.)
- Correspondence: ; Tel.: +86-13669614062
| |
Collapse
|
15
|
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen 2020; 9:e1035. [PMID: 32710495 PMCID: PMC7520999 DOI: 10.1002/mbo3.1035] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture‐animal‐manure‐soil‐water‐plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic‐resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro‐ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro‐ecosystem; and possible ways to curtail the menace of antimicrobial resistance.
Collapse
Affiliation(s)
- Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
16
|
Rubin J, Mussio K, Xu Y, Suh J, Riley LW. Prevalence of Antimicrobial Resistance Genes and Integrons in Commensal Gram-Negative Bacteria in a College Community. Microb Drug Resist 2020; 26:1227-1235. [PMID: 31985343 DOI: 10.1089/mdr.2019.0279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the human intestinal microbiome has been shown to harbor antimicrobial drug resistance genes (ARGs), the prevalence of such genes in a healthy population and their impact on extraintestinal infections that occur in that community are not well established. This study sought to identify ARG prevalence and their mobile elements in the intestines of a healthy community population at a California University, and compared these genes to those previously identified among uropathogenic Escherichia coli isolated from patients with urinary tract infection from the same community. We isolated Gram-negative bacteria (GNB) from fecal samples of healthy volunteers and screened them by polymerase chain reaction for class 1 integron cassette sequences and ARGs encoding resistance against ampicillin, trimethoprim-sulfamethoxazole, gentamicin, and colistin. We found antimicrobial-resistant GNB from 83 (81%) of 102 nonredundant rectal swab samples. Seventy-four (72%) of these samples contained β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaOXA, and blaOXY), dihydrofolate reductase (DHFR) genes (dhfr-A17, dhfr-A12, dhfr-A7, dhfr-A5, dhfr-A21, dhfr-A1, dhfr-A13, and dhfr-7), and aminoglycoside resistance genes (aadA5, aadA2, aadA1, and aadB). Integron sequences were found in 37 (36%) fecal samples. These genes were found in 11 different GNB species. The high prevalence of clinically common ARGs and integrons harbored by GNB in the intestine of a healthy population suggest that human intestines may serve as a major reservoir of these mobile ARGs that appear in E. coli strains causing extraintestinal infections in the same community.
Collapse
Affiliation(s)
- Julia Rubin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Kaitlyn Mussio
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Yuqi Xu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, China
| | - Joy Suh
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| |
Collapse
|
17
|
Zhang YJ, Hu HW, Chen QL, Yan H, Wang JT, Chen D, He JZ. Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Appl Environ Microbiol 2020; 86:e02106-19. [PMID: 31704674 PMCID: PMC6952223 DOI: 10.1128/aem.02106-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023] Open
Abstract
Growing evidence suggests that livestock manure used as organic fertilizer in agriculture may lead to the potential propagation of antibiotic resistance genes (ARGs) from "farm to fork." However, little is known about the impacts of manure fertilization on the incidence of ARGs in the plant-associated microbiomes (including rhizosphere, endosphere, and phyllosphere), which hampers our ability to assess the dissemination of antibiotic resistance in the soil-plant system. Here, we constructed a pot experiment to explore the effects of poultry and cattle manure applications on the shifts in the resistome in the plant microbiome of harvested cherry radish. A total of 144 ARGs conferring resistance to eight major classes of antibiotics were detected among all the samples. Rhizosphere and phyllosphere microbiomes harbored significantly higher diversity and abundance of ARGs than did root endophytic microbiomes of cherry radish. Manure application significantly increased the abundance of ARGs in the rhizosphere and phyllosphere but not in the endophytes of the root, which is the edible part of cherry radish. Soil and plant microbiomes changed dramatically after manure applications and clustered separately according to different sample types and treatments. Structural equation modeling revealed that bacterial abundance was the most important factor modulating the distribution patterns of soil and plant resistomes after accounting for multiple drivers. Taken together, we provide evidence that enrichment of the resistome in the rhizosphere and phyllosphere of cherry radish is more obvious than with the endosphere after manure application, suggesting that manure amendment might not enhance the dissemination of ARGs into the root of vegetables in the pot experiment.IMPORTANCE Our study provides important evidence that manure application increased the occurrence of ARGs in the rhizosphere and phyllosphere of cherry radish, compared with that in the endophytic bacterial microbiota of root, which is the edible part of cherry radish. Our findings suggest that although manure amendment is a significant route of ARGs entering agricultural soils, these manure-derived ARGs may be at low risk of migrating into the endophytes of root vegetables.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Hui Yan
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Blau K, Jechalke S, Smalla K. Detection, Isolation, and Characterization of Plasmids in the Environment. Methods Mol Biol 2020; 2075:39-60. [PMID: 31584153 DOI: 10.1007/978-1-4939-9877-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Plasmids play a major role in the bacterial adaptation to changing and stressful environmental conditions caused by antibiotics, heavy metals, and disinfectants. However, the investigation of the ecology and diversity of environmental plasmids is challenging due to their typically low abundance in soil bacterial communities and the low cultivability of their hosts. Here we discuss the potentials and limitations of cultivation-dependent and cultivation-independent approaches for detecting and quantifying plasmids in total community DNA from environmental samples. Protocols for PCR-based detection of plasmid-specific sequences in total community DNA are presented. Furthermore, protocols to obtain and characterize plasmids either from isolates (endogenous plasmid isolation) or by capturing into a recipient strain by biparental and triparental mating will be provided.
