1
|
Abedini R, Khaniki GJ, Naderi M, Aghaee EM, Sadighara P. Investigation of melamine and cyanuric acid concentration in several brands of liquid milk and its non-carcinogenic risk assessment in adults and infants. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:3054-3066. [PMID: 37786605 PMCID: PMC10542036 DOI: 10.1007/s13197-023-05814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/04/2023]
Abstract
In this study, the melamine and cyanuric acid concentration of widely used milk brands and the probability of non-carcinogenic risk of the brands for adults and infants were investigated. These values were 1.37 mg/L, 1.10 mg/L, and 1.09 mg/L, which corresponded to creamy sterilized sample, high-fat (creamy) pasteurized sample, and low-fat (less-creamy) pasteurized sample, respectively. Similarly, the highest amount of cyanuric acid occurred in brand A with the values of 0.79 mg/L, 0.65 mg/L, and 0.64 mg/L, which was reported in the same samples mentioned for melamine. The HQ (Hazard Quotient) of melamine in the brands of A, B, C and D for adults was 0.0025, 0.0011, 0.0006 and 0.0008 respectively. These values for infants were reported as 2.2280, 0.9444, 0.5714 and 0.6714 respectively. The risk probability of melamine for adults was less than 1. However, the HQ in brand A for infants was greater than 1 (2.380), which indicate the high probability of non-carcinogenic risk. Furthermore, the HI (Hazard Index) values of the brands of A, B, C and D for infants were 2.7913, 1.1737, 0.7067 and 0.838, respectively. The simultaneous melamine and cyanuric acid in the brands A and B in for infants increase the non-carcinogenic risk probability by approximately 2.8 and 1.2 times, respectively. The results revealed that the melamine and cyanuric acid concentrations in creamy milk samples (0.5%) were higher than in less-creamy milk samples (2.5%). Moreover, the amount of the compounds in sterilized milk samples was higher than pasteurized. In this study, a conversion factor (0.7) was proposed in order to find out the concentration of cyanuric acid in milk sample with the amount of melamine is known but the cyanuric acid concentration is unknown.
Collapse
Affiliation(s)
- Roghayeh Abedini
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Naderi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee Aghaee
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Cao J, Chande C, Köhler JM. Microtoxicology by microfluidic instrumentation: a review. LAB ON A CHIP 2022; 22:2600-2623. [PMID: 35678285 DOI: 10.1039/d2lc00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.
Collapse
Affiliation(s)
- Jialan Cao
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - J Michael Köhler
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| |
Collapse
|
3
|
Harbaugh SV, Silverman AD, Chushak YG, Zimlich K, Wolfe M, Thavarajah W, Jewett MC, Lucks JB, Chávez JL. Engineering a Synthetic Dopamine-Responsive Riboswitch for In Vitro Biosensing. ACS Synth Biol 2022; 11:2275-2283. [PMID: 35775197 DOI: 10.1021/acssynbio.1c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detection of chemicals using natural allosteric transcription factors is a powerful strategy for point-of-use molecular sensing, particularly using fieldable cell-free gene expression (CFE) systems. However, the reliance of detection schemes on characterized protein-based sensors limits the number of measurable analytes. One alternative solution to this issue is to develop new sensors by generating RNA aptamers against the target analyte and then incorporating them directly into a riboswitch scaffold for ligand-inducible genetic control of a reporter protein. However, this strategy has not generated more than a handful of successful portable cell-free molecular sensors. To address this gap, here we convert dopamine-binding aptamers into functional dopamine-sensing riboswitches that regulate gene expression in a freeze-dried CFE reaction. We then develop an assay for direct detection and semi-quantification of dopamine in human urine. We anticipate that this work will be broadly applicable for converting many in vitro-generated RNA aptamers into fieldable molecular diagnostics.
