1
|
Starr A, Nickoloff-Bybel E, Abedalthaqafi R, Albloushi N, Jordan-Sciutto KL. Human iPSC-derived neurons reveal NMDAR-independent dysfunction following HIV-associated insults. Front Mol Neurosci 2024; 16:1353562. [PMID: 38348237 PMCID: PMC10859444 DOI: 10.3389/fnmol.2023.1353562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
3
|
Chean KT, Aalinkeel R, Abbasi S, Sharikova AV, Schwartz SA, Khmaladze A, Mahajan SD. Raman spectroscopy based molecular signatures of methamphetamine and HIV induced mitochondrial dysfunction. Biochem Biophys Res Commun 2022; 621:116-121. [PMID: 35820281 DOI: 10.1016/j.bbrc.2022.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
METH and HIV Tat treatment results in increased oxidative stress which affects cellular metabolism and causes DNA damage in the treated microglia. Both, METH ± HIV Tat impair mitochondrial respiration, leading to dysfunction in bioenergetics and increased ROS in microglial cells. Our data indicate that mitochondrial dysfunction may be key to the METH and/or HIV Tat-induced neuropathology. METH and/or HIV Tat induced changes in the protein, lipid and nucleotide concentration in microglial cells were measured by Raman Spectroscopy, and we speculate that these fundamental molecular-cellular changes in microglial cells contribute to the neuropathology that is associated with METH abuse in HIV patients.
Collapse
Affiliation(s)
- Khoo Ting Chean
- Department of Physics, University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ravikumar Aalinkeel
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Serfraz Abbasi
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Anna V Sharikova
- Department of Physics, University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Stanley A Schwartz
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Alexander Khmaladze
- Department of Physics, University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
4
|
Matt SM, Nickoloff-Bybel EA, Rong Y, Runner K, Johnson H, O'Connor MH, Haddad EK, Gaskill PJ. Dopamine Levels Induced by Substance Abuse Alter Efficacy of Maraviroc and Expression of CCR5 Conformations on Myeloid Cells: Implications for NeuroHIV. Front Immunol 2021; 12:663061. [PMID: 34093554 PMCID: PMC8170305 DOI: 10.3389/fimmu.2021.663061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Despite widespread use of antiretroviral therapy (ART), HIV remains a major public health issue. Even with effective ART many infected individuals still suffer from the constellation of neurological symptoms now known as neuroHIV. These symptoms can be exacerbated by substance abuse, a common comorbidity among HIV-infected individuals. The mechanism(s) by which different types of drugs impact neuroHIV remains unclear, but all drugs of abuse increase central nervous system (CNS) dopamine and elevated dopamine increases HIV infection and inflammation in human myeloid cells including macrophages and microglia, the primary targets for HIV in the brain. Thus, drug-induced increases in CNS dopamine may be a common mechanism by which distinct addictive substances alter neuroHIV. Myeloid cells are generally infected by HIV strains that use the chemokine receptor CCR5 as a co-receptor, and our data indicate that in a subset of individuals, drug-induced levels of dopamine could interfere with the effectiveness of the CCR5 inhibitor Maraviroc. CCR5 can adopt distinct conformations that differentially regulate the efficiency of HIV entry and subsequent replication and using qPCR, flow cytometry, Western blotting and high content fluorescent imaging, we show that dopamine alters the expression of specific CCR5 conformations of CCR5 on the surface of human macrophages. These changes are not affected by association with lipid rafts, but do correlate with dopamine receptor gene expression levels, specifically higher levels of D1-like dopamine receptors. These data also demonstrate that dopamine increases HIV replication and alters CCR5 conformations in human microglia similarly to macrophages. These data support the importance of dopamine in the development of neuroHIV and indicate that dopamine signaling pathways should be examined as a target in antiretroviral therapies specifically tailored to HIV-infected drug abusers. Further, these studies show the potential immunomodulatory role of dopamine, suggesting changes in this neurotransmitter may also affect the progression of other diseases.