Collapse
Affiliation(s)
- Khald Blau
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Braunschweig, Germany.
| |
Collapse
|
19
|
Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat Commun 2019; 10:5809. [PMID: 31863068 PMCID: PMC6925257 DOI: 10.1038/s41467-019-13709-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
Transmissible plasmids spread genes encoding antibiotic resistance and other traits to new bacterial species. Here we report that laboratory populations of Escherichia coli with a newly acquired IncQ plasmid often evolve 'satellite plasmids' with deletions of accessory genes and genes required for plasmid replication. Satellite plasmids are molecular parasites: their presence reduces the copy number of the full-length plasmid on which they rely for their continued replication. Cells with satellite plasmids gain an immediate fitness advantage from reducing burdensome expression of accessory genes. Yet, they maintain copies of these genes and the complete plasmid, which potentially enables them to benefit from and transmit the traits they encode in the future. Evolution of satellite plasmids is transient. Cells that entirely lose accessory gene function or plasmid mobility dominate in the long run. Satellite plasmids also evolve in Snodgrassella alvi colonizing the honey bee gut, suggesting that this mechanism may broadly contribute to the importance of IncQ plasmids as agents of bacterial gene transfer in nature.
Collapse
|
20
|
Zhang YJ, Hu HW, Chen QL, Singh BK, Yan H, Chen D, He JZ. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. ENVIRONMENT INTERNATIONAL 2019; 130:104912. [PMID: 31220751 DOI: 10.1016/j.envint.2019.104912] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 05/20/2023]
Abstract
The increasing antimicrobial resistance in manure-amended soil can potentially enter food chain, representing an important vehicle for antibiotic resistance genes (ARGs) transmission into human microbiome. However, the pathways for transmission of ARGs from soil to plant remain unclear. Here, we explored the impacts of poultry and cattle manure application on the patterns of resistome in soil and lettuce microbiome including rhizosphere, root endosphere, leaf endosphere and phyllosphere, to identify the potential transmission routes of ARGs in the soil-plant system. After 90 days of cultivation, a total of 144 ARGs were detected in all samples using high-throughput quantitative PCR. Rhizosphere soil samples harbored the most diverse ARGs compared with other components of lettuce. Cattle manure application increased the abundance of ARGs in root endophyte, while poultry manure application increased ARGs in rhizosphere, root endophyte and phyllosphere, suggesting that poultry manure may have a stronger impact on lettuce resistomes. The ARG profiles were significantly correlated with the bacterial community, and the enrichment of soil and plant resistomes was strongly affected by the bacterial taxa including Solibacteres, Chloroflexi, Acidobacteria, Gemm-1 and Gemmatimonadetes, as revealed by the network analyses. Moreover, the overlaps of ARGs between lettuce tissues and soil were identified, which indicated that plant and environmental resistomes are interconnected. Our findings provide insights into the transmission routes of ARGs from manured soil to vegetables, and highlight the potential risks of plant resistome migration to the human food chain.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hui Yan
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071000, China
| | - Deli Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
21
|
Wolters B, Jacquiod S, Sørensen SJ, Widyasari-Mehta A, Bech TB, Kreuzig R, Smalla K. Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS Microbiol Ecol 2018; 94:4867966. [DOI: 10.1093/femsec/fiy027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11–12, 38104 Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Arum Widyasari-Mehta
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Tina B Bech
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11–12, 38104 Braunschweig, Germany
| |
Collapse
|
22
|
Blau K, Casadevall L, Wolters B, Van den Meersche T, Kreuzig R, Smalla K, Jechalke S. Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. FEMS Microbiol Ecol 2017; 94:4566514. [DOI: 10.1093/femsec/fix145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Laia Casadevall
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Birgit Wolters
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Tina Van den Meersche
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit - Food safety, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
23
|
Nõlvak H, Truu M, Kanger K, Tampere M, Espenberg M, Loit E, Raave H, Truu J. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:678-689. [PMID: 27115621 DOI: 10.1016/j.scitotenv.2016.04.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment.