Collapse
Affiliation(s)
- Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Adam D Silverman
- Sherlock Biosciences, Boston, Massachusetts 02135, United States
| | - Yaroslav G Chushak
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Kathryn Zimlich
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,Henry M. Jackson Foundation, Dayton, Ohio 45433, United States
| | - Monica Wolfe
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States.,UES, Inc., Dayton, Ohio 45432, United States
| | - Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| |
Collapse
|
4
|
Cregut M, Hua A, Jouanneau S, Assaf A, Cordella CBY, Thouand G, Durand MJ. Screening of metallic pollution in complex environmental samples through a transcriptomic fingerprint method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1037-1050. [PMID: 34341931 DOI: 10.1007/s11356-021-15545-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Characterizing waste ecotoxicity is laborious because of both the undefined nature of environmental samples and the diversity of contaminants that can be present. With regard to these limitations, traditional approaches do not provide information about the nature of the pollution encountered. To improve such assessments, a fluorescent library of 1870 transcriptomic reporters from Escherichia coli K12 MG1655 was used to report the ecotoxic status of environmental samples. The reliability of the approach was evaluated with 6 metallic pollutants (As, Cu, Cd, Hg, Pb, Zn) used alone and in mixture in pure and complex matrices. A total of 18 synthetic samples were used to characterize the specificity of the resulting metallic contamination fingerprints. Metallic contamination impacted 4.5 to 10.2% of the whole transcriptomic fingerprint of E. coli. The analysis revealed that a subset of 175 transcriptomic reporters is sufficient to characterize metallic contamination, regardless of the nature of the sample. A statistical model distinguished patterns due to metallic contamination and provided information about the level of toxicity with 93 to 98% confidence. The use of the transcriptomic assessment was validated for 17 complex matrices with various toxicities and metal contaminants, such as activated sludge, wastewater effluent, soil, wood and river water. The presence of metals and their associated toxicity, which seems linked to their bioavailabilities, were thereby determined. This method constitutes a possible tool to screen unknown complex samples for their metallic status and identify those for which a deeper characterization must be achieved by the use of traditional biosensors and analytical methods.
Collapse
Affiliation(s)
- Mickael Cregut
- University of Nantes, Oniris, CNRS, GEPEA, UMR 6144, F-85000, La Roche sur Yon, France.
- University of Nantes, CAPACITES, 26 Bd Vincent Gâche, F-44200, Nantes, France.
| | - Anna Hua
- University of Nantes, Oniris, CNRS, GEPEA, UMR 6144, F-85000, La Roche sur Yon, France
| | - Sulivan Jouanneau
- University of Nantes, Oniris, CNRS, GEPEA, UMR 6144, F-85000, La Roche sur Yon, France
| | - Ali Assaf
- University of Nantes, Oniris, CNRS, GEPEA, UMR 6144, F-85000, La Roche sur Yon, France
| | - Christophe B Y Cordella
- University of Paris-Saclay, UMR AgroParisTech/INRA 914 Physiologie de la Nutrition et du Comportement Alimentaire, Rue Claude Bernard, 75, ,005, Paris, France
| | - Gérald Thouand
- University of Nantes, Oniris, CNRS, GEPEA, UMR 6144, F-85000, La Roche sur Yon, France
| | - Marie-José Durand
- University of Nantes, Oniris, CNRS, GEPEA, UMR 6144, F-85000, La Roche sur Yon, France
| |
Collapse
|
5
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
6
|
Silverman AD, Akova U, Alam KK, Jewett MC, Lucks JB. Design and Optimization of a Cell-Free Atrazine Biosensor. ACS Synth Biol 2020; 9:671-677. [PMID: 32078765 DOI: 10.1021/acssynbio.9b00388] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in cell-free synthetic biology have spurred the development of in vitro molecular diagnostics that serve as effective alternatives to whole-cell biosensors. However, cell-free sensors for detecting manmade organic water contaminants such as pesticides are sparse, partially because few characterized natural biological sensors can directly detect such pollutants. Here, we present a platform for the cell-free detection of one critical water contaminant, atrazine, by combining a previously characterized cyanuric acid biosensor with a reconstituted atrazine-to-cyanuric acid metabolic pathway composed of several protein-enriched bacterial extracts mixed in a one pot reaction. Our cell-free sensor detects atrazine within an hour of incubation at an activation ratio superior to previously reported whole-cell atrazine sensors. We also show that the response characteristics of the atrazine sensor can be tuned by manipulating the ratios of enriched extracts in the cell-free reaction mixture. Our approach of utilizing multiple metabolic steps, encoded in protein-enriched cell-free extracts, to convert a target of interest into a molecule that can be sensed by a transcription factor is modular. Our work thus serves as an effective proof-of-concept for a scheme of "metabolic biosensing", which should enable rapid, field-deployable detection of complex organic water contaminants.