Collapse
Affiliation(s)
- Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yi Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Hannah Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Margaret H O'Connor
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis. Viruses 2020; 12:v12111297. [PMID: 33198269 PMCID: PMC7697917 DOI: 10.3390/v12111297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Both substance use disorder and HIV infection continue to affect many individuals. Both have untoward effects on the brain, and the two conditions often co-exist. In the brain, macrophages and microglia are infectable by HIV, and these cells are also targets for the effects of drugs of abuse, such as the psychostimulant methamphetamine. To determine the interaction of HIV and methamphetamine, we isolated microglia and brain macrophages from SIV-infected rhesus monkeys that were treated with or without methamphetamine. Cells were subjected to single-cell RNA sequencing and results were analyzed by statistical and bioinformatic analysis. In the animals treated with methamphetamine, a significantly increased proportion of the microglia and/or macrophages were infected by SIV. In addition, gene encoding functions in cell death pathways were increased, and the brain-derived neurotropic factor pathway was inhibited. The gene expression patterns in infected cells did not cluster separately from uninfected cells, but clusters comprised of microglia and/or macrophages from methamphetamine-treated animals differed in neuroinflammatory and metabolic pathways from those comprised of cells from untreated animals. Methamphetamine increases CNS infection by SIV and has adverse effects on both infected and uninfected microglia and brain macrophages, highlighting the dual and interacting harms of HIV infection and drug abuse on the brain.
Collapse
|
6
|
Kodidela S, Gerth K, Sinha N, Kumar A, Kumar P, Kumar S. Circulatory Astrocyte and Neuronal EVs as Potential Biomarkers of Neurological Dysfunction in HIV-Infected Subjects and Alcohol/Tobacco Users. Diagnostics (Basel) 2020; 10:diagnostics10060349. [PMID: 32481515 PMCID: PMC7345258 DOI: 10.3390/diagnostics10060349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The diagnosis of neurocognitive disorders associated with HIV infection, alcohol, and tobacco using CSF or neuroimaging are invasive or expensive methods, respectively. Therefore, extracellular vesicles (EVs) can serve as reliable noninvasive markers due to their bidirectional transport of cargo from the brain to the systemic circulation. Hence, our objective was to investigate the expression of astrocytic (GFAP) and neuronal (L1CAM) specific proteins in EVs circulated in the plasma of HIV subjects, with and without a history of alcohol consumption and tobacco smoking. The protein expression of GFAP (p < 0.01) was significantly enhanced in plasma EVs obtained from HIV-positive subjects and alcohol users compared to healthy subjects, suggesting enhanced activation of astrocytes in those subjects. The L1CAM expression was found to be significantly elevated in cigarette smokers (p < 0.05). However, its expression was not found to be significant in HIV subjects and alcohol users. Both GFAP and L1CAM levels were not further elevated in HIV-positive alcohol or tobacco users compared to HIV-positive nonsubstance users. Taken together, our data demonstrate that the astrocytic and neuronal-specific markers (GFAP and L1CAM) can be packaged in EVs and circulate in plasma, which is further elevated in the presence of HIV infection, alcohol, and/or tobacco. Thus, the astroglial marker GFAP and neuronal marker L1CAM may represent potential biomarkers targeting neurological dysfunction upon HIV infection and/or alcohol/tobacco consumption.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Kelli Gerth
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Namita Sinha
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Asit Kumar
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA;
| | - Santosh Kumar
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
- Correspondence: ; Tel.: +1-901-448-7157
| |
Collapse
|
7
|
Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
9
|
Jaureguiberry-Bravo M, Wilson R, Carvallo L, Berman JW. Opioids and Opioid Maintenance Therapies: Their Impact on Monocyte-Mediated HIV Neuropathogenesis. Curr HIV Res 2017; 14:417-430. [PMID: 27009099 DOI: 10.2174/1570162x14666160324124132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND HIV-1 enters the CNS within two weeks after peripheral infection and results in chronic neuroinflammation that leads to HIV associated neurocognitive disorders (HAND) in more than 50% of infected people. HIV enters the CNS by transmigration of infected monocytes across the blood brain barrier. Intravenous drug abuse is a major risk factor for HIV-1 infection, and opioids have been shown to alter the progression and severity of HAND. Methadone and buprenorphine are opioid derivates that are used as opioid maintenance therapies. They are commonly used to treat opioid dependency in HIV infected substance abusers, but their effects on monocyte migration relevant to the development of cognitive impairment are not well characterized. CONCLUSION Here, we will discuss the effects of opioids and opioid maintenance therapies on the inflammatory functions of monocytes and macrophages that are related to the development of neuroinflammation in the context of HIV infection.