Collapse
Affiliation(s)
- Hiie Nõlvak
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, 46 Vanemuise St., 51014 Tartu, Estonia.
| | - Marika Truu
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, 46 Vanemuise St., 51014 Tartu, Estonia.
| | - Kärt Kanger
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, 46 Vanemuise St., 51014 Tartu, Estonia.
| | - Mailiis Tampere
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Kreutzwaldi St., 51014 Tartu, Estonia.
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, 46 Vanemuise St., 51014 Tartu, Estonia.
| | - Evelin Loit
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Kreutzwaldi St., 51014 Tartu, Estonia.
| | - Henn Raave
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Kreutzwaldi St., 51014 Tartu, Estonia.
| | - Jaak Truu
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, 46 Vanemuise St., 51014 Tartu, Estonia.
| |
Collapse
|
24
|
Wolters B, Widyasari-Mehta A, Kreuzig R, Smalla K. Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Appl Microbiol Biotechnol 2016; 100:9343-9353. [DOI: 10.1007/s00253-016-7742-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022]
|
25
|
Widyasari-Mehta A, Hartung S, Kreuzig R. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 177:129-37. [PMID: 27088209 DOI: 10.1016/j.jenvman.2016.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
In conventional pig husbandry, antibiotics are frequently applied. Together with excreta, antibiotic residues enter liquid manures finally used as organic soil fertilizers or input materials for biogas plants. Therefore, this first screening study was performed to survey the application patterns of antibiotics from fall 2011 until spring 2013. Manures and digestates were then analyzed for selected antibiotic residues from spring 2012 to 2013. The data analysis of veterinary drug application documents revealed the use of 34 different antibiotics belonging to 11 substance classes at 21 farms under study. Antibiotics, particularly tetracyclines, frequently administered to larger pig groups were detected in manure samples up to higher mg kg(-1) dry weight (DW) concentrations. Antibiotic residues in digestates, furthermore, show that a full removal capacity cannot be guaranteed through the anaerobic digestion process in biogas plants.
Collapse
Affiliation(s)
- Arum Widyasari-Mehta
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Susen Hartung
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institut für Ökologische und Nachhaltige Chemie, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
26
|
Hu HW, Wang JT, Li J, Li JJ, Ma YB, Chen D, He JZ. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Microbiol 2016; 18:3896-3909. [PMID: 27207327 DOI: 10.1111/1462-2920.13370] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/31/2023]
Abstract
Bacterial resistance to antibiotics and heavy metals are frequently linked, suggesting that exposure to heavy metals might select for bacterial assemblages conferring resistance to antibiotics. However, there is a lack of clear evidence for the heavy metal-induced changes of antibiotic resistance in a long-term basis. Here, we used high-capacity quantitative PCR array to investigate the responses of a broad spectrum of antibiotic resistance genes (ARGs) to 4-5 year copper contamination (0-800 mg kg-1 ) in two contrasting agricultural soils. In total, 157 and 149 unique ARGs were detected in the red and fluvo-aquic soil, respectively, with multidrug and β-lactam as the most dominant ARG types. The highest diversity and abundance of ARGs were observed in medium copper concentrations (100-200 mg kg-1 ) of the red soil and in high copper concentrations (400-800 mg kg-1 ) of the fluvo-aquic soil. The abundances of total ARGs and several ARG types had significantly positive correlations with mobile genetic elements (MGEs), suggesting mobility potential of ARGs in copper-contaminated soils. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating strong associations between ARGs and bacterial communities. Structural equation models showed that the significant impacts of copper contamination on ARG patterns were mainly driven by changes in bacterial community compositions and MGEs. Our results provide field-based evidence that long-term Cu contamination significantly changed the diversity, abundance and mobility potential of environmental antibiotic resistance, and caution the un-perceived risk of the ARG dissemination in heavy metal polluted environments.
Collapse
Affiliation(s)
- Hang-Wei Hu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Li
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun-Jian Li
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yi-Bing Ma
- National Soil Fertility and Fertilizer Effects Long-term Monitoring Network, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
27
|
Abstract
In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans.
Collapse
Affiliation(s)
- Sophie Thanner
- Agroscope, Institute for Livestock Sciences, Posieux, Switzerland
| | - David Drissner
- Agroscope, Institute for Food Sciences, Waedenswil, Switzerland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
28
|
Kyselková M, Chrudimský T, Husník F, Chroňáková A, Heuer H, Smalla K, Elhottová D. Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm. FEMS Microbiol Ecol 2016; 92:fiw075. [PMID: 27083193 DOI: 10.1093/femsec/fiw075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment.
Collapse
Affiliation(s)
- Martina Kyselková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Tomáš Chrudimský
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Filip Husník
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alica Chroňáková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Holger Heuer
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | - Kornelia Smalla
- Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | - Dana Elhottová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
29
|
Han XM, Hu HW, Shi XZ, Wang JT, Han LL, Chen D, He JZ. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:48-57. [PMID: 26736055 DOI: 10.1016/j.envpol.2015.12.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 05/12/2023]
Abstract
UNLABELLED The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. ONE-SENTENCE SUMMARY Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer.
Collapse
Affiliation(s)
- Xue-Mei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Xiu-Zhen Shi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
30
|
Glaeser SP, Sowinsky O, Brunner JS, Dott W, Kämpfer P. Cultivation of vancomycin-resistant enterococci and methicillin-resistant staphylococci from input and output samples of German biogas plants. FEMS Microbiol Ecol 2016; 92:fiw010. [DOI: 10.1093/femsec/fiw010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 11/12/2022] Open
|
31
|
Hu HW, Han XM, Shi XZ, Wang JT, Han LL, Chen D, He JZ. Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiol Ecol 2015; 92:fiv169. [DOI: 10.1093/femsec/fiv169] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2015] [Indexed: 02/07/2023] Open
|
32
|
Ulrich A, Becker R, Ulrich K, Ewald D. Conjugative transfer of a derivative of the IncP-1α plasmid RP4 and establishment of transconjugants in the indigenous bacterial community of poplar plants. FEMS Microbiol Lett 2015; 362:fnv201. [PMID: 26490946 PMCID: PMC4643746 DOI: 10.1093/femsle/fnv201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/09/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022] Open
Abstract
The persistence of traits introduced into the indigenous bacterial community of poplar plants was investigated using bioluminescence mediated by the luc gene. Three endophytic bacterial strains provided with the IncP-1α plasmid RP4-Tn-luc were used to inoculate poplar cuttings at different phenological stages. Screening of isolates by bioluminescence and real-time PCR detection of the luc gene revealed stable persistence for at least 10 weeks. Although the inoculated strains became established with a high population density after inoculation at leaf development (April) and senescence (October), the strains were suppressed by the indigenous bacteria at stem elongation (June). Transconjugants could be detected only at this phenological stage. Indigenous bacteria harbouring RP4-Tn-luc became established with densities ranging from 2 × 10(5) to 9 × 10(6) CFU g(-1) fresh weight 3 and 10 weeks after inoculation. The increased colonization of the cuttings by indigenous bacteria at stem elongation seemed to strongly compete with the introduced strains. Otherwise, the phenological stage of the plants as well as the density of the indigenous recipients could serve as the driver for a more frequent conjugative plasmid transfer. A phylogenetic assignment of transconjugants indicated the transfer of RP4-Tn-luc into six genera of Proteobacteria, mainly Sphingomonas, Stenotrophomonas and Xanthomonas.
Collapse
Affiliation(s)
- Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, D-15374 Müncheberg, Germany
| | - Regina Becker
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, D-15374 Müncheberg, Germany
| | - Kristina Ulrich
- Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Forest Genetics, Waldsieversdorf D-15377, Germany
| | - Dietrich Ewald
- Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Forest Genetics, Waldsieversdorf D-15377, Germany
| |
Collapse
|