1
|
Lydick VN, Mass S, Pepin R, Podicheti R, Klempic E, Rusch DB, Ushijima B, Brown LC, Salomon D, van Kessel JC. Quorum sensing regulates virulence factors in the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 2025:e0114324. [PMID: 39812412 DOI: 10.1128/aem.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
The bacterial pathogen Vibrio coralliilyticus causes disease in coral species worldwide. The mechanisms of V. coralliilyticus coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model Vibrio species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS). Comparative genomics indicated that V. coralliilyticus genomes share high sequence identity for most of the QS signaling and regulatory components identified in other Vibrio species. Here, we identify an active QS signaling pathway in two V. coralliilyticus strains with distinct infection etiologies: type strain BAA-450 and coral isolate OCN008. In V. coralliilyticus, the inter-species AI-2 autoinducer signaling pathway in both strains controls expression of the master QS transcription factor and LuxR/HapR homolog VcpR to regulate >300 genes, including protease production, biofilm formation, and two conserved type VI secretion systems (T6SSs). Activation of T6SS1 by QS results in the secretion of effectors and enables interbacterial competition and killing of prey bacteria. We conclude that the QS system in V. coralliilyticus is functional and controls the expression of genes involved in relevant bacterial behaviors typically associated with host infection.IMPORTANCEVibrio coralliilyticus infects many marine organisms, including multiple species of corals, and is a primary causative agent of tissue loss diseases and bacterial-induced bleaching. Here, we investigated a common cell-cell communication mechanism called quorum sensing, which is known to be intimately connected to virulence in other Vibrio species. Our genetic and chemical studies of V. coralliilyticus quorum sensing uncovered an active pathway that directly regulates the following key virulence factors: proteases, biofilms, and secretion systems. These findings connect bacterial signaling in communities to the infection of corals, which may lead to novel treatments and earlier diagnoses of coral diseases in reefs.
Collapse
Affiliation(s)
- Victoria N Lydick
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Robert Pepin
- Mass Spectrometry Facility, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Emra Klempic
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Laura C Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
2
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
3
|
Young BD, Williams DE, Bright AJ, Peterson A, Traylor-Knowles N, Rosales SM. Genet identity and season drive gene expression in outplanted Acropora palmata at different reef sites. Sci Rep 2024; 14:29444. [PMID: 39604459 PMCID: PMC11603135 DOI: 10.1038/s41598-024-80479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Coral reefs are experiencing decreases in coral cover due to anthropogenic influences. Coral restoration is addressing this decline by outplanting large volumes of corals onto reef systems. Understanding how outplanted corals react at a transcriptomic level to different outplant locations over time is important, as it will highlight how habitat affects the coral host and influences physiological measures. In this study, the transcriptomic dynamics of four genets of outplanted Acropora palmata were assessed over a year at three reef sites in the Florida Keys. Genet identity was more important than time of sampling or outplant site, with differing levels of baseline immune and protein production the key drivers. Once accounting for genet, enriched growth processes were identified in the winter, and increased survival and immune expression were found in the summer. The effect of the reef site was small, with hypothesized differences in autotrophic versus heterotrophic dependent on outplant depth. We hypothesize that genotype identity is an important consideration for reef restoration, as differing baseline gene expression could play a role in survivorship and growth. Additionally, outplanting during cooler winter months may be beneficial due to higher expression of growth processes, allowing establishment of outplants on the reef system.
Collapse
Affiliation(s)
- Benjamin D Young
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA.
| | - Dana E Williams
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Allan J Bright
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Annie Peterson
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - Stephane M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| |
Collapse
|
4
|
Balbi T, Bozzo M, Auguste M, Montagna M, Miglioli A, Drouet K, Vezzulli L, Canesi L. Impact of ocean warming on early development of the Mediterranean mussel Mytilus galloprovincialis: Effects on larval susceptibility to potential vibrio pathogens. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109937. [PMID: 39357629 DOI: 10.1016/j.fsi.2024.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected. The effects of temperature on larval susceptibility to infection were evaluated using Vibrio coralliilyticus, a coral pathogen increasingly associated with bivalve mortalities, whose ecology is affected by global warming. Malformations and mortalities at 48 hpf were observed at higher temperature and vibrio concentrations, with interactive effects. In non-lethal conditions, interactions on gene expression at 24 and 48 hpf were also detected. Although temperature is the main environmental driver affecting M. galloprovincialis early larvae, warming may increase the susceptibility to vibrio infection, with consequences on mussel populations.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Angelica Miglioli
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Kévin Drouet
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
5
|
Mass S, Cohen H, Podicheti R, Rusch DB, Gerlic M, Ushijima B, van Kessel JC, Bosis E, Salomon D. The coral pathogen Vibrio coralliilyticus uses a T6SS to secrete a group of novel anti-eukaryotic effectors that contribute to virulence. PLoS Biol 2024; 22:e3002734. [PMID: 39226241 PMCID: PMC11371242 DOI: 10.1371/journal.pbio.3002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024] Open
Abstract
Vibrio coralliilyticus is a pathogen of coral and shellfish, leading to devastating economic and ecological consequences worldwide. Although rising ocean temperatures correlate with increased V. coralliilyticus pathogenicity, the specific molecular mechanisms and determinants contributing to virulence remain poorly understood. Here, we systematically analyzed the type VI secretion system (T6SS), a contact-dependent toxin delivery apparatus, in V. coralliilyticus. We identified 2 omnipresent T6SSs that are activated at temperatures in which V. coralliilyticus becomes virulent; T6SS1 is an antibacterial system mediating interbacterial competition, whereas T6SS2 mediates anti-eukaryotic toxicity and contributes to mortality during infection of an aquatic model organism, Artemia salina. Using comparative proteomics, we identified the T6SS1 and T6SS2 toxin arsenals of 3 V. coralliilyticus strains with distinct disease etiologies. Remarkably, T6SS2 secretes at least 9 novel anti-eukaryotic toxins comprising core and accessory repertoires. We propose that T6SSs differently contribute to V. coralliilyticus's virulence: T6SS2 plays a direct role by targeting the host, while T6SS1 plays an indirect role by eliminating competitors.
Collapse
Affiliation(s)
- Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Cohen
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ram Podicheti
- Center for Genomics and Bioinformatics Indiana University, Bloomington, Indiana, United States of America
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics Indiana University, Bloomington, Indiana, United States of America
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Julia C. van Kessel
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
He X, Zou J, Chen Q, Qin X, Liu Y, Zeng L, Su H. Microbial and transcriptional response of Acropora valida and Turbinaria peltata to Vibrio coralliilyticus challenge: insights into corals disease resistance. BMC Microbiol 2024; 24:288. [PMID: 39095694 PMCID: PMC11295391 DOI: 10.1186/s12866-024-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.
Collapse
Affiliation(s)
- Xucong He
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jie Zou
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qiqi Chen
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xiao Qin
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yuan Liu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Lujia Zeng
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
10
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
11
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
12
|
Liu M, Yin F, Zhao W, Tian P, Zhou Y, Jia Z, Huang K, Ding Y, Xiao J, Niu W, Wang X. Diversity of Culturable Bacteria from the Coral Reef Areas in the South China Sea and Their Agar-Degrading Abilities. Microorganisms 2024; 12:187. [PMID: 38258013 PMCID: PMC10818321 DOI: 10.3390/microorganisms12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.