Collapse
Affiliation(s)
| | | | | | - Joan W Berman
- Department, of Pathology and Microbiology and Immunology, F727, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Boban J, Kozic D, Turkulov V, Lendak D, Bjelan M, Semnic M, Brkic S. Proton Chemical Shift Imaging Study of the Combined Antiretroviral Therapy Impact on Neurometabolic Parameters in Chronic HIV Infection. AJNR Am J Neuroradiol 2017; 38:1122-1129. [PMID: 28428210 DOI: 10.3174/ajnr.a5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE The introduction of combination antiretroviral therapy has failed to reduce the high prevalence of mild forms of HIV-associated neurocognitive disorders. The aim of this study was to test the effect of combined antiretroviral therapy on brain metabolite ratios in chronic HIV infection by using proton chemical shift imaging. MATERIALS AND METHODS We performed 2D chemical shift imaging in 91 subjects (31 HIV+ patients with chronic infection on combination antiretroviral therapy, 19 combination antiretroviral therapy-naïve HIV+ subjects with chronic infection, and 41 healthy controls), covering frontal and parietal subcortical white and cingulate gyrus gray matter, analyzing ratios of NAA/Cr and Cho/Cr on long-TE and mIns/Cr on short-TE MR spectroscopy. We correlated neurometabolic parameters with immunologic, clinical, data and combined antiretroviral therapy efficacy scores. RESULTS There was a significant decrease in NAA/Cr (P < .05) in HIV-positive patients on and without combined antiretroviral therapy, compared with healthy controls in all locations. There were significant differences in Cho/Cr (P < .05) and mIns/Cr (P < .05) ratios between HIV+ patients on and without therapy, compared with healthy controls, but these differed in distribution. There were no significant differences in brain metabolite ratios between the 2 groups of chronically HIV-infected patients. The CNS penetration efficacy score showed weak positive correlations only with Cho/Cr ratios in some locations. CONCLUSIONS The impact of combined antiretroviral therapy on the process of neuronal loss and dysfunction in chronic HIV infection appears to be suboptimal in successful peripheral suppression of viral replication. Spectroscopic imaging might be a useful tool for monitoring the effects of different combined antiretroviral therapy regimens on brain metabolite ratios.
Collapse
Affiliation(s)
- J Boban
- From the Faculty of Medicine (J.B., D.K., M.B.), University of Novi Sad, Vojvodina Institute of Oncology, Diagnostic Imaging Center, Novi Sad, Serbia
| | - D Kozic
- From the Faculty of Medicine (J.B., D.K., M.B.), University of Novi Sad, Vojvodina Institute of Oncology, Diagnostic Imaging Center, Novi Sad, Serbia
| | - V Turkulov
- Faculty of Medicine (V.T., D.L., S.B.), University of Novi Sad, Clinical Center of Vojvodina, Clinic for Infectious Diseases, Novi Sad, Serbia
| | - D Lendak
- Faculty of Medicine (V.T., D.L., S.B.), University of Novi Sad, Clinical Center of Vojvodina, Clinic for Infectious Diseases, Novi Sad, Serbia
| | - M Bjelan
- From the Faculty of Medicine (J.B., D.K., M.B.), University of Novi Sad, Vojvodina Institute of Oncology, Diagnostic Imaging Center, Novi Sad, Serbia
| | - M Semnic
- Faculty of Medicine (M.S.), University of Novi Sad, Clinical Center of Vojvodina, Clinic for Neurology, Novi Sad, Serbia
| | - S Brkic
- Faculty of Medicine (V.T., D.L., S.B.), University of Novi Sad, Clinical Center of Vojvodina, Clinic for Infectious Diseases, Novi Sad, Serbia
| |
Collapse
|
11
|
Midde NM, Rahman MA, Rathi C, Li J, Meibohm B, Li W, Kumar S. Effect of Ethanol on the Metabolic Characteristics of HIV-1 Integrase Inhibitor Elvitegravir and Elvitegravir/Cobicistat with CYP3A: An Analysis Using a Newly Developed LC-MS/MS Method. PLoS One 2016; 11:e0149225. [PMID: 26872388 PMCID: PMC4752462 DOI: 10.1371/journal.pone.0149225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Elvitegravir (EVG), an integrase inhibitor for the treatment HIV infection, is increasingly becoming the part of first-line antiretroviral therapy (ART) regimen. EVG is mainly metabolized through cytochrome P450 (CYP) 3A4. Previously, we have shown that ethanol alters ART-CYP3A4 interactions with protease inhibitors thereby altering their metabolisms. However, as EVG is a fairly new class of drug, its kinetic characteristics and the effect of ethanol on EVG-CYPP3A4 interaction is poorly understood. In this study, we characterized EVG and cobicistat (COBI)-boosted EVG metabolism in human microsomes followed by ethanol-EVG, ethanol-COBI-EVG interaction with CYP3A. First, we developed and validated a simple, sensitive, and robust liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of EVG in the human liver microsomes. The lower limit of quantification for the drug was at 0.003 μM (1.34ng/ml). Extraction yield, matrix effects, drug stability, and calibration curves for the proposed method were validated according to the FDA guidelines. Time dependent kinetics data showed that 20mM ethanol decreases the apparent half-life of EVG degradation by ~50% compared to EVG alone. Our substrate kinetic results revealed that ethanol mildly decreases the catalytic efficiency for EVG metabolism. Inhibition studies demonstrated that EVG inhibits CYP3A4, and 20 mM ethanol causes a decrease in the IC50 of EVG. However, in the presence of COBI we were unable to determine these parameters effectively because COBI, being a strong inhibitor of CYP3A4, blocked the EVG/ethanol-CYP3A4 interactions. Docking studies predicted a shift of EVG or COBI binding to the active site of CYP3A4 in the presence of ethanol. Taken together, these results suggest that ethanol interacts with microsomal CYP3A and alters EVG-CYP3A4 interaction thereby altering EVG metabolism and inhibition of CYP3A4 by EVG. This finding has clinical significance because alcohol use is highly prevalent in HIV population, and there are no separate guidelines for these patients while they are on ART medication.
Collapse
Affiliation(s)
- Narasimha M. Midde
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Mohammad A. Rahman
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Chetan Rathi
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Junhao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bernd Meibohm
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- * E-mail: (SK); (WL)
| | - Santosh Kumar
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (SK); (WL)
| |
Collapse
|
12
|
Kurapati KRV, Atluri VS, Samikkannu T, Garcia G, Nair MPN. Natural Products as Anti-HIV Agents and Role in HIV-Associated Neurocognitive Disorders (HAND): A Brief Overview. Front Microbiol 2016; 6:1444. [PMID: 26793166 PMCID: PMC4709506 DOI: 10.3389/fmicb.2015.01444] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/03/2015] [Indexed: 02/03/2023] Open
Abstract
As the threat of Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS) persists to rise, effective drug treatments are required to treat the infected people. Even though combination antiretroviral therapy (cART) provides stable viral suppression, it is not devoid of undesirable side effects, especially in persons undergoing long-term treatment. The present therapy finds its limitations in the emergence of multidrug resistance and accordingly finding new drugs and novel targets is the need of the hour to treat the infected persons and further to attack HIV reservoirs in the body like brain, lymph nodes to achieve the ultimate goal of complete eradication of HIV and AIDS. Natural products such as plant-originated compounds and plant extracts have enormous potential to become drug leads with anti-HIV and neuroprotective activity. Accordingly, many research groups are exploring the biodiversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action and for HIV-associated neurocognitive disorders (HAND). The basic challenge that still persists is to develop viral replication-targeted therapy using novel anti-HIV compounds with new mode of action, accepted toxicity and less resistance profile. Against this backdrop, the World Health Organization (WHO) suggested the need to evaluate ethno-medicines for the management of HIV/AIDS. Consequently, there is need to evaluate traditional medicine, particularly medicinal plants and other natural products that may yield effective and affordable therapeutic agents. Although there are a good number of reports on traditional uses of plants to treat various diseases, knowledge of herbal remedies used to manage HIV/AIDS and HAND are scanty, vague and not well documented. In this review, plant substances showing a promising action that is anti-HIV and HAND will be explored along with what they interact. Since some plant substances are also known to modulate several cellular factors which are also involved in the replication of HIV and hence their role as potential candidates will be discussed. HIV/AIDS being an exceptional epidemic, demands an exceptional approach and that forms very much focus for the current review.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan P. N. Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA
| |
Collapse
|