Collapse
Affiliation(s)
| | | | | | - Michael C. Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B. Lucks
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Silverman AD, Akova U, Alam KK, Jewett MC, Lucks JB. Design and Optimization of a Cell-Free Atrazine Biosensor. ACS Synth Biol 2020. [PMID: 32078765 DOI: 10.1101/779827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent advances in cell-free synthetic biology have spurred the development of in vitro molecular diagnostics that serve as effective alternatives to whole-cell biosensors. However, cell-free sensors for detecting manmade organic water contaminants such as pesticides are sparse, partially because few characterized natural biological sensors can directly detect such pollutants. Here, we present a platform for the cell-free detection of one critical water contaminant, atrazine, by combining a previously characterized cyanuric acid biosensor with a reconstituted atrazine-to-cyanuric acid metabolic pathway composed of several protein-enriched bacterial extracts mixed in a one pot reaction. Our cell-free sensor detects atrazine within an hour of incubation at an activation ratio superior to previously reported whole-cell atrazine sensors. We also show that the response characteristics of the atrazine sensor can be tuned by manipulating the ratios of enriched extracts in the cell-free reaction mixture. Our approach of utilizing multiple metabolic steps, encoded in protein-enriched cell-free extracts, to convert a target of interest into a molecule that can be sensed by a transcription factor is modular. Our work thus serves as an effective proof-of-concept for a scheme of "metabolic biosensing", which should enable rapid, field-deployable detection of complex organic water contaminants.
Collapse
Affiliation(s)
| | | | | | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Wang GH, Berdy BM, Velasquez O, Jovanovic N, Alkhalifa S, Minbiole KPC, Brucker RM. Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. Cell Host Microbe 2020; 27:213-224.e7. [PMID: 32023487 DOI: 10.1016/j.chom.2020.01.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023]
Abstract
The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity.
Collapse
Affiliation(s)
- Guan-Hong Wang
- Rowland Institute at Harvard University, Cambridge, MA 02142, USA
| | - Brittany M Berdy
- Rowland Institute at Harvard University, Cambridge, MA 02142, USA
| | - Olivia Velasquez
- Rowland Institute at Harvard University, Cambridge, MA 02142, USA
| | - Nikola Jovanovic
- Rowland Institute at Harvard University, Cambridge, MA 02142, USA
| | - Saleh Alkhalifa
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | - Robert M Brucker
- Rowland Institute at Harvard University, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Liu X, Silverman AD, Alam KK, Iverson E, Lucks JB, Jewett MC, Raman S. Design of a Transcriptional Biosensor for the Portable, On-Demand Detection of Cyanuric Acid. ACS Synth Biol 2020; 9:84-94. [PMID: 31825601 PMCID: PMC7372534 DOI: 10.1021/acssynbio.9b00348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rapid molecular biosensing is an emerging application area for synthetic biology. Here, we engineer a portable biosensor for cyanuric acid (CYA), an analyte of interest for human and environmental health, using a LysR-type transcription regulator (LTTR) from Pseudomonas within the context of Escherichia coli gene expression machinery. To overcome cross-host portability challenges of LTTRs, we rationally engineered hybrid Pseudomonas-E. coli promoters by integrating DNA elements required for transcriptional activity and ligand-dependent regulation from both hosts, which enabled E. coli to function as a whole-cell biosensor for CYA. To alleviate challenges of whole-cell biosensing, we adapted these promoter designs to function within a freeze-dried E. coli cell-free system to sense CYA. This portable, on-demand system robustly detects CYA within an hour from laboratory and real-world samples and works with both fluorescent and colorimetric reporters. This work elucidates general principles to facilitate the engineering of a wider array of LTTR-based environmental sensors.