Collapse
Affiliation(s)
- Mei Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Fu Yin
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Wenbin Zhao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Peng Tian
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Yi Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Zhiyu Jia
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Keyi Huang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Yunqi Ding
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| | - Jiaguang Xiao
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Wentao Niu
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; (P.T.); (Z.J.); (J.X.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China
| | - Xiaolei Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (M.L.); (F.Y.); (W.Z.); (Y.Z.); (K.H.); (Y.D.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
13
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
14
|
Chuang PS, Yu SP, Liu PY, Hsu MT, Chiou YJ, Lu CY, Tang SL. A gauge of coral physiology: re-examining temporal changes in Endozoicomonas abundance correlated with natural coral bleaching. ISME COMMUNICATIONS 2024; 4:ycae001. [PMID: 38371393 PMCID: PMC10872716 DOI: 10.1093/ismeco/ycae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Bacteria contribute to many physiological functions of coral holobionts, including responses to bleaching. The bacterial genus, Endozoicomonas, dominates the microbial flora of many coral species and its abundance appears to be correlated with coral bleaching. However, evidences for decoupling of bleaching and Endozoicomonas abundance changes have also been reported. In 2020, a severe bleaching event was recorded at reefs in Taiwan, providing a unique opportunity to re-examine bleaching-Endozoicomonas association using multiple stony corals in natural environments. In this study, we monitored tissue color and microbiome changes in three coral species (Montipora sp., Porites sp., and Stylophora pistillata) in Kenting National Park, following the bleaching event. All tagged Montipora sp. and Porites sp. recovered from bleaching within 1 year, while high mortality occurred in S. pistillata. Microbiome analysis found no correlation of Endozoicomonas relative abundance and bleaching severity during the sampling period, but found a stronger correlation when the month in which bleaching occurred was excluded. Moreover, Endozoicomonas abundance increased during recovery months in Montipora sp. and Porites sp., whereas in S. pistillata it was nearly depleted. These results suggest that Endozoicomonas abundance may represent a gauge of coral health and reflect recovery of some corals from stress. Interestingly, even though different Endozoicomonas strains predominated in the three corals, these Endozoicomonas strains were also shared among coral taxa. Meanwhile, several Endozoicomonas strains showed secondary emergence during coral recovery, suggesting possible symbiont switching in Endozoicomonas. These findings indicate that it may be possible to introduce Endozoicomonas to non-native coral hosts as a coral probiotic.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ming-Tsung Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Jing Chiou
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Centre for Marine Science and Innovation, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
15
|
Prioux C, Tignat-Perrier R, Gervais O, Estaque T, Schull Q, Reynaud S, Béraud E, Mérigot B, Beauvieux A, Marcus MI, Richaume J, Bianchimani O, Cheminée A, Allemand D, Ferrier-Pagès C. Unveiling microbiome changes in Mediterranean octocorals during the 2022 marine heatwaves: quantifying key bacterial symbionts and potential pathogens. MICROBIOME 2023; 11:271. [PMID: 38053218 PMCID: PMC10696765 DOI: 10.1186/s40168-023-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Climate change has accelerated the occurrence and severity of heatwaves in the Mediterranean Sea and poses a significant threat to the octocoral species that form the foundation of marine animal forests (MAFs). As coral health intricately relies on the symbiotic relationships established between corals and microbial communities, our goal was to gain a deeper understanding of the role of bacteria in the observed tissue loss of key octocoral species following the unprecedented heatwaves in 2022. RESULTS Using amplicon sequencing and taxon-specific qPCR analyses, we unexpectedly found that the absolute abundance of the major bacterial symbionts, Spirochaetaceae (C. rubrum) and Endozoicomonas (P. clavata), remained, in most cases, unchanged between colonies with 0% and 90% tissue loss. These results suggest that the impairment of coral health was not due to the loss of the main bacterial symbionts. However, we observed a significant increase in the total abundance of bacterial opportunists, including putative pathogens such as Vibrio, which was not evident when only their relative abundance was considered. In addition, there was no clear relation between bacterial symbiont loss and the intensity of thermal stress, suggesting that factors other than temperature may have influenced the differential response of octocoral microbiomes at different sampling sites. CONCLUSIONS Our results indicate that tissue loss in octocorals is not directly caused by the decline of the main bacterial symbionts but by the proliferation of opportunistic and pathogenic bacteria. Our findings thus underscore the significance of considering both relative and absolute quantification approaches when evaluating the impact of stressors on coral microbiome as the relative quantification does not accurately depict the actual changes in the microbiome. Consequently, this research enhances our comprehension of the intricate interplay between host organisms, their microbiomes, and environmental stressors, while offering valuable insights into the ecological implications of heatwaves on marine animal forests. Video Abstract.
Collapse
Affiliation(s)
- Camille Prioux
- Collège Doctoral, Sorbonne Université, Paris, France
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC-98000 Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Romie Tignat-Perrier
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC-98000 Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Ophélie Gervais
- Unité de Recherche sur la Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC-98000 Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Tristan Estaque
- Septentrion Environnement, Campus Nature Provence, Marseille, 13008, France
| | - Quentin Schull
- MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD, Sète, France
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Eric Béraud
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | | | | | - Maria-Isabelle Marcus
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Justine Richaume
- Septentrion Environnement, Campus Nature Provence, Marseille, 13008, France
| | | | - Adrien Cheminée
- Septentrion Environnement, Campus Nature Provence, Marseille, 13008, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco
| | - Christine Ferrier-Pagès
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC 98000, Principality of Monaco.
| |
Collapse
|
16
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
17
|
Chuang PS, Yamada Y, Liu PY, Tang SL, Mitarai S. Bacterial Community Shifts during Polyp Bail-Out Induction in Pocillopora Corals. Microbiol Spectr 2023; 11:e0025723. [PMID: 37378544 PMCID: PMC10433994 DOI: 10.1128/spectrum.00257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Polyp bail-out constitutes both a stress response and an asexual reproductive strategy that potentially facilitates dispersal of some scleractinian corals, including several dominant reef-building taxa in the family Pocilloporidae. Recent studies have proposed that microorganisms may be involved in onset and progression of polyp bail-out. However, changes in the coral microbiome during polyp bail-out have not been investigated. In this study, we induced polyp bail-out in Pocillopora corals using hypersaline and hyperthermal methods. Bacterial community dynamics during bail-out induction were examined using the V5-V6 region of the 16S-rRNA gene. From 70 16S-rRNA gene libraries constructed from coral tissues, 1,980 OTUs were identified. Gammaproteobacteria and Alphaproteobacteria consistently constituted the dominant bacterial taxa in all coral tissue samples. Onset of polyp bail-out was characterized by increased relative abundance of Alphaproteobacteria and decreased abundance of Gammaproteobacteria in both induction experiments, with the shift being more prominent in response to elevated temperature than to elevated salinity. Four OTUs, affiliated with Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales, showed concurrent abundance increases at the onset of polyp bail-out in both experiments, suggesting potential microbial causes of this coral stress response. IMPORTANCE Polyp bail-out represents both a stress response and an asexual reproductive strategy with significant implications for reshaping tropical coral reefs in response to global climate change. Although earlier studies have suggested that coral-associated microbiomes likely contribute to initiation of polyp bail-out in scleractinian corals, there have been no studies of coral microbiome shifts during polyp bail-out. In this study, we present the first investigation of changes in bacterial symbionts during two experiments in which polyp bail-out was induced by different environmental stressors. These results provide a background of coral microbiome dynamics during polyp bail-out development. Increases in abundance of Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales that occurred in both experiments suggest that these bacteria are potential microbial causes of polyp bail-out, shedding light on the proximal triggering mechanism of this coral stress response.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yosuke Yamada
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Po-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
18
|
Cheng K, Tong M, Cai Z, Jong MC, Zhou J, Xiao B. Prokaryotic and eukaryotic microbial communities associated with coral species have high host specificity in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161185. [PMID: 36581277 DOI: 10.1016/j.scitotenv.2022.161185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mui Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
19
|
Haydon TD, Matthews JL, Seymour JR, Raina JB, Seymour JE, Chartrand K, Camp EF, Suggett DJ. Metabolomic signatures of corals thriving across extreme reef habitats reveal strategies of heat stress tolerance. Proc Biol Sci 2023; 290:20221877. [PMID: 36750192 PMCID: PMC9904954 DOI: 10.1098/rspb.2022.1877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Anthropogenic stressors continue to escalate worldwide, driving unprecedented declines in reef environmental conditions and coral health. One approach to better understand how corals can function in the future is to examine coral populations that thrive within present day naturally extreme habitats. We applied untargeted metabolomics (gas chromatography-mass spectrometry (GC-MS)) to contrast metabolite profiles of Pocillopora acuta colonies from hot, acidic and deoxygenated mangrove environments versus those from adjacent reefs. Under ambient temperatures, P. acuta predominantly associated with endosymbionts of the genera Cladocopium (reef) or Durusdinium (mangrove), exhibiting elevated metabolism in mangrove through energy-generating and biosynthesis pathways compared to reef populations. Under transient heat stress, P. acuta endosymbiont associations were unchanged. Reef corals bleached and exhibited extensive shifts in symbiont metabolic profiles (whereas host metabolite profiles were unchanged). By contrast, mangrove populations did not bleach and solely the host metabolite profiles were altered, including cellular responses in inter-partner signalling, antioxidant capacity and energy storage. Thus mangrove P. acuta populations resist periodically high-temperature exposure via association with thermally tolerant endosymbionts coupled with host metabolic plasticity. Our findings highlight specific metabolites that may be biomarkers of heat tolerance, providing novel insight into adaptive coral resilience to elevated temperatures.
Collapse
Affiliation(s)
- Trent D. Haydon
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jennifer L. Matthews
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Justin R. Seymour
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jean-Baptiste Raina
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jamie E. Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4811, Australia
| | - Kathryn Chartrand
- Centre for tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4811, Australia
| | - Emma F. Camp
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - David J. Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
20
|
Omeyer LCM, Duncan EM, Aiemsomboon K, Beaumont N, Bureekul S, Cao B, Carrasco LR, Chavanich S, Clark JR, Cordova MR, Couceiro F, Cragg SM, Dickson N, Failler P, Ferraro G, Fletcher S, Fong J, Ford AT, Gutierrez T, Shahul Hamid F, Hiddink JG, Hoa PT, Holland SI, Jones L, Jones NH, Koldewey H, Lauro FM, Lee C, Lewis M, Marks D, Matallana-Surget S, Mayorga-Adame CG, McGeehan J, Messer LF, Michie L, Miller MA, Mohamad ZF, Nor NHM, Müller M, Neill SP, Nelms SE, Onda DFL, Ong JJL, Pariatamby A, Phang SC, Quilliam R, Robins PE, Salta M, Sartimbul A, Shakuto S, Skov MW, Taboada EB, Todd PA, Toh TC, Valiyaveettil S, Viyakarn V, Wonnapinij P, Wood LE, Yong CLX, Godley BJ. Priorities to inform research on marine plastic pollution in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156704. [PMID: 35718174 DOI: 10.1016/j.scitotenv.2022.156704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.
Collapse
Affiliation(s)
- Lucy C M Omeyer
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom.
| | - Emily M Duncan
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Institute of Marine Sciences - Okeanos, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal.
| | - Kornrawee Aiemsomboon
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nicola Beaumont
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, United Kingdom
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Luis R Carrasco
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Resources Research Institute Chulalongkorn University, Bangkok 10330, Thailand
| | - James R Clark
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, United Kingdom
| | - Muhammad R Cordova
- Research Centre for Oceanography, Indonesian Institute of Sciences (LIPI), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia; Research Centre for Oceanography, National Research and Innovation Agency (BRIN), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Fay Couceiro
- School of Civil Engineering and Surveying, Faculty of Technology, University of Portsmouth, Portsmouth, Hampshire PO1 3AH, United Kingdom
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom; Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Pierre Failler
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Gianluca Ferraro
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Stephen Fletcher
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; UN Environment World Conservation Monitoring Centre, Cambridge, United Kingdom
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Fauziah Shahul Hamid
- Centre for Research in Waste Management, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jan G Hiddink
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Pham T Hoa
- School of Biotechnology, International University, Vietnam National University, Ho Chi Hinh City, Viet Nam
| | - Sophie I Holland
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Lowenna Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Department of Politics and International Relations, Faculty of Social Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Nia H Jones
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Heather Koldewey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Zoological Society of London, London, United Kingdom
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Charlotte Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Matt Lewis
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Danny Marks
- School of Law and Government, Dublin City University, Dublin 9 Dublin, Ireland
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | | | - John McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Laura Michie
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom
| | - Michelle A Miller
- Asia Research Institute, National University of Singapore, Singapore
| | - Zeeda F Mohamad
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hazimah Mohamed Nor
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Malaysia
| | - Simon P Neill
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Deo Florence L Onda
- The Marine Science Institute, Velasquez St., University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Joyce J L Ong
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Agamuthu Pariatamby
- Jeffrey Sachs Centre on Sustainable Development, Sunway University, Selangor Darul Ehsan 47500, Malaysia
| | - Sui C Phang
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; The Nature Conservancy, London Office, 5 Chancery Lane Suite 403, London WC2A 1LG, United Kingdom
| | - Richard Quilliam
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Peter E Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Maria Salta
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Aida Sartimbul
- Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia; Marine Resources Exploration and Management (MEXMA) Research Group, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Shiori Shakuto
- Department of Anthropology, School of Social and Political Sciences, The University of Sydney, Social Sciences Building, NSW 2006, Australia
| | - Martin W Skov
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Evelyn B Taboada
- BioProcess Engineering and Research Centre, Department of Chemical Engineering, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Tai Chong Toh
- Tropical Marine Science Institute, National University of Singapore, Singapore; College of Alice & Peter Tan, National University of Singapore, 8 College Avenue East, 138615, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Resources Research Institute Chulalongkorn University, Bangkok 10330, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Louisa E Wood
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Clara L X Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
21
|
Towards heat tolerant metagenome functional prediction, coral microbial community composition, and enrichment analysis. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat Ecol Evol 2022; 6:1132-1144. [PMID: 35773344 DOI: 10.1038/s41559-022-01795-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/11/2022] [Indexed: 01/04/2023]
Abstract
The coral reef microbiome is central to reef health and resilience. Competitive interactions between opportunistic coral pathogens and other commensal microbes affect the health of coral. Despite great advances over the years in sequencing-based microbial profiling of healthy and diseased coral, the molecular mechanism underlying colonization competition has been much less explored. In this study, by examining the culturable bacteria inhabiting the gastric cavity of healthy Galaxea fascicularis, a scleractinian coral, we found that temperate phages played a major role in mediating colonization competition in the coral microbiota. Specifically, the non-toxigenic Vibrio sp. inhabiting the healthy coral had a much higher colonization capacity than the coral pathogen Vibrio coralliilyticus, yet this advantage was diminished by the latter killing the former. Pathogen-encoded LodAB, which produces hydrogen peroxide, triggers the lytic cycle of prophage in the non-toxicogenic Vibrio sp. Importantly, V. coralliilyticus could outcompete other coral symbiotic bacteria (for example, Endozoicomonas sp.) through LodAB-dependent prophage induction. Overall, we reveal that LodAB can be used by pathogens as an important weapon to gain a competitive advantage over lysogenic competitors when colonizing corals.
Collapse
|
23
|
Choudoir MJ, Eggleston EM. Reciprocal Inclusion of Microbiomes and Environmental Justice Contributes Solutions to Global Environmental Health Challenges. mSystems 2022; 7:e0146221. [PMID: 35642845 PMCID: PMC9239259 DOI: 10.1128/msystems.01462-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generations of colonialism, industrialization, intensive agriculture, and anthropogenic climate change have radically altered global ecosystems and by extension, their environmental microbiomes. The environmental consequences of global change disproportionately burden racialized communities, those with lower socioeconomic status, and other systematically underserved populations. Environmental justice seeks to balance the relationships between environmental burden, beneficial ecosystem functions, and local communities. Given their direct links to human and ecosystem health, microbes are embedded within social and environmental justice. Considering scientific and technological advances is becoming an important step in developing actionable solutions to global equity challenges. Here we identify areas where inclusion of microbial knowledge and research can support planetary health goals. We offer guidelines for strengthening a reciprocal integration of environmental justice into environmental microbiology research. Microbes form intimate relationships with the environment and society, thus microbiologists have numerous and unique opportunities to incorporate equity into their research, teaching, and community engagement.
Collapse
Affiliation(s)
- Mallory J. Choudoir
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
24
|
Díaz-Almeyda EM, Ryba T, Ohdera AH, Collins SM, Shafer N, Link C, Prado-Zapata M, Ruhnke C, Moore M, González Angel AM, Pollock FJ, Medina M. Thermal Stress Has Minimal Effects on Bacterial Communities of Thermotolerant Symbiodinium Cultures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.764086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Algae in the dinoflagellate family Symbiodiniaceae are endocellular photosymbionts of corals and other cnidarians. This close relationship is disrupted when seawater temperature increases, causing coral bleaching eventually affecting entire coral reefs. Although the relationship between animal host and photosymbiont has been well-studied, little is known about the bacterial community associated with Symbiodiniaceae in culture. We compared the microbial communities of three isolates from different species of the genus Symbiodinium (formerly known as Symbiodinium clade A) with different ecophysiology, levels of interaction with the animal host, and thermal adaptations. Two species, Symbiodinium microadriaticum and Symbiodinium necroappettens, exhibit intermediate thermotolerance, with a decrease of both growth rate and photochemical efficiency with increased temperature. The third species, Symbiodinium pilosum, has high thermotolerance with no difference in growth rate or photochemical efficiency at 32°C. Microbial communities were characterized after 27 days of growth under control (26°C) and high temperature (32°C). Data shows stronger grouping of bacterial assemblages based on Symbiodinium species than temperature. Microbial communities did not group phylogenetically. We found a shared set of fifteen ASVs belonging to four genera and three families that remained in all three Symbiodiniaceae species. These included Labrenzia, Phycisphaeraceae (SM1A02), Roseovarius, and Muricauda, which are all commonly associated with corals and Symbiodiniaceae cultures. Few ASVs differed significantly by temperature within species. S. pilosum displayed significantly lower levels of microbial diversity and greater individual variability in community composition at 32°C compared to 26°C. These results suggest that bacteria associated or co-cultured with thermotolerant Symbiodinium might play an important role in thermotolerance. Further research on the functional metabolic pathways of these bacteria might hold the key to understanding Symbiodinium’s ability to tolerate thermal stress.
Collapse
|
25
|
Significant Changes in Bacterial Communities Associated with Pocillopora Corals Ingestion by Crown-of-Thorns Starfish: An Important Factor Affecting the Coral’s Health. Microorganisms 2022; 10:microorganisms10020207. [PMID: 35208662 PMCID: PMC8879049 DOI: 10.3390/microorganisms10020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Coral ingestion by crown-of-thorns starfish (COTS) is an important cause of coral reef degradation, although the impacts of COTS feeding on coral-associated microbial communities are not well understood. Therefore, in this study, we analyzed the coral tissue-weight, Symbiodiniaceae density (SD), bacterial community composition, and the predicted functions of bacterial genes associated with Pocillopora corals in healthy portions and feeding scars, following COTS feeding. Coral tissue-weight loss rate in the feeding scars was 71.3–94.95%. The SDs were significantly lower in the feeding scars, and the SD-loss rate was 92.05% ± 2.12%. The relative abundances of bacterial communities associated with Pocillopora corals after COTS feeding changed significantly and were almost completely reorganized at the phylum and genus levels. Analysis of the microbial metagenomic-functional capacities showed that numerous physiological functions of the coral-bacterial holobionts in the feeding scars were different, including amino acid metabolism, xenobiotic biodegradation and metabolism, lipid metabolism, membrane transport, signal transduction, and cell motility, and all these capacities could be corroborated based on metagenomic, transcriptomic or proteomic technologies. Overall, our research suggests that coral holobionts may be destroyed by COTS, and our findings imply that bacterial communities in feeding scars could affect the health of Pocillopora corals.
Collapse
|
26
|
Glaze TD, Erler DV, Siljanen HMP. Microbially facilitated nitrogen cycling in tropical corals. THE ISME JOURNAL 2022; 16:68-77. [PMID: 34226659 PMCID: PMC8692614 DOI: 10.1038/s41396-021-01038-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Tropical scleractinian corals support a diverse assemblage of microbial symbionts. This 'microbiome' possesses the requisite functional diversity to conduct a range of nitrogen (N) transformations including denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA). Very little direct evidence has been presented to date verifying that these processes are active within tropical corals. Here we use a combination of stable isotope techniques, nutrient uptake calculations and captured metagenomics to quantify rates of nitrogen cycling processes in a selection of tropical scleractinian corals. Denitrification activity was detected in all species, albeit with very low rates, signifying limited importance in holobiont N removal. Relatively greater nitrogen fixation activity confirms that corals are net N importers to reef systems. Low net nitrification activity suggests limited N regeneration capacity; however substantial gross nitrification activity may be concealed through nitrate consumption. Based on nrfA gene abundance and measured inorganic N fluxes, we calculated significant DNRA activity in the studied corals, which has important implications for coral reef N cycling and warrants more targeted investigation. Through the quantification and characterisation of all relevant N-cycling processes, this study provides clarity on the subject of tropical coral-associated biogeochemical N-cycling.
Collapse
Affiliation(s)
- Thomas D Glaze
- Centre for Coastal Biogeochemistry Research, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW, Australia.
| | - Dirk V Erler
- Centre for Coastal Biogeochemistry Research, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Henri M P Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Cross-Linked Regulation of Coral-Associated Dinoflagellates and Bacteria in Pocillopora sp. during High-Temperature Stress and Recovery. Microorganisms 2021; 9:microorganisms9091972. [PMID: 34576867 PMCID: PMC8468813 DOI: 10.3390/microorganisms9091972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
As the problem of ocean warming worsens, the environmental adaptation potential of symbiotic Symbiodiniaceae and bacteria is directly related to the future and fate of corals. This study aimed to analyse the comprehensive community dynamics and physiology of these two groups of organisms in the coral Pocillopora sp. through indoor simulations of heat stress (which involved manually adjusting the temperature between both 26 °C and 34 °C). Heat treatment (≥30 °C) significantly reduced the abundance of Symbiodiniaceae and bacteria by more than 70%. After the temperature was returned to 26 °C for one month, the Symbiodiniaceae density was still low, while the absolute number of bacteria quickly recovered to 55% of that of the control. At this time point, the Fv/Fm value rose to 91% of the pretemperature value. The content of chlorophyll b associated with Cyanobacteria increased by 50% compared with that under the control conditions. Moreover, analysis of the Symbiodiniaceae subclade composition suggested that the relative abundance of C1c.C45, C1, and C1ca increased during heat treatment, indicating that they might constitute heat-resistant subgroups. We suggest that the increase in the absolute number of bacteria during the recovery period could be an important indicator of coral holobiont recovery after heat stress. This study provides insight into the cross-linked regulation of key symbiotic microbes in the coral Pocillopora sp. during high-temperature stress and recovery and provides a scientific basis for exploring the mechanism underlying coral adaptation to global warming.
Collapse
|
28
|
Rajeev M, Sushmitha TJ, Aravindraja C, Toleti SR, Pandian SK. Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem. Sci Rep 2021; 11:17341. [PMID: 34462511 PMCID: PMC8405676 DOI: 10.1038/s41598-021-96969-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023] Open
Abstract
Despite accumulating evidence on the impact of global climate warming on marine microbes, how increasing seawater temperature influences the marine bacterioplankton communities is elusive. As temperature gradient created by thermal discharges provides a suitable in situ model to study the influence of warming on marine microorganisms, surface seawater were sampled consecutively for one year (September-2016 to August-2017) from the control (unimpacted) and thermal discharge-impacted areas of a coastal power plant, located in India. The bacterioplankton community differences between control (n = 16) and thermal discharge-impacted (n = 26) areas, as investigated using 16S rRNA gene tag sequencing revealed reduced richness and varied community composition at thermal discharge-impacted areas. The relative proportion of Proteobacteria was found to be higher (average ~ 15%) while, Bacteroidetes was lower (average ~ 10%) at thermal discharge-impacted areas. Intriguingly, thermal discharge-impacted areas were overrepresented by several potential pathogenic bacterial genera (e.g. Pseudomonas, Acinetobacter, Sulfitobacter, Vibrio) and other native marine genera (e.g. Marinobacter, Pseudoalteromonas, Alteromonas, Pseudidiomarina, Halomonas). Further, co-occurrence networks demonstrated that complexity and connectivity of networks were altered in warming condition. Altogether, results indicated that increasing temperature has a profound impact on marine bacterioplankton richness, community composition, and inter-species interactions. Our findings are immensely important in forecasting the consequences of future climate changes especially, ocean warming on marine microbiota.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603 102, Tamil Nadu, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
29
|
Ketchum RN, Smith EG, Vaughan GO, McParland D, Al-Mansoori N, Burt JA, Reitzel AM. Unraveling the predictive role of temperature in the gut microbiota of the sea urchin Echinometra sp. EZ across spatial and temporal gradients. Mol Ecol 2021; 30:3869-3881. [PMID: 34008895 DOI: 10.1111/mec.15990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Shifts in microbial communities represent a rapid response mechanism for host organisms to respond to changes in environmental conditions. Therefore, they are likely to be important in assisting the acclimatization of hosts to seasonal temperature changes as well as to variation in temperatures across a species' range. The Persian/Arabian Gulf is the world's warmest sea, with large seasonal fluctuations in temperature (20℃ - 37℃) and is connected to the Gulf of Oman which experiences more typical oceanic conditions (<32℃ in the summer). This system is an informative model for understanding how symbiotic microbial assemblages respond to thermal variation across temporal and spatial scales. Here, we elucidate the role of temperature on the microbial gut community of the sea urchin Echinometra sp. EZ and identify microbial taxa that are tightly correlated with the thermal environment. We generated two independent datasets with a high degree of geographic and temporal resolution. The results show that microbial communities vary across thermally variable habitats, display temporal shifts that correlate with temperature, and can become more disperse as temperatures rise. The relative abundances of several ASVs significantly correlate with temperature in both independent datasets despite the >300 km distance between the furthest sites and the extreme seasonal variations. Notably, over 50% of the temperature predictive ASVs identified from the two datasets belonged to the family Vibrionaceae. Together, our results identify temperature as a robust predictor of community-level variation and highlight specific microbial taxa putatively involved in the response to thermal environment.
Collapse
Affiliation(s)
- Remi N Ketchum
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,Water Research Center & Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Grace O Vaughan
- Water Research Center & Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Dain McParland
- Water Research Center & Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Noura Al-Mansoori
- Water Research Center & Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - John A Burt
- Water Research Center & Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
30
|
Brown T, Sonett D, Zaneveld JR, Padilla-Gamiño JL. Characterization of the microbiome and immune response in corals with chronic Montipora white syndrome. Mol Ecol 2021; 30:2591-2606. [PMID: 33763924 DOI: 10.1111/mec.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
Coral diseases have increased in frequency and intensity around the tropics worldwide. However, in many cases, little is known about their etiology. Montipora white syndrome (MWS) is a common disease affecting the coral Montipora capitata, a major reef builder in Hawai'i. Chronic Montipora white syndrome (cMWS) is a slow-moving form of the disease that affects M. capitata throughout the year. The effects of this chronic disease on coral immunology and microbiology are currently unknown. In this study, we use prophenoloxidase immune assays and 16S rRNA gene amplicon sequencing to characterize the microbiome and immunological response associated with cMWS. Our results show that immunological and microbiological responses are highly localized. Relative to diseased samples, apparently healthy portions of cMWS corals differed in immune activity and in the relative abundance of microbial taxa. Coral tissues with cMWS showed decreased tyrosinase-type catecholase and tyrosinase-type cresolase activity and increased laccase-type activity. Catecholase and cresolase activity were negatively correlated across all tissue types with microbiome richness. The localized effect of cMWS on coral microbiology and immunology is probably an important reason for the slow progression of the disease. This local confinement may facilitate interventions that focus on localized treatments on tissue types. This study provides an important baseline to understand the interplay between the microbiome and immune system and the mechanisms used by corals to manage chronic microbial perturbations associated with white syndrome.
Collapse
Affiliation(s)
- Tanya Brown
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, Washington, USA
| | - Dylan Sonett
- Division of Biological Sciences, University of Washington, Bothell, Washington, USA
| | - Jesse R Zaneveld
- Division of Biological Sciences, University of Washington, Bothell, Washington, USA
| | | |
Collapse
|
31
|
Ezzat L, Merolla S, Clements CS, Munsterman KS, Landfield K, Stensrud C, Schmeltzer ER, Burkepile DE, Vega Thurber R. Thermal Stress Interacts With Surgeonfish Feces to Increase Coral Susceptibility to Dysbiosis and Reduce Tissue Regeneration. Front Microbiol 2021; 12:620458. [PMID: 33841351 PMCID: PMC8027513 DOI: 10.3389/fmicb.2021.620458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/28/2021] [Indexed: 01/04/2023] Open
Abstract
Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata. Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus, Photobacterium rosenbergii). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata. As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience.
Collapse
Affiliation(s)
- Leïla Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sarah Merolla
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Cody S Clements
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Katrina S Munsterman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Kaitlyn Landfield
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Colton Stensrud
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
32
|
Takagi T, Yoshioka Y, Zayasu Y, Satoh N, Shinzato C. Transcriptome Analyses of Immune System Behaviors in Primary Polyp of Coral Acropora digitifera Exposed to the Bacterial Pathogen Vibrio coralliilyticus under Thermal Loading. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:748-759. [PMID: 32696240 DOI: 10.1007/s10126-020-09984-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Elevated sea surface temperature associated with global warming is a serious threat to coral reefs. Elevated temperatures directly or indirectly alter the distribution of coral-pathogen interactions and thereby exacerbate infectious coral diseases. The pathogenic bacterium Vibrio coralliilyticus is well-known as a causative agent of infectious coral disease. Rising sea surface temperature promotes the infection of corals by this bacterium, which causes several coral pathologies, such as bacterial bleaching, tissue lysis, and white syndrome. However, the effects of thermal stress on coral immune responses to the pathogen are poorly understood. To delineate the effects of thermal stress on coral immunity, we performed transcriptome analysis of aposymbiotic primary polyps of the reef-building coral Acropora digitifera exposed to V. coralliilyticus under thermal stress conditions. V. coralliilyticus infection of coral that was under thermal stress had negative effects on various molecular processes, including suppression of gene expression related to the innate immune response. In response to the pathogen, the coral mounted various responses including changes in protein metabolism, exosome release delivering signal molecules, extracellular matrix remodeling, and mitochondrial metabolism changes. Based on these results, we provide new insights into innate immunity of A. digitifera against pathogen infection under thermal stress conditions.
Collapse
Affiliation(s)
- Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| |
Collapse
|
33
|
Vega Thurber R, Mydlarz LD, Brandt M, Harvell D, Weil E, Raymundo L, Willis BL, Langevin S, Tracy AM, Littman R, Kemp KM, Dawkins P, Prager KC, Garren M, Lamb J. Deciphering Coral Disease Dynamics: Integrating Host, Microbiome, and the Changing Environment. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.575927] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diseases of tropical reef organisms is an intensive area of study, but despite significant advances in methodology and the global knowledge base, identifying the proximate causes of disease outbreaks remains difficult. The dynamics of infectious wildlife diseases are known to be influenced by shifting interactions among the host, pathogen, and other members of the microbiome, and a collective body of work clearly demonstrates that this is also the case for the main foundation species on reefs, corals. Yet, among wildlife, outbreaks of coral diseases stand out as being driven largely by a changing environment. These outbreaks contributed not only to significant losses of coral species but also to whole ecosystem regime shifts. Here we suggest that to better decipher the disease dynamics of corals, we must integrate more holistic and modern paradigms that consider multiple and variable interactions among the three major players in epizootics: the host, its associated microbiome, and the environment. In this perspective, we discuss how expanding the pathogen component of the classic host-pathogen-environment disease triad to incorporate shifts in the microbiome leading to dysbiosis provides a better model for understanding coral disease dynamics. We outline and discuss issues arising when evaluating each component of this trio and make suggestions for bridging gaps between them. We further suggest that to best tackle these challenges, researchers must adjust standard paradigms, like the classic one pathogen-one disease model, that, to date, have been ineffectual at uncovering many of the emergent properties of coral reef disease dynamics. Lastly, we make recommendations for ways forward in the fields of marine disease ecology and the future of coral reef conservation and restoration given these observations.
Collapse
|
34
|
Li J, Long L, Zou Y, Zhang S. Microbial community and transcriptional responses to increased temperatures in coral Pocillopora damicornis holobiont. Environ Microbiol 2020; 23:826-843. [PMID: 32686311 PMCID: PMC7984454 DOI: 10.1111/1462-2920.15168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
A few studies have holistically examined successive changes in coral holobionts in response to increased temperatures. Here, responses of the coral host Pocillopora damicornis, its Symbiodiniaceae symbionts, and associated bacteria to increased water temperatures were investigated. High temperatures induced bleaching, but no coral mortality was observed. Transcriptome analyses showed that P. damicornis responded more quickly to elevated temperatures than its algal symbionts. Numerous genes putatively associated with apoptosis, exocytosis, and autophagy were upregulated in P. damicornis, suggesting that Symbiodiniaceae can be eliminated or expelled through these mechanisms when P. damicornis experiences heat stress. Furthermore, apoptosis in P. damicornis is presumably induced through tumour necrosis factor and p53 signalling and caspase pathways. The relative abundances of several coral disease-associated bacteria increased at 32°C, which may affect immune responses in heat-stressed corals and potentially accelerates the loss of algal symbionts. Additionally, consistency of Symbiodiniaceae community structures under heat stress suggests non-selective loss of Symbiodiniaceae. We propose that heat stress elicits interrelated response mechanisms in all parts of the coral holobiont.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
36
|
Wang X, Liu J, Liang J, Sun H, Zhang XH. Spatiotemporal dynamics of the total and active Vibrio spp. populations throughout the Changjiang estuary in China. Environ Microbiol 2020; 22:4438-4455. [PMID: 33462948 PMCID: PMC7689709 DOI: 10.1111/1462-2920.15152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/03/2020] [Indexed: 11/27/2022]
Abstract
Vibrio is ubiquitously distributed in marine environments and is the most extensively characterized group within Gammaproteobacteria. Studies have investigated Vibrio spp. worldwide, but mostly focused on pathogenic vibrios and based on cultivation methods. Here, using a combination of molecular and culturing methods, we investigated the dynamics of the total and active Vibrio spp. throughout the Changjiang estuary in China. The total Vibrio abundance was higher in summer (~6.59 × 103 copies ml−1) than in winter (~1.85 × 103 copies ml−1) and increased from freshwater to saltwater (e.g. 8.04 × 101 to 9.39 × 103 copies ml−1 in summer). The ratio of active to total Vibrio (Va/Vt) revealed a high activity of vibrios, with remarkable differences between freshwater and saltwater (p < 0.05). Based on the community compositions of the culturable, total and active Vibrio, Vibrio atlanticus and Vibrio owensii were the dominant and active species in winter and summer, respectively. The distribution of Vibrio was governed by the effects of diverse environmental factors, such as temperature, salinity, pH, dissolved oxygen and SiO32−. Our study clearly demonstrates the spatiotemporal dynamics of total and active Vibrio spp. and lays a foundation for fully understanding the ecological roles of marine Vibrio.
Collapse
Affiliation(s)
- Xiaolei Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Jinchang Liang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hao Sun
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
37
|
Tong H, Cai L, Zhou G, Zhang W, Huang H, Qian PY. Correlations Between Prokaryotic Microbes and Stress-Resistant Algae in Different Corals Subjected to Environmental Stress in Hong Kong. Front Microbiol 2020; 11:686. [PMID: 32390975 PMCID: PMC7191007 DOI: 10.3389/fmicb.2020.00686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Coral reefs are extremely vulnerable to global climate change, as evidenced by increasing bleaching events. Previous studies suggest that both algal and microbial partners benefit coral hosts, but the nature of interactions between Symbiodiniaceae and prokaryotic microbes and their effects on coral hosts remains unclear. In the present study, we examined correlations between Symbiodiniaceae and prokaryotic microbes in Montipora spp. and Porites lutea sampled from two sites in Hong Kong with contrasting environmental conditions in March and October 2014. The results showed that the prokaryotic microbial communities had adaptable structures in both Montipora spp. and P. lutea, and environmental conditions had greater effects on the algal/microbial communities in Montipora spp. than in P. lutea. Further network analysis revealed a greater number of prokaryotic microbes were significantly correlated with potentially stress-resistant Symbiodiniaceae in P. lutea than in Montipora spp. Stress-resistant Symbiodiniaceae played more important roles in the community and in the algal–microbial correlations in P. lutea than in Montipora spp. Since P. lutea is faring better in Hong Kong as the seawater temperature gradually increases, the results suggest that the correlations between stress-resistant algae and prokaryotic microbes could provide a compensation mechanism allowing coral hosts to adapt to higher temperatures, particularly as the prokaryotic microbes correlated with Symbiodiniaceae provide the ecological functions of photosynthesis and nitrogen fixation.
Collapse
Affiliation(s)
- Haoya Tong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lin Cai
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guowei Zhou
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Hainan Key Laboratory of Tropical Marine Biotechnology, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Weipeng Zhang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Hainan Key Laboratory of Tropical Marine Biotechnology, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
38
|
Zhou J, Lin ZJ, Cai ZH, Zeng YH, Zhu JM, Du XP. Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environ Microbiol 2020; 22:1944-1962. [PMID: 32249540 DOI: 10.1111/1462-2920.15009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zi-Jun Lin
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,Department of Earth System Science, Tsinghua University of Education Key Laboratory for Earth System Modeling, Beijing, 100084, People's Republic of China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.,School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening & Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
39
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A place for taxonomic profiling in the study of the coral prokaryotic microbiome. FEMS Microbiol Lett 2020; 366:5426210. [PMID: 30939203 DOI: 10.1093/femsle/fnz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
The enormous variability in richness, abundance and diversity of unknown bacterial organisms inhabiting the coral microbiome have challenged our understanding of their functional contribution to coral health. Identifying the attributes of the healthy meta-organism is paramount for contemporary approaches aiming to manipulate dysbiotic stages of the coral microbiome. This review evaluates the current knowledge on the structure and mechanisms driving bacterial communities in the coral microbiome and discusses two topics requiring further research to define the healthy coral microbiome. (i) We examine the necessity to establish microbial baselines to understand the spatial and temporal dynamics of the healthy coral microbiome and summarise conceptual and logistic challenges to consider in the design of these baselines. (ii) We propose potential mechanical, physical and chemical mechanisms driving bacterial distribution within coral compartments and suggest experiments to test them. Finally, we highlight aspects of the use of 16S amplicon sequencing requiring standardization and discuss its contribution to other multi-omics approaches.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California, 94118, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Environmental and Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Biological Sciences Building (D26), Randwick, New South Wales, 2052, Australia
| |
Collapse
|
40
|
Ezzat L, Lamy T, Maher RL, Munsterman KS, Landfield KM, Schmeltzer ER, Clements CS, Vega Thurber RL, Burkepile DE. Parrotfish predation drives distinct microbial communities in reef-building corals. Anim Microbiome 2020; 2:5. [PMID: 33500004 PMCID: PMC7807759 DOI: 10.1186/s42523-020-0024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coral-associated microbial communities are sensitive to multiple environmental and biotic stressors that can lead to dysbiosis and mortality. Although the processes contributing to these microbial shifts remain inadequately understood, a number of potential mechanisms have been identified. For example, predation by various corallivore species, including ecologically-important taxa such as parrotfishes, may disrupt coral microbiomes via bite-induced transmission and/or enrichment of potentially opportunistic bacteria. Here, we used a combination of mesocosm experiments and field-based observations to investigate whether parrotfish corallivory can alter coral microbial assemblages directly and to identify the potentially relevant pathways (e.g. direct transmission) that may contribute to these changes. RESULTS Our mesocosm experiment demonstrated that predation by the parrotfish Chlorurus spilurus on Porites lobata corals resulted in a 2-4x increase in bacterial alpha diversity of the coral microbiome and a shift in bacterial community composition after 48 h. These changes corresponded with greater abundance of both potentially beneficial (i.e. Oceanospirillum) and opportunistic bacteria (i.e. Flammeovirgaceae, Rhodobacteraceae) in predated compared to mechanically wounded corals. Importantly, many of these taxa were detectable in C. spilurus mouths, but not in corals prior to predation. When we sampled bitten and unbitten corals in the field, corals bitten by parrotfishes exhibited 3x greater microbial richness and a shift in community composition towards greater abundance of both potential beneficial symbionts (i.e. Ruegeria) and bacterial opportunists (i.e. Rhodospiralles, Glaciecola). Moreover, we observed 4x greater community variability in naturally bitten vs. unbitten corals, a potential indicator of dysbiosis. Interestingly, some of the microbial taxa detected in naturally bitten corals, but not unbitten colonies, were also detected in parrotfish mouths. CONCLUSIONS Our findings suggest that parrotfish corallivory may represent an unrecognized route of bacterial transmission and/or enrichment of rare and distinct bacterial taxa, both of which could impact coral microbiomes and health. More broadly, we highlight how underappreciated pathways, such as corallivory, may contribute to dysbiosis within reef corals, which will be critical for understanding and predicting coral disease dynamics as reefs further degrade.
Collapse
Affiliation(s)
- Leïla Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Thomas Lamy
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca L Maher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Katrina S Munsterman
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Kaitlyn M Landfield
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Cody S Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
41
|
King WL, Siboni N, Kahlke T, Green TJ, Labbate M, Seymour JR. A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event. Front Microbiol 2019; 10:2907. [PMID: 31921078 PMCID: PMC6932961 DOI: 10.3389/fmicb.2019.02907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023] Open
Abstract
The Vibrio genus is notable for including several pathogens of marine animals and humans, yet characterization of Vibrio diversity using routine 16S rRNA sequencing methods is often constrained by poor resolution beyond the genus level. Here, a new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. The utility of this new assay was tested using mock communities constructed from known dilutions of Vibrio isolates. Relative to standard and Vibrio-specific 16S rRNA sequencing assays, the hsp60 assay delivered high levels of fidelity with the mock community composition at the species level, including discrimination of species within the Vibrio harveyi clade. This assay was subsequently applied to characterize Vibrio community composition in seawater and delivered substantially improved taxonomic resolution of Vibrio species compared to 16S rRNA analysis. Finally, this assay was applied to examine patterns in the Vibrio community within oysters during a Pacific oyster mortality event. In these oysters, the hsp60 assay identified species-level Vibrio community shifts prior to disease onset, pinpointing V. harveyi as a putative pathogen. Given that shifts in the Vibrio community can precede, cause, and follow disease onset in numerous marine organisms, there is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples. This Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterization of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment.
Collapse
Affiliation(s)
- William L. King
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, BC, Canada
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
42
|
The Effect of Thermal Stress on the Bacterial Microbiome of Exaiptasia diaphana. Microorganisms 2019; 8:microorganisms8010020. [PMID: 31877636 PMCID: PMC7022623 DOI: 10.3390/microorganisms8010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Coral bleaching linked to climate change has generated interest in the response of coral’s bacterial microbiome to thermal stress. The sea anemone, Exaiptasia diaphana, is a popular coral model, but the response of its bacteria to thermal stress has been barely explored. To address this, we compared the bacterial communities of Great Barrier Reef (GBR) E. diaphana maintained at 26 °C or exposed to increasing temperature (26–33 °C) over two weeks. Communities were analyzed by metabarcoding of the bacterial 16S rRNA gene. Bleaching and Symbiodiniaceae health were assessed by Symbiodiniaceae cell density and dark-adapted quantum yield (Fv/Fm), respectively. Significant bleaching and reductions in Fv/Fm occurred in the heat-treated anemones above 29 °C. Overall declines in bacterial alpha diversity in all anemones were also observed. Signs of bacterial change emerged above 31 °C. Some initial outcomes may have been influenced by relocation or starvation, but collectively, the bacterial community and taxa-level data suggested that heat was the primary driver of change above 32 °C. Six bacterial indicator species were identified as potential biomarkers for thermal stress. We conclude that the bacterial microbiome of GBR E. diaphana is generally stable until a thermal threshold is surpassed, after which significant changes occur.
Collapse
|
43
|
Kitamura R, Miura N, Okada K, Motone K, Takagi T, Ueda M, Kataoka M. Design of novel primer sets for easy detection of Ruegeria species from seawater. Biosci Biotechnol Biochem 2019; 84:854-864. [PMID: 31814534 DOI: 10.1080/09168451.2019.1700776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Some coral-associated bacteria show protective roles for corals against pathogens. However, the distribution of coral-protecting bacteria in seawater is not well known. In addition, compared with the methods for investigating coral pathogens, few methods have been developed to detect coral-protecting bacteria. Here we prepared a simple method for detecting Ruegeria spp., some strains of which inhibit growth of the coral pathogen Vibrio coralliilyticus. We successfully obtained two Ruegeria-targeting primer sets through in silico and in vitro screening. The primer sets r38F-r30R and r445F-r446R, in addition to the newly designed universal primer set U357'F-U515'R, were evaluated in vitro using environmental DNA extracted from seawater collected in Osaka. These methods and primers should contribute to revealing the distribution of Ruegeria spp. in marine environments.
Collapse
Affiliation(s)
- Ruriko Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Keiko Okada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Kyoto, Japan
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Michihiko Kataoka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
44
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Jomchai N, Sonthirod C, Naktang C, Kongkachana W, Tangphatsornruang S. Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. Microbiologyopen 2019; 8:e935. [PMID: 31544365 PMCID: PMC6925168 DOI: 10.1002/mbo3.935] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/01/2023] Open
Abstract
The coral holobiont is a complex ecosystem consisting of coral animals and a highly diverse consortium of associated microorganisms including algae, fungi, and bacteria. Several studies have highlighted the importance of coral‐associated bacteria and their potential roles in promoting the host fitness and survival. Recently, dynamics of coral‐associated microbiomes have been demonstrated to be linked to patterns of coral heat tolerance. Here, we examined the effect of elevated seawater temperature on the structure and diversity of bacterial populations associated with Porites lutea, using full‐length 16S rRNA sequences obtained from Pacific Biosciences circular consensus sequencing. We observed a significant increase in alpha diversity indices and a distinct shift in microbiome composition during thermal stress. There was a marked decline in the apparent relative abundance of Gammaproteobacteria family Endozoicomonadaceae after P. lutea had been exposed to elevated seawater temperature. Concomitantly, the bacterial community structure shifted toward the predominance of Alphaproteobacteria family Rhodobacteraceae. Interestingly, we did not observe an increase in relative abundance of Vibrio‐related sequences in our heat‐stressed samples even though the appearance of Vibrio spp. has often been detected in parallel with the increase in the relative abundance of Rhodobacteraceae during thermal bleaching in other coral species. The ability of full‐length 16S rRNA sequences in resolving taxonomic uncertainty of associated bacteria at a species level enabled us to identify 24 robust indicator bacterial species for thermally stressed corals. It is worth noting that the majority of those indicator species were members of the family Rhodobacteraceae. The comparison of bacterial community structure and diversity between corals in ambient water temperature and thermally stressed corals may provide a better understanding on how bacteria symbionts contribute to the resilience of their coral hosts to ocean warming.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Nukoon Jomchai
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
45
|
Carrell AA, Kolton M, Glass JB, Pelletier DA, Warren MJ, Kostka JE, Iversen CM, Hanson PJ, Weston DJ. Experimental warming alters the community composition, diversity, and N 2 fixation activity of peat moss (Sphagnum fallax) microbiomes. GLOBAL CHANGE BIOLOGY 2019; 25:2993-3004. [PMID: 31148286 PMCID: PMC6852288 DOI: 10.1111/gcb.14715] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 05/19/2023]
Abstract
Sphagnum-dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole-ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next-generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.
Collapse
Affiliation(s)
- Alyssa A. Carrell
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleTennessee
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
| | - Max Kolton
- School of BiologyGeorgia Institute of TechnologyAtlantaGeorgia
| | - Jennifer B. Glass
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGeorgia
| | | | - Melissa J. Warren
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGeorgia
- Present address:
CH2MAtlantaGeorgia30328USA
| | - Joel E. Kostka
- School of BiologyGeorgia Institute of TechnologyAtlantaGeorgia
- School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaGeorgia
| | - Colleen M. Iversen
- Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Climate Change Science Institute, Oak Ridge National LaboratoryOak RidgeTennessee
| | - Paul J. Hanson
- Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Climate Change Science Institute, Oak Ridge National LaboratoryOak RidgeTennessee
| | - David J. Weston
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Climate Change Science Institute, Oak Ridge National LaboratoryOak RidgeTennessee
| |
Collapse
|
46
|
Damjanovic K, van Oppen MJH, Menéndez P, Blackall LL. Experimental Inoculation of Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in Acropora tenuis and Platygyra daedalea. Front Microbiol 2019; 10:1702. [PMID: 31396197 PMCID: PMC6668565 DOI: 10.3389/fmicb.2019.01702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Coral-associated microorganisms are essential for maintaining the health of the coral holobiont by participating in nutrient cycling and protecting the coral host from pathogens. Under stressful conditions, disruption of the coral prokaryotic microbiome is linked to increased susceptibility to diseases and mortality. Inoculation of corals with beneficial microbes could confer enhanced stress tolerance to the host and may be a powerful tool to help corals thrive under challenging environmental conditions. Here, we explored the feasibility of coral early life stage microbiome manipulation by repeatedly inoculating coral recruits with a bacterial cocktail generated in the laboratory. Co-culturing the two species Acropora tenuis and Platygyra daedalea allowed us to simultaneously investigate the effect of host factors on the coral microbiome. Inoculation cocktails were regularly prepared from freshly grown pure bacterial cultures, which were hence assumed viable, and characterized via the optical density measurement of each individual strain put in suspension. Coral early recruits were inoculated seven times over 3 weeks and sampled once 36 h following the last inoculation event. At this time point, the cumulative inoculations with the bacterial cocktails had a strong effect on the bacterial community composition in recruits of both coral species. While the location of bacterial cells within the coral hosts was not assessed, metabarcoding using the 16S rRNA gene revealed that two and six of the seven bacterial strains administered through the cocktails were significantly enriched in inoculated recruits of A. tenuis and P. daedalea, respectively, compared to control recruits. Despite being reared in the same environment, A. tenuis and P. daedalea established significantly different bacterial communities, both in terms of taxonomic composition and diversity measurements. These findings indicate that coral host factors as well as the environmental bacterial pool play a role in shaping coral-associated bacterial community composition. Host factors may include microbe transmission mode (horizontal versus maternal) and host specificity. While the long-term stability of taxa included in the bacterial inocula as members of the host-associated microbiome remains to be evaluated, our results provide support for the feasibility of coral microbiome manipulation, at least in a laboratory setting.
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of Mathematics and Physics, University of Queensland, Saint Lucia, QLD, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Huggett MJ, Apprill A. Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral-associated microbes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:372-385. [PMID: 30094953 PMCID: PMC7379671 DOI: 10.1111/1758-2229.12686] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/04/2018] [Indexed: 05/10/2023]
Abstract
Coral-associated microorganisms are thought to play a fundamental role in the health and ecology of corals, but understanding of specific coral-microbial interactions are lacking. In order to create a framework to examine coral-microbial specificity, we integrated and phylogenetically compared 21,100 SSU rRNA gene Sanger-produced sequences from bacteria and archaea associated with corals from previous studies, and accompanying host, location and publication metadata, to produce the Coral Microbiome Database. From this database, we identified 39 described and candidate phyla of Bacteria and two Archaea phyla associated with corals, demonstrating that corals are one of the most phylogenetically diverse animal microbiomes. Secondly, this new phylogenetic resource shows that certain microorganisms are indeed specific to corals, including evolutionary distinct hosts. Specifically, we identified 2-37 putative monophyletic, coral-specific sequence clusters within bacterial genera associated with the greatest number of coral species (Vibrio, Endozoicomonas and Ruegeria) as well as functionally relevant microbial taxa ("Candidatus Amoebophilus", "Candidatus Nitrosopumilus" and under recognized cyanobacteria). This phylogenetic resource provides a framework for more targeted studies of corals and their specific microbial associates, which is timely given the escalated need to understand the role of the coral microbiome and its adaptability to changing ocean and reef conditions.
Collapse
Affiliation(s)
- Megan J. Huggett
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNSW, 2258Australia
- School of ScienceEdith Cowan UniversityJoondalupWAAustralia
| | - Amy Apprill
- Marine Chemistry and Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMAUSA
| |
Collapse
|
48
|
Rajeev M, Sushmitha TJ, Toleti SR, Pandian SK. Culture dependent and independent analysis and appraisal of early stage biofilm-forming bacterial community composition in the Southern coastal seawater of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:308-320. [PMID: 30798240 DOI: 10.1016/j.scitotenv.2019.02.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Microbial aggregation on artificial surfaces is a fundamental phenomenon in aquatic systems that lead to biofouling, corrosion and influence the buoyancy of plastic materials. Despite the maritime activities and with nearshore large industrial sector, Laccadive Sea in the Indian Ocean has rarely been investigated for characterizing early biofilm-forming bacterial community. The present investigation was aimed to catalogue the primary colonizers on artificial surfaces and their comparison with planktonic community in southern coastal seawater of India. Surface seawater samples and biofilm assembled on three artificial surfaces over a period of 72 h of immersion in the intake area of a nuclear power plant at Kudankulam, India were collected. The structure of surface assemblages and plankton were unveiled by employing culture dependent, DGGE and NGS methods. In static condition, a collection of aerobic heterotrophic bacteria was screened in vitro for their ability to form potent biofilm. Proteobacteria preponderated the communities both in seawater and natural biofilm and Gammaproteobacteria accounted for >85% in the latter. Vibrionaceae, Alteromonadaceae and Pseudoalteromonadaceae dominated the biofilm community and constituted for 41, 25 and 8%, respectively. In contrast to other studies that showed Rhodobacteraceae family of Alphaproteobacteria as predominant component, we found Vibrionaceae of Gammaproteobacteria as dominant group in early stage of biofilm formation. Both DGGE and NGS data indicated that the attached community is noticeably distinct from those suspended in water column and form the basis for the proposed hypothesis of species sorting theory, that is, the local environmental conditions influence bacterial community assembly. Collectively, the data are testament for species sorting process that occur during initial assembly of bacterial community in marine environment and shed light on the structure of marine bacterial biofilm development. The outcome of the present study is of immense importance for designing long-term, efficient and appropriate strategies to control the biofouling phenomenon.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam 603 102, Tamil Nadu, India
| | | |
Collapse
|
49
|
Ahmed HI, Herrera M, Liew YJ, Aranda M. Long-Term Temperature Stress in the Coral Model Aiptasia Supports the "Anna Karenina Principle" for Bacterial Microbiomes. Front Microbiol 2019; 10:975. [PMID: 31139158 PMCID: PMC6517863 DOI: 10.3389/fmicb.2019.00975] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
The understanding of host-microbial partnerships has become a hot topic during the last decade as it has been shown that associated microbiota play critical roles in the host physiological functions and susceptibility to diseases. Moreover, the microbiome may contribute to host resilience to environmental stressors. The sea anemone Aiptasia is a good laboratory model system to study corals and their microbial symbiosis. In this regard, studying its bacterial microbiota provides a better understanding of cnidarian metaorganisms as a whole. Here, we investigated the bacterial communities of different Aiptasia host-symbiont combinations under long-term heat stress in laboratory conditions. Following a 16S rRNA gene sequencing approach we were able to detect significant differences in the bacterial composition and structure of Aiptasia reared at different temperatures. A higher number of taxa (i.e., species richness), and consequently increased α-diversity and β-dispersion, were observed in the microbiomes of heat-stressed individuals across all host strains and experimental batches. Our findings are in line with the recently proposed Anna Karenina principle (AKP) for animal microbiomes, which states that dysbiotic or stressed organisms have a more variable and unstable microbiome than healthy ones. Microbial interactions affect the fitness and survival of their hosts, thus exploring the AKP effect on animal microbiomes is important to understand host resilience. Our data contributes to the current knowledge of the Aiptasia holobiont and to the growing field of study of host-associated microbiomes.
Collapse
Affiliation(s)
| | | | | | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
50
|
Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, Ueda M. Ruegeria sp. Strains Isolated from the Reef-Building Coral Galaxea fascicularis Inhibit Growth of the Temperature-Dependent Pathogen Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:1-8. [PMID: 30194504 DOI: 10.1007/s10126-018-9853-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The coral microbiome has attracted increased attention because of its potential roles in host protection against deadly diseases. However, little is known about the role of coral-associated bacteria against the temperature-dependent opportunistic pathogen Vibrio coralliilyticus. In this study, we tested whether bacteria associated with the reef-building coral Galaxea fascicularis could inhibit the growth of V. coralliilyticus. Twenty-nine cultivable bacteria were successfully isolated from a healthy colony of G. fascicularis kept in an aquarium. Among the bacterial isolates, three Ruegeria sp. strains inhibited the growth of V. coralliilyticus P1 as a reference strain and Vibrio sp. isolated in this study. Ruegeria sp. strains were also detected from other G. fascicularis colonies in the aquarium and in previous field studies by 16S rRNA amplicon sequencing, suggesting that Ruegeria sp. strains are common among G. fascicularis colonies. These results illuminate the potential role of Ruegeria sp. in protecting corals against pathogenic Vibrio species.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshiyuki Takagi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Shunsuke Aburaya
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sho Watanabe
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|