Collapse
Affiliation(s)
- Xiangyang Liu
- Biophysics Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Adam D. Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Khalid K. Alam
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Erik Iverson
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
10
|
Thavarajah W, Verosloff MS, Jung JK, Alam KK, Miller JD, Jewett MC, Young SL, Lucks JB. A Primer on Emerging Field-Deployable Synthetic Biology Tools for Global Water Quality Monitoring. NPJ CLEAN WATER 2020; 3:18. [PMID: 34267944 PMCID: PMC8279131 DOI: 10.1038/s41545-020-0064-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 05/22/2023]
Abstract
Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, "achieving universal and equitable access to safe and affordable drinking water for all", necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by taking DNA-encoded sensing elements from nature and reassembling them to create field-deployable 'biosensors' that can detect pathogenic or chemical water contaminants. Here we describe water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants: fecal pathogens, arsenic, and fluoride in order to explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We also briefly discuss expanding biosensors to detect emerging contaminants including metals and pharmaceuticals. We conclude with an outlook on the future of biosensor development, in which we discuss adaptability to emerging contaminants, outline current limitations, and propose steps to overcome the field's outstanding challenges to facilitate global water quality monitoring.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Matthew S. Verosloff
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL, 60208, USA
| | - Jaeyoung K. Jung
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Khalid K. Alam
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Joshua D. Miller
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Department of Anthropology, Northwestern University, 1810 Hinman Ave., Evanston, IL, 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Sera L. Young
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Department of Anthropology, Northwestern University, 1810 Hinman Ave., Evanston, IL, 60208, USA
- Institute for Policy Research, Northwestern University, 2040 Sheridan Rd, Evanston, IL, 60208 USA
- To whom correspondence should be addressed, ,
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- To whom correspondence should be addressed, ,
| |
Collapse
|
11
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Hartono MR, Kushmaro A, Chen X, Marks RS. Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5003-5012. [PMID: 29209964 DOI: 10.1007/s11356-017-0782-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Carbon nanotubes (CNTs) have emerged recently as superior adsorbent materials for the removal of recalcitrant pollutants. The potential of combining the sorption capability of CNTs with bacterial degradation for pollutant removal, however, necessitates further investigation of the mechanisms of CNTs' toxicity towards bacterial cells. In this study, we used a panel of stress-responsive recombinant Escherichia coli bioluminescence bacterial strains to explore the possible mechanisms of toxicity of multiwalled carbon nanotubes (MWCNTs). The effects of MWCNTs on markers of oxidative stress, protein, DNA, and membrane damage enabled the exposition of some of the mechanisms of their antimicrobial properties. Using both a bioluminescence bioreporter panel and live/dead staining, we observed that membrane damage played a role in the toxicity of MWCNTs. A subsequent viability study using three strains of bacteria-two gram-negative (Escherichia coli, Pseudomonas aeruginosa) and one gram-positive (Bacillus subtilis)-showed significant MWCNT toxicity in hypotonic water and phosphate-buffered saline solution, compared with the MWCNT toxicity towards the same bacteria incubated in isotonic-rich media. Using a field-emission scanning electron microscope, we demonstrated that membrane damage is caused largely by MWCNTs trapping bacteria and piercing the cell walls. As a result of our observations, we propose integrating MWCNTs and bacteria degradation for pollutant removal in nutrient-rich media to minimize the toxicity effect of CNTs.
Collapse
Affiliation(s)
- Maria R Hartono
- School of Materials Science & Engineering, Nanyang Technological University, Block N3.1-B3a-02, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Ariel Kushmaro
- School of Materials Science & Engineering, Nanyang Technological University, Block N3.1-B3a-02, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
- The Ilse Katz Centre for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| | - Xiaodong Chen
- School of Materials Science & Engineering, Nanyang Technological University, Block N3.1-B3a-02, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Robert S Marks
- School of Materials Science & Engineering, Nanyang Technological University, Block N3.1-B3a-02, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
- The Ilse Katz Centre for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| |
Collapse
|
13
|
Sai N, Sun W, Wu Y, Sun Z, Yu G, Huang G. A highly sensitive immunoassay for atrazine based on covalently linking the small molecule hapten to a urea–glutaraldehyde network on a polystyrene surface. Int Immunopharmacol 2016; 40:480-486. [DOI: 10.1016/j.intimp.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
14
